首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Submerged macrophytes have been disappearing from the Kanto Plain, Japan since the 1960s. This disappearance is usually attributable to the interaction between macrophytes and phytoplankton. Phytoplankton contributes to shading of the available light and changes the availability of inorganic carbon from free CO2 to HCO 3 ? for use in photosynthesis. However, limited information is available about the interaction between carbon fraction and submerged macrophytes through phytoplankton abundance. In this short note, we observe the distribution of submerged macrophytes and phytoplankton in a small canal. We found that, despite high photosynthetically active radiation (PAR) in the downstream region, low free CO2 concentration through phytoplankton abundance can deplete free CO2 for submerged macrophytes. In contrast, the upstream region exhibited macrophytes in an environment with high free CO2 concentration. The stable carbon isotope ratio of submerged macrophytes follows this pattern, with more positive values occurring in the downstream region and more negative values in the upstream region. It has been reported that phytoplankton limits light availability for submerged macrophytes, but carbon availability could also be a factor in the distribution of submerged macrophytes. Because the source of water for submerged macrophytes is groundwater, its preservation possibly plays a key role for the restoration of submerged macrophytes.  相似文献   

2.
In shallow lakes with large littoral zones, epiphytes and submerged macrophytes can make an important contribution to the total annual primary production. We investigated the primary production (PP) of phytoplankton, submerged macrophytes, and their epiphytes, from June to August 2005, in two large shallow lakes. The production of pelagic and littoral phytoplankton and of the dominant submerged macrophytes in the littoral zone (Potamogeton perfoliatus in Lake Peipsi and P. perfoliatus and Myriopyllum spicatum in Lake Võrtsjärv) and of their epiphytes was measured using a modified 14C method. The total PP of the submerged macrophyte area was similar in both lakes: 12.4 g C m?2 day?1 in Peipsi and 12.0 g C m?2 day?1 in Võrtsjärv. In Peipsi, 84.2% of this production was accounted for by macrophytes, while the shares of phytoplankton and epiphytes were low (15.6 and 0.16%, respectively). In Võrtsjärv, macrophytes contributed 58%, phytoplankton 41.9% and epiphytes 0.1% of the PP in the submerged macrophyte area. Epiphyte production in both lakes was very low in comparison with that of phytoplankton and macrophytes: 0.01, 5.04, and 6.97 g C m?2 day?1, respectively, in Võrtsjärv, and 0.02, 1.93, and 10.5 g C m?2 day?1, respectively, in Peipsi. The PP of the littoral area contributed 10% of the total summer PP of Lake Peipsi sensu stricto and 35.5% of the total summer PP of Lake Võrtsjärv.  相似文献   

3.
Ozimek  Teresa  Gulati  Ramesh D.  van Donk  Ellen 《Hydrobiologia》1990,200(1):399-407
Lake Zwemlust (area 1.5 ha, Zm 1.5 m) has been the object of an extensive limnological study since its biomanipulation involving removal of planktivorous fish (bream) in March 1987 and emptying of the lake. In the subsequent summer period of 1987 the Secchi depth increased to the lake bottom (2.5 m), compared withca 30 cm in the earlier summers. The reaction of submerged macrophytes to improving under-water light climate was rapid. In summer 1987, besides the introducedChara globularis, 5 species of submerged macrophytes occurred and colonized 10% of the lake area. In 1988 and 1989 only quantitative changes were observed; new species did not appear, but the area colonized by macrophytes increased by 7 and 10 times, respectively.Elodea nuttallii was dominant among the macrophytes andMougeotia sp. among the filamentous green algae. Their abundance, contributed to transient N-limination of phytoplankton causing a persistent clear water phase in 1988 and 1989, unlike in 1987 when zooplankton grazing contributed chiefly to the water clarity. Laboratory bioassays on macrophytes confirmed nitrogen limitation.  相似文献   

4.
Biomass assessments of algae in wetlands usually include only the phytoplankton community without considering the contribution of other algal associations to total algal biomass. This omission prevents an accurate evaluation of the phytoplankton community as an integral part of the total ecosystem. In the present work, the biomass contributions (expressed as chlorophyll-a content per m2 of lake) of phytoplankton, epiphyton on both submerged and emergent macrophytes, and epipelon were measured in Lacombe Lake, Argentina, for the purpose of (1) establishing the relative importance of the phytoplankton and (2) evaluating the entire contribution of algal biomass within the context of the Goldsborough & Robinson conceptual model. Our sampling was carried out monthly for a year in sites representative of different conditions with respect to water depth and type of macrophytes. Physicochemical analyses of water were performed following standard methods. Plankton was collected in a five-level profile at deeper stations and in subsurface samples at the shallow one. Samples of sediment obtained with corers were collected for epipelon sampling and segments of plants were cut at different levels, so as to obtain the epiphytes by scraping. Pigment was extracted with aqueous acetone and calculations were made by means of the Lorenzen equation. According to the Goldsborough & Robinson model, a Lake State developed here during the winter (phytoplankton maxima: 150 mg chlorophyll-a per m2). Then, through the subsequent growth of the submerged macrophytes, an Open State was observed, characterized by a maximum epiphyton biomass (at 3,502 mg chlorophyll-a per m2) along with lower levels of phytoplankton biomass. The epiphytic algae on the emergent macrophytes were always present but attained only relatively low biomass values (maximum: 120 mg of chlorophyll-a per m2 in February). The epipelon biomass varied between 50 and 252 mg chlorophyll-a per m2, registering a considerable contribution of settled algae from the water column (phytoplankton). This study contributes to our knowledge of wetland dynamics through its assessment of the rapid changes in the relative contributions of both planktonic and attached algae to the total algal biomass within the context of specific environmental factors. Guest editors: U. M. Azeiteiro, I. Jenkinson & M. J. Pereira Plankton Studies  相似文献   

5.
Low phytoplankton biomass usually occurs in the presence of submerged macrophytes, possibly because submerged macrophytes enhance top-down control of phytoplankton by offering a refuge for efficient grazers like Daphnia against fish predation. However, other field studies also suggest that submerged macrophytes suppress phytoplankton in the absence of Daphnia. In order to investigate these mechanisms further, we conducted an outdoor mesocosm experiment to study the effect of submerged macrophytes (Elodea nuttallii) on phytoplankton and zooplankton biomass. The experiment combined four nutrient addition levels (0, 10, 100, and 1000 μg P l−1; N/P ratio: 16) with three macrophyte levels (no macrophytes, artificial macrophytes, and real macrophytes). We inoculated the tanks with species-rich inocula of phytoplankton and zooplankton but excluded fish or macro-invertebrates. Probably due to the lack of predators in the mesocosms, potential grazing rates of pelagic zooplankton (estimated from zooplankton biomass) did not differ between the macrophyte treatment combinations. Compared to the treatment combinations without macrophytes, lower phytoplankton biomass occurred in the treatment combinations with real macrophytes at all the nutrient addition levels and in those with artificial macrophytes at all the nutrient levels except the highest. Significantly, higher abundances of plant-associated filter feeders (Simocephalus vetulus and Ceriodaphnia spp.) occurred in the treatment combinations with real and artificial macrophytes. The estimated potential grazing rate of these plant-associated filter feeders indicated that these filter feeders could be responsible for the lower phytoplankton biomass in the presence of real and artificial macrophytes. Our results suggest that the plant-associated filter feeders may be significant grazers in vegetated shallow lakes.  相似文献   

6.
1. Recent experimental and field studies on temperate shallow lakes indicate that nitrogen may play a greater role in their functioning than previously thought. Several studies document that abundance and richness of submerged macrophytes, both central in shallow lake ecology, may decrease with increasing nitrogen loading, especially at high phosphorus levels. However, the role of nitrogen in warm lakes with fluctuating water regimes remains to be described in detail. 2. The effect of increasing nitrate and phosphate concentrations on submerged macrophyte growth was examined in a 3‐month mesocosm experiment conducted in summer in a shallow freshwater lake on the north western coast of Turkey with a Mediterranean climate. Twenty four field mesocosms, open to the sediment and atmosphere, were stocked with Myriophyllum spicatum shoots and small cyprinid fish. Three nitrate loadings in combination with two phosphate loadings were applied in a fourfold replicated design. 3. Mean ± SD nutrient concentrations maintained throughout the experiment were 0.55 ± 0.17, 2.2 ± 0.97, 9.2 ± 5.45 mg L?1 total nitrogen and 55 ± 19.2, 73 ± 22.9 μg L?1 total phosphorus. Mean periphyton biomass increased with increasing nutrient concentrations and peaked at the highest nitrogen and phosphorus loadings, while the mean phytoplankton biomass remained relatively low in all treatments. 4. Percent volume inhabited (% PVI) by macrophytes throughout the experiment and total macrophyte biomass at the end of the experiment did not differ among treatments. In addition to stocked M. spicatum, Ceratophyllum demersum and Potamogeton crispus appeared in the majority of the mesocosms. The plants grew continuously up to 50% PVI throughout the experiment and remained resilient to shading provided by periphyton and phytoplankton. 5. The mean summer air temperature in 2007 was 2.2 °C higher than the average of the last 32 years, which resulted in a water level decrease of 0.3 m in the mesocosms over three months. This might have counteracted the shading of submerged macrophytes provided by phytoplankton and periphyton. The results of the experiment are consistent with observations of higher macrophyte resilience to nutrient loading in Mediterranean lakes compared with northern temperate lakes.  相似文献   

7.
After the diversion of a nutrient-rich inflow, the eutrophic lake, Alderfen Broad, initially showed reduced total phosphorus concentrations and phytoplankton populations, clear water and the establishment of submerged macrophytes. Internal P loading then increased, perhaps stimulated by the senescence of submerged macrophytes and exacerbated by the lack of flushing. Cyanophytes appeared in the summer of two years. As a consequence of poor recruitment of roach (Rutilus rutilus (L.)), the chief zooplanktivore, and a summerkill of the fish population, populations of large-bodied Cladocera (Daphnia hyalina/ longispina and ultimately D. magna) developed. In the long-term, these may have limited the further development of phytoplankton populations and clear water and submerged macrophytes returned. During this latter period, internal P release has remained high (> 380 µg l-1), thereby indicating the scope for biomanipulation even in eutrophic conditions. However, isolation of the lake has led to a decrease in water level (which through increased temperatures and lowered dissolved oxygen levels was probably responsible for the fish deaths) and further concentration of internal P load. Sediment is now being removed to reestablish greater water depth.  相似文献   

8.
Submerged aquatic macrophytes growing in water where free CO2 is unavailable (above pH 8·2) must use mechanisms to supply external dissolved inorganic carbon in a form available to chloroplasts (CO2). Active transport of HCO3 across the plasmalemma has not been proven to be widespread in aquatic macrophytes and catalytic conversion of HCO3 to CO2 is the usual supply mechanism in submerged macrophytes. The interaction of leaf form and function in this respect was investigated in the linear, submerged leaves of Ranunculus penicillatus (Dumort.) Bab ssp. pseudofluitans (Syme) S.Webster. Viable protoplasts were isolated using a mixture of cell wall degrading enzymes optimized for this species. Protoplast viabilities greater than 80% after 5 h of isolation were achieved. Photosynthetic rates of isolated protoplasts were comparable with that of intact plant tissue. Results of carbon isotopic disequilibrium experiments showed that CO2 was the preferred species of dissolved inorganic carbon for photosynthesis by protoplasts and that HCO3 which predominates in the plant’s natural environment mainly contributes by supplying CO2 outside the cells.  相似文献   

9.
沉水植物化感作用对西湖湿地浮游植物群落的影响   总被引:5,自引:0,他引:5  
通过微宇宙实验,在控制光照和营养盐浓度的条件下分别研究了苦草(Vallisneria spiralis)、金鱼藻(Ceratophyllum demersum)和穗花狐尾藻(Myriophyllum spicatum)的化感作用对采集于杭州西湖湖西湿地的藻类密度、叶绿素a浓度、群落结构、多样性指数等的影响。其结果表明,3种沉水植物对微宇宙系统中的藻类都具有明显影响,藻类密度与叶绿素a浓度受到显著抑制,3个草-藻研究系统中藻类群落结构都发生了变化。在实验末期苦草组、金鱼藻组和穗花狐尾藻组中藻类总生物量(以细胞密度计)分别较初始值降低了37.06%、78.37%和83.40%。栅藻对3种沉水植物的化感作用敏感性较弱。藻类生物多样性方面,穗花狐尾藻系统中最高,其次是金鱼藻组,最后是苦草组,其Shannon-Wiener指数(H)分别为2.76、2.06和0.72,穗花狐尾藻组中H的显著高于苦草组(P0.05)。  相似文献   

10.
Lake Zwemlust, a small highly eutrophic lake, was biomanipulated without reducing the external nutrient loading, and the effects were studied for four years. In this paper we pay special attention to the shifts in relative distribution of nitrogen and phosphorus in the different trophic levels and to the changes in growth limitation of the autotrophs.Despite of the high external nutrient loads to the lake (ca 2.4 g P m–2 y–1 and 9.6 g N m–2 y–1), the effects of biomanipulation on the lake ecosystem were pronounced. Before biomanipulation no submerged vegetation was present in the lake and P and N were stored in the phytoplankton (44% N, 47% P), fish (33% N, 9% P) and in dissolved forms (23% N, 44% P). P and N contents in sediments were not determined. In the spring and summer following the biomanipulation (1987), zooplankton grazing controlled the phytoplankton biomass and about 90% of N and P were present in dissolved form in the water. From 1988 onwards submerged macrophyte stands continue to thrive, reducing the ammonium and nitrate concentrations in the water below detection levels. In July 1989 storage of N and P in the macrophytes reached 86% and 80%, respectively. Elodea nuttallii (Planchon) St.John, the dominant species in 1988 and 1989, acted as sink both for N and P during spring and early summer, withdrawing up to ca 60% of its N and P content from the sediment. At the end of the year only part of the N and P from the decayed macrophytes (ca 30% of N and 60% of P) was recovered in the water phase of the ecosystem (chiefly in dissolved forms). The rest remained in the sediment, although some N may have been released from the lake by denitrification.In summer 1990 only 30% of the N and P was found in the macrophytes (dominant species Ceratophyllum demersum L.), while ca 30% of N and P was again stored in phytoplankton and fish.  相似文献   

11.
Introduced submerged macrophytes have come to dominate many shallow water bodies in New Zealand, and are a common component of many lowland streams. We investigated the seasonal variation of macrophyte abundance, its influence on flow and channel volume, and the implications of this on stream habitat and functioning in Whakapipi Stream, a typical lowland stream draining a predominantly agricultural catchment.Abundance of macrophytes over the summer was primarily controlled by the phenological cycles of the two dominant species. Mean minimum total macrophyte biomass (36 g m–2) and cover (7%) occurred in winter (June and August, respectively), and mean maximum biomass (324 g m–2), and cover (79%) occurred in late summer (March and February respectively). Egeria densa comprised the majority of both cover and biomass during the study period, except early summer (December) when Potamogeton crispus was prevalent in the shallow stream reaches.Macrophyte beds had a major impact on summer stream velocities, reducing average velocities by an estimated 41%. Stream cross-sectional area was maintained at relatively stable levels similar to that recorded over winter, when stream discharge was in the order of seven times greater. The mean velocity distribution coefficient (), and Manning's roughness coefficient (n) were dependent on and displayed a positive linear relationship with macrophyte abundance. The velocity distribution coefficient is recommended as a better indicator of macrophyte effects on velocity in natural streams, as it does not assume uniform velocity, channel depth and slope within the stream reach.Our study shows that submerged macrophytes play an important structuring role within the stream during the summer period, where macrophyte beds act as semi-permeable dams, retarding flow velocities and increasing stream depth and cross-sectional area. This promotes habitat heterogeneity by creating a greater range of flow velocity variation, and also provides large stable low-flow areas. Other likely ecosystem effects resulting from macrophyte/velocity interactions include increased sedimentation, potential for nutrient processing and increased primary production, both by macrophytes and attached epiphyton. The complex architecture of submerged macrophytes and their influence on stream flow may also provide an increased diversity of habitat for other aquatic biota. We propose that management of degraded lowland streams such as the Whakapipi Stream to maintain stretches with moderate quantities of submerged macrophytes interspersed with shaded areas would optimise stream health during low summer flows.  相似文献   

12.
Jeppesen  E.  Jensen  J. P.  Kristensen  P.  Søndergaard  M.  Mortensen  E.  Sortkjær  O.  Olrik  K. 《Hydrobiologia》1990,(1):219-227
In order to evaluate short-term and long-term effects of fish manipulation in shallow, eutrophic lakes, empirical studies on relationships between lake water concentration of total phosphorus (P) and the occurrence of phytoplankton, submerged macrophytes and fish in Danish lakes are combined with results from three whole-lake fish manipulation experiments. After removal of less than 80 per cent of the planktivorous fish stock a short-term trophic cascade was obtained in the nutrient regimes, where large cyanobacteria were not strongly dominant and persistent. In shallow Danish lakes cyanobacteria were the most often dominating phytoplankton class in the P-range between 200 and 1 000μg P l−1. Long-term effects are suggested to be closely related to the ability of the lake to establish a permanent and wide distribution of submerged macrophytes and to create self-perpetuating increases in the ratio of piscivorous to planktivorous fish. The maximum depth at which submerged macrophytes occurred, decreased exponentially with increasing P concentration. Submerged macrophytes were absent in lakes>10 ha and with P levels above 250–300μg P l−1, but still abundant in some lakes<3 ha at 650μg P l−1. Lakes with high cover of submerged macrophytes showed higher transparencies than lakes with low cover aboveca. 50μg P l−1. These results support the alternative stable state hypothesis (clear or turbid water stages). Planktivorous fish>10 cm numerically contributed more than 80 per cent of the total planktivorous and piscivorous fish (>10 cm) in the pelagical of lakes with concentrations above 100μg P l−1. Below this threshold level the proportion of planktivores decreased markedly toca. 50 per cent at 22μg P l−1. The extent of the shift in depth colonization of submerged macrophytes and fish stock composition in the three whole-lake fish manipulations follows closely the predictions from the relationships derived from the empirical study. We conclude that a long-term effect of a reduction in the density of planktivorous fish can be expected only when the external phosphorus loading is reduced to below 0.5–2.0 g m−2 y−1. This loading is equivalent to an in-lake summer concentration below 80–150μg P l−1. Furthermore, fish manipulation as a restoration tool seems most efficient in shallow lakes.  相似文献   

13.
Huss AA  Wehr JD 《Microbial ecology》2004,47(4):305-315
Phytoplankton and allochthonous matter are important sources of dissolved organic carbon (DOC) for planktonic bacteria in aquatic ecosystems. But in small temperate lakes, aquatic macrophytes may also be an important source of DOC, as well as a source or sink for inorganic nutrients. We conducted micro- and mesocosm studies to investigate the possible effects of an actively growing macrophyte, Vallisneria americana, on bacterial growth and water chemistry in mesotrophic Calder Lake. A first microcosm (1 L) study conducted under high ambient NH 4 + levels (NH 4 + 10 µM) demonstrated that macrophytes had a positive effect on bacterial densities through release of DOC and P. A second microcosm experiment, conducted under NH 4 + -depleted conditions (NH 4 + < 10 µM), examined interactive effects of macrophytes and their sediments on bacterial growth and water chemistry. Non-rooted macrophytes had negative effects on bacterial numbers, while rooted macrophytes had no significant effects, despite significant increases in DOC and P. A 70-L mesocosm experiment manipulated macrophytes, as well as N and P supply under surplus NH 4 + conditions (NH 4 + 10 µM), and measured effects on bacterial growth, Chl a concentrations, and water chemistry. Bacterial growth and Chl a concentrations declined with macrophyte additions, while bacterial densities increased with P addition (with or without N). Results suggest that the submersed macrophyte Vallisneria exerts a strong but indirect effect on bacteria by modifying nutrient conditions and/or suppressing phytoplankton. Effects of living macrophytes differed with ambient nutrient conditions: under NH 4 + -surplus conditions, submersed macrophytes stimulated bacterioplankton through release of DOC or P, but in NH 4 + -depleted conditions, the influence of Vallisneria was negative or neutral. Effects of living macrophytes on planktonic bacteria were apparently mediated by the macrophytes use and/or release of nutrients, as well as through possible effects on phytoplankton production.  相似文献   

14.
Ecological restoration in eutrophic Lake Wuli: A large enclosure experiment   总被引:2,自引:0,他引:2  
A large-scale enclosure experiment for lake restoration was carried out in Lake Wuli, a northern bay of shallow and eutrophic Lake Taihu in China. The large enclosure with an area of 10 ha was set up in the littoral zone and was bordered by waterproof fabric which did not cover the sediments. Multiple approaches were used and included fish removal, piscivorous fish stocking, shoreline reconstruction, aquatic macrophyte planting, benthic macro-animal stocking, and silver carp cultivation in pens for reduction of cyanobacteria. The results showed that the coverage of aquatic macrophytes increased from 0% to 45.7%. Mean concentrations of TN and TP inside the enclosure from May 2004 to May 2008 were 22.2% and 26.0% of those outside, respectively. Secchi depth was 0.40 m outside the enclosures and 0.75 m inside. However, responses of phytoplankton to the restoration project lagged behind improvement of water quality and reestablishment of aquatic plants. The phytoplankton biomass gradually decreased after the third year of the restoration. Stocking piscivorous fish and planting submerged macrophytes could not increase zooplankton biomass and enhance graze pressure on phytoplankton, most likely due to high omnivorous fish density and lower nutrition inside the enclosure. Higher grazing pressure of zooplankton on phytoplankton was observed in May and October every year. Zooplankton to phytoplankton biomass ratios were significantly negatively correlated with phytoplankton biomass outside (r = −0.440, p < 0.01) and inside the enclosure (r = −0.336, p < 0.05) from February 2004 to March 2007. Therefore, phytoplankton biomass inside and outside the enclosure was lower in May and October. Higher grazing pressure of zooplankton on phytoplankton in spring may result in occurrence of the clear-water phase that facilitated growth of submerged macrophytes in the littoral in Lake Wuli, and a clear-water state and improved water quality would likely be sustained throughout the year after reestablishment of submerged macrophytes.  相似文献   

15.
1. Using data from 71, mainly shallow (an average mean depth of 3 m), Danish lakes with contrasting total phosphorus concentrations (summer mean 0.02–1.0 mg P L?l), we describe how species richness, biodiversity and trophic structure change along a total phosphorus (TP) gradient divided into five TP classes (class 1–5: <0.05, 0.05–0.1, 0.1–0.2, 0.2–0.4,> 0.4 mg P L?1).
2. With increasing TP, a significant decline was observed in the species richness of zooplankton and submerged macrophytes, while for fish, phytoplankton and floating‐leaved macrophytes, species richness was unimodally related to TP, all peaking at 0.1–0.4 mg P L?1. The Shannon–Wiener and the Hurlbert probability of inter‐specific encounter (PIE) diversity indices showed significant unimodal relationships to TP for zooplankton, phytoplankton and fish. Mean depth also contributed positively to the relationship for rotifers, phytoplankton and fish.
3. At low nutrient concentrations, piscivorous fish (particularly perch, Perca fluviatilis) were abundant and the biomass ratio of piscivores to plankti‐benthivorous cyprinids was high and the density of cyprinids low. Concurrently, the zooplankton was dominated by large‐bodied forms and the biomass ratio of zooplankton to phytoplankton and the calculated grazing pressure on phytoplankton were high. Phytoplankton biomass was low and submerged macrophyte abundance high.
4. With increasing TP, a major shift occurred in trophic structure. Catches of cyprinids in multiple mesh size gill nets increased 10‐fold from class 1 to class 5 and the weight ratio of piscivores to planktivores decreased from 0.6 in class 1 to 0.10–0.15 in classes 3–5. In addition, the mean body weight of dominant cyprinids (roach, Rutilus rutilus, and bream, Abramis brama) decreased two–threefold. Simultaneously, small cladocerans gradually became more important, and among copepods, a shift occurred from calanoid to cyclopoids. Mean body weight of cladocerans decreased from 5.1 μg in class 1 to 1.5 μg in class 5, and the biomass ratio of zooplankton to phytoplankton from 0.46 in class 1 to 0.08–0.15 in classes 3–5. Conversely, phytoplankton biomass and chlorophyll a increased 15‐fold from class 1 to 5 and submerged macrophytes disappeared from most lakes.
5. The suggestion that fish have a significant structuring role in eutrophic lakes is supported by data from three lakes in which major changes in the abundance of planktivorous fish occurred following fish kill or fish manipulation. In these lakes, studied for 8 years, a reduction in planktivores resulted in a major increase in cladoceran mean size and in the biomass ratio of zooplankton to phytoplankton, while chlorophyll a declined substantially. In comparison, no significant changes were observed in 33 ‘control’ lakes studied during the same period.  相似文献   

16.
Macrophytes play a key role in stabilizing clear‐water conditions in shallow freshwater ecosystems. Their populations are maintained by a balance between plant grazing and plant growth. As a freshwater snail commonly found in shallow lakes, Radix swinhoei can affect the growth of submerged macrophytes by removing epiphyton from the surface of aquatic plants and by grazing directly on macrophyte organs. Thus, we conducted a long‐term (11‐month) experiment to explore the effects of snail density on macrophytes with distinctive structures in an outdoor clear‐water mesocosm system (with relatively low total nitrogen (TN, 0.66 ± 0.27 mg/L) and total phosphorus (TP, 36 ± 20 μg/L) and a phytoplankton chlorophyll a (Chla) range of 14.8 ± 4.9 μg/L) based on two different snail densities (low and high) and four macrophyte species treatments (Myriophyllum spicatum, Potamogeton wrightii, P. crispus, and P. oxyphyllus). In the high‐density treatment, snail biomass and abundance (36.5 ± 16.5 g/m2 and 169 ± 92 ind/m2, respectively) were approximately twice that observed in the low‐density treatment, resulting in lower total and aboveground biomass and ramet number in the macrophytes. In addition, plant height and plant volume inhabited (PVI) showed species‐specific responses to snail densities, that is, the height of P. oxyphyllus and PVI of M. spicatum were both higher under low‐density treatment. Thus, compared with low‐density treatment, the inhibitory effects of long‐term high snail density on macrophytes by direct feeding may be greater than the positive effects resulting from epiphyton clearance when under clear‐water conditions with low epiphyton biomass. Thus, under clear‐water conditions, the growth and community composition of submerged macrophytes could be potentially modified by the manual addition of invertebrates (i.e., snails) to lakes if the inhibitory effects from predatory fish are minor.  相似文献   

17.
18.
1. In temperate regions, submerged macrophytes can hamper phytoplankton blooms. Such an effect could arise directly, for instance via allelopathy, or indirectly, via competition for nutrients or the positive interaction between submerged macrophytes and zooplankton grazing. However, there is some evidence that the positive interaction between submerged macrophytes and zooplankton grazing is less marked in warmer regions, where the interaction is less well studied, and that negative effects of higher water plants on phytoplankton biomass are weaker. 2. We carried out two consecutive mesocosm experiments in Uruguay (subtropical South America) to study the effects of two common submerged macrophytes from this region (Egeria densa and Potamogeton illinoensis) on phytoplankton biomass, in the absence of zooplankton grazing. We compared phytoplankton development between different macrophyte treatments (no macrophytes, artificial macrophytes, real Egeria and real Potamogeton). We used artificial macrophytes to differentiate between physical effects (i.e. shading, sedimentation and competition with periphyton) and biological effects (i.e. nutrient competition and allelopathy). 3. In Experiment 1, we found no evidence for physical effects of macrophytes on phytoplankton biomass, but both macrophyte species seemed to exert strong biological effects on phytoplankton biomass. Only Egeria affected phytoplankton community structure, particularly tempering the dominance of Scenedesmus. Nutrient addition assays revealed that only Egeria suppressed phytoplankton through nutrient competition. 4. We performed a second mesocosm experiment with the same design, but applying saturating nutrient conditions as a way of excluding the effects of competition for nutrients. This experiment showed that both macrophytes were still able to suppress phytoplankton through biological mechanisms, providing evidence for allelopathic effects. Our results indicate that both common macrophytes are able to keep phytoplankton biomass low, even in the absence of zooplankton grazing.  相似文献   

19.
Whole-lake food-web manipulation was carried out in the hypertrophic Lake Zwemlust (The Netherlands), with the aim of studying the effects on the lake's trophic status and to gain an insight into complex interactions among lake communities. Before manipulation this small (1.5 ha) and shallow (1.5 m) lake was characterized byMicrocystis blooms in summer and high chlorophyll-a concentrations were common (ca. 250 μg 1−1). In March 1987 the planktivorous and benthivorous fish species in the lake were completely removed (ca. 1000 kg ha−1), a new simple fish community (pike and rudd) was introduced and artificial refuges were created. The effects of this manipulation on the light climate, nutrient concentrations, phytoplankton, zooplankton, fish, macrophytes, and macrofauna were monitored during 1987, 1988 and 1989. Community interactions were investigated in phytoplankton bioassays and zooplankton grazing experiments. After the manipulation, despite the still high P and N loads to the lake (ca. 2.2 g P m−2 y−1 andca. 5.3 g N m−2 y−1), the phytoplankton density was low (Chl-a<5μg l−1), due to control by large-sized zooplankton in spring and N-limitation in summer and autumn. A marked increase in the abundance of macrophytes and filamentous green algae in 1988 and 1989, as well as N loss due to denitrification, contributed to the N limitation of the phytoplankton. Before manipulation no submerged macro-vegetation was present but in 1988, the second year after manipulation, about 50% of the lake bottom was covered by macrophytes increasing to 80% in 1989. This led to substantial accumulation of both N and P, namely 76% and 73% respectively of the total nutrients in the lake in particulate matter. Undesirable features of the increase in macrophytes were: 1) direct nuisance to swimmers; and, 2) the large scale development of snails, especiallyL. peregra, which may harbour the parasite causing ‘swimmers' itch’. But harvesting of only about 3% of the total macrophyte biomass from the swimmers' area, twice a year, reduced the nuisance for swimmers without adversely affecting the water clarity.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号