首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
CD2 is a cell adhesion molecule found on the plasma membrane of T-lymphocytes. Its counter-receptor in rat is the structurally related CD48. This interaction is believed to contribute to the adhesion of T-cells to other cells such as cytotoxic targets and antigen presenting cells. Cell-cell adhesion involves the formation of multiple cell adhesion molecule complexes at the cell surface and if cell-cell de-adhesion is to occur, these complexes need to be disrupted. The affinities of cell adhesion molecule interactions are suggested to be relatively weak to allow this de-adhesion of cell-cell interactions. The CD2/CD48 interaction has been studied using recombinant extracellular proteins and the affinity of the interaction of soluble recombinant rat CD2–CD48 has been determined (at 37°C) using surface plasmon resonance (and shown to be weak), with the dissociation constant Kd=60–90 μm. The values determined by surface plasmon resonance results could be affected by the immobilisation of the ligand on the chip and any self-association on the chip. We used three different analytical ultracentrifuge procedures which each allowed the interaction to be studied in free solution without the need for an immobilisation medium. Both sedimentation equilibrium (using direct analysis of the concentration distribution and also modelling of molecular weight versus concentration data) and sedimentation velocity at 5°C yielded dissociation constants in the range of 20– 110 μm, supporting the surface plasmon resonance findings showing that binding between these cell adhesion molecules is relatively weak. These studies also ruled out the presence of any significant self-association of the reactants which could lead to systematic error in the surface plasmon resonance results. Accepted: 19 November 1996  相似文献   

2.
CD2 is a plasma membrane glycoprotein present on T lymphocytes that functions as a cell adhesion molecule (CAM). The CD2 counter-receptor in rodents is the structurally-related CAM CD48. Intercellular adhesion involves the formation of multiple CAM complexes between adhering cells and de-adhesion requires disruption of these complexes. To gain an insight into the initiation and termination of intercellular adhesion, the kinetics and affinity of the rat CD2-CD48 interaction was analysed using a BIAcore instrument, which enables the monitoring of protein binding in real time. A soluble chimeric protein, comprising the extracellular portion of rat CD48 and domains 3 and 4 of rat CD4 (sCD48-CD4), bound to immobilized soluble CD2 (sCD2) with a KD of 90 microM. The affinity was also determined in the reverse orientation and sCD2 was shown to bind immobilized sCD48-CD4 with a comparable KD of 60 microM. sCD48-CD4 bound to immobilized deglycosylated sCD2 with a KD of 125 microM, indicating that glycosylation of sCD2 has little effect on the affinity of the interaction. The low affinity was the result of an extremely rapid off-rate constant (K(off) > or = 6 s-1), whereas the on-rate constant was unremarkable (K(on) > or = 10(5) M-1s-1). The kinetic analysis revealed that small amounts of multimeric aggregates of sCD48-CD4 formed in concentrated preparations. Our experience suggests that even low concentrations (< 2%) of these aggregates may be a cause of artifactually high affinity values when analysing low-affinity protein interactions. In conclusion, this study provides the first detailed analysis of the kinetics and affinity of monomeric CAM interactions and suggests that binding between CAMs may be weaker than anticipated.  相似文献   

3.
ADP-ribosyltransferase-2 (ART2), a GPI-anchored, toxin-related ADP-ribosylating ectoenzyme, is prominently expressed by murine T cells but not by B cells. Upon exposure of T cells to NAD, the substrate for ADP-ribosylation, ART2 catalyzes ADP-ribosylation of the P2X7 purinoceptor and other functionally important cell surface proteins. This in turn activates P2X7 and induces exposure of phosphatidylserine and shedding of CD62L. CD38, a potent ecto-NAD-glycohydrolase, is strongly expressed by most B cells but only weakly by T cells. Following incubation with NAD, CD38-deficient splenocytes exhibited lower NAD-glycohydrolase activity and stronger ADP-ribosylation of cell surface proteins than their wild-type counterparts. Depletion of CD38(high) cells from wild-type splenocytes resulted in stronger ADP-ribosylation on the remaining cells. Similarly, treatment of total splenocytes with the CD38 inhibitor nicotinamide 2'-deoxy-2'-fluoroarabinoside adenine dinucleotide increased the level of cell surface ADP-ribosylation. Furthermore, the majority of T cells isolated from CD38-deficient mice "spontaneously" exposed phosphatidylserine and lacked CD62L, most likely reflecting previous encounter with ecto-NAD. Our findings support the notion that ecto-NAD functions as a signaling molecule following its release from cells by lytic or nonlytic mechanisms. ART2 can sense and translate the local concentration of ecto-NAD into corresponding levels of ADP-ribosylated cell surface proteins, whereas CD38 controls the level of cell surface protein ADP-ribosylation by limiting the substrate availability for ART2.  相似文献   

4.
In the cell adhesion of aggregation-competent Dictyostelium cells, the requirement for the carbohydrate moiety of the glycoprotein appeared to be indirect in that it acts to protect the protein moiety from proteolytic degradation; however, the effect was limited to the tunicamycin (TM)-sensitive carbohydrate moiety (Hirano, T., et al. (1983) J. Biochem. 93, 1249-1257). In the present study, we showed that the EDTA-stable adhesion of aggregation-competent Dictyostelium cells was abolished by the treatment of intact cells with jack bean alpha-mannosidase, whereas neuraminidase, beta-galactosidase, beta-N-acetylhexosaminidase, or alpha-L-fucosidase had no effect. The EDTA-stable cohesiveness of TM-treated cells in the presence of leupeptin (TM/LP cells) was also abolished by the treatment of the cells with alpha-mannosidase. The effect of alpha-mannosidase was not prevented in the presence of LP. The N-glycoside-deficient contact site A (an adhesion-mediating glycoprotein) was obtained from TM/LP cells and was shown to have a molecular weight of 70,000. This protein (p 70) was shown to still have carbohydrates as detected by polyacrylamide gel electrophoresis (PAGE) in the presence of sodium dodecyl sulfate (SDS) and subsequent staining of the gel with periodic acid-silver stain. Moreover, p 70 reacted with anti-gp 68, which has a specificity against alpha-mannosyl residues of carbohydrate chains. However, p 70 treated with alpha-mannosidase showed decreased reactivity with anti-gp 68. The monovalent antibody fragment of anti-contact site A or anti-p 70 inhibited EDTA-stable cell adhesion of both control and TM/LP cells. These results indicated that TM-resistant mannosyl residues of contact site A are directly involved in EDTA-stable adhesion of aggregation-competent cells. This is the first report of the direct involvement of the carbohydrate moiety in cell adhesion of aggregation-competent Dictyostelium cells. A schematic model is presented of the role of the carbohydrate moiety in EDTA-stable cell adhesion, including the direct effect of carbohydrates.  相似文献   

5.
An increasing number of mammalian cell adhesion molecules, including sialoadhesion, CD22 and the family of selectins, have been found to bind cell surface glycoconjugates containing sialic acids. Here we describe how the structural diversity of this sugar influences cell adhesion mediated by the related molecules sialoadhesin and CD22 in murine macrophages and B-cells respectively. We show that the 9-O-acetyl group of Neu5,9Ac2 and theN-glycoloyl residue of Neu5Gc interfere with sialoadhesin binding. In contrast, CD22 binds more strongly to Neu5Gc compared to Neu5Ac. Of two synthetic sialic acids tested, only CD22 bound theN-formyl derivative, whereas aN-trifluoroacetyl residue was accepted by sialoadhesin. The potential significance for the regulation of sialic acid dependent cell adhesion phenomena is discussed.Dedicated to Professor Dr Gerhard Uhlenbruck on the occasion of his 65th birthday.  相似文献   

6.
Ly108: a new member of the mouse CD2 family of cell surface proteins   总被引:3,自引:0,他引:3  
Peck SR  Ruley HE 《Immunogenetics》2000,52(1-2):63-72
  相似文献   

7.
Localization of signaling complexes to specific microdomains coordinates signal transduction at the plasma membrane. Using immunogold electron microscopy of plasma membrane sheets coupled with spatial point pattern analysis, we have visualized morphologically featureless microdomains, including lipid rafts, in situ and at high resolution. We find that an inner-plasma membrane lipid raft marker displays cholesterol-dependent clustering in microdomains with a mean diameter of 44 nm that occupy 35% of the cell surface. Cross-linking an outer-leaflet raft protein results in the redistribution of inner leaflet rafts, but they retain their modular structure. Analysis of Ras microlocalization shows that inactive H-ras is distributed between lipid rafts and a cholesterol-independent microdomain. Conversely, activated H-ras and K-ras reside predominantly in nonoverlapping, cholesterol-independent microdomains. Galectin-1 stabilizes the association of activated H-ras with these nonraft microdomains, whereas K-ras clustering is supported by farnesylation, but not geranylgeranylation. These results illustrate that the inner plasma membrane comprises a complex mosaic of discrete microdomains. Differential spatial localization within this framework can likely account for the distinct signal outputs from the highly homologous Ras proteins.  相似文献   

8.
H2O2 activates CD11b/CD18-dependent cell adhesion   总被引:1,自引:0,他引:1  
Treatment of monoblastoid U-937 cells with low concentrations of H2O2 caused adhesion of the cells to plastic. The H2O2 induced adhesion was rapid with a t1/2 of congruent to 6 min and was optimally stimulated by 100 microM H2O2 with an ED50 of congruent to 50 microM. The response to H2O2 closely resembled the adhesive response of U-937 cells to phorbol esters in its time dependency, requirement for extracellular Mg2+ and inhibition by cytochalasin B as well as inhibition by monoclonal antibodies against the leucocyte adhesion molecules CD11b and CD18. Phorbol ester treatment of U-937 cells stimulated the phosphorylation of at least three endogenous substrates, pp28, pp34 and pp43, of which pp28 and pp43 also responded to H2O2-treatment with increased 32P-incorporation. The results suggest that H2O2 might be a physiological modulator of leucocyte adhesion, possibly operating by activating protein kinase C.  相似文献   

9.
The relationship between intermembrane spacing, adhesion efficiency, and lateral organization of adhesion receptors has not been established for any adhesion system. We have utilized the CD2 ligand CD48 with two (wild type CD48 (CD48-WT)), four (CD48-CD2), or five (CD48-CD22) Ig-like domains. CD48-WT was 10-fold more efficient in mediating adhesion than CD48-CD2 or CD48-CD22. Electron tomography of contact areas with planar bilayers demonstrated average intermembrane spacing of 12.8 nm with CD48-WT, 14.7 nm with CD48-CD2, and 15.6 nm with CD48-CD22. Both CD48-CD2 and CD48-CD22 chimeras segregated completely from CD48-WT in mixed contact areas. In contrast, CD48-CD2 and CD48-CD22 co-localized when mixed contacts were formed. Confocal imaging of immunological synapses formed between primary T lymphocytes and Chinese hamster ovary cells presenting major histocompatibility complex-peptide complexes, and different forms of CD48 demonstrated that CD48-CD2 and CD48-CD22 induce an eccentric CD2/T cell antigen receptor cluster. We propose that this reorganization of the immunological synapse sequesters the T cell antigen receptor in a location where it cannot interact with its ligand and dramatically reduces T cell sensitivity.  相似文献   

10.
In the early stages of breast cancer metastasis, epithelial cells penetrate the basement membrane and invade the surrounding stroma, where they encounter fibroblasts. Paracrine signaling between fibroblasts and epithelial tumor cells contributes to the metastatic cascade, but little is known about the role of adhesive contacts between these two cell types in metastasis. Here we show that MCF-7 breast cancer epithelial cells and normal breast fibroblasts form heterotypic adhesions when grown together in co-culture, as evidenced by adhesion assays. PCR and immunoblotting show that both cell types express multiple members of the cadherin superfamily, including the atypical cadherin, cadherin-23, when grown in isolation and in co-culture. Immunocytochemistry experiments show that cadherin-23 localizes to homotypic adhesions between MCF-7 cells and also to heterotypic adhesions between the epithelial cells and fibroblasts, and antibody inhibition and RNAi experiments show that cadherin-23 plays a role in mediating these adhesive interactions. Finally, we show that cadherin-23 is upregulated in breast cancer tissue samples, and we hypothesize that heterotypic adhesions mediated by this atypical cadherin may play a role in the early stages of metastasis.  相似文献   

11.
The adhesive properties of Chinese hamster V79 cells were analyzed and characterized by various cell dissociation treatments. The comparisons of aggregability among cells dissociated with EDTA, trypsin + Ca2+, and trypsin + EDTA, revealed that these cells have two adhesion mechanisms, a Ca2+-independent and a Ca2+-dependent one. The former did not depend on temperature, whereas the latter occurred only at physiological temperatures. Both mechanisms were trypsin sensitive, but the Ca2+- dependent one was protected by Ca2+ against trypsinization. In morphological studies, the Ca2+-independent adhesion appeared to be a simple agglutination or flocculation of cells, whereas the Ca2+- dependent adhesion seemed to be more physiological, being accompanied by cell deformation resulting in the increase of contact area between adjacent cells. Lactoperoxidase-catalyzed iodination of cell surface proteins revealed that several proteins are more intensely labeled in cells with Ca2+-independent adhesiveness than in cells without that property. It was also found that a cell surface protein with a molecular weight of approximately 150,000 is present only in cells with Ca2+-dependent adhesiveness. The iodination and trypsinization of this protein were protected by Ca2+, suggesting its reactivity to Ca2+. Possible mechanisms for each adhesion property are discussed, taking into account the correlation of these proteins with cell adhesiveness.  相似文献   

12.
Random aggregates of heterotypic cells derived from two different embryonic tissues sort out into homotypic zones, one enclosing the other. The specification of the enclosed or enclosing position is based on a tissue hierarchy. Cells differ in their net negative charge as indicated by their different isoelectric points (pI). The cells of higher pI enclose the cells of lower pI. Cell pI is lowered by treatment with heparin. Cells with experimentally altered pI also sort out, and their position is specified by the differences in their pI. It is suggested that the cell surface ionogenic groups determine the free surface energy which controls the positioning of cells in a mixed aggregate.  相似文献   

13.
Interactions between CD44 and hyaluronan are implicated in the primary adhesion of lymphocytes to endothelium at inflammatory locations. Here we show that preincubation of hyaluronan with full-length recombinant TSG-6 or its Link module domain (Link_TSG6) enhances or induces the binding of hyaluronan to cell surface CD44 on constitutive and inducible cell backgrounds, respectively. These effects are blocked by CD44-specific antibodies and are absent in CD44-negative cells. Enhancement of CD44-mediated interactions of lymphoid cells with hyaluronan by TSG-6 proteins was seen under conditions of flow at shear forces that occur in post-capillary venules. Increases in the number of rolling cells were observed on substrates comprising TSG-6-hyaluronan complexes as compared with a substrate containing hyaluronan alone. In ligand competition experiments, cell surface-bound TSG-6-hyaluronan complexes were more potent than hyaluronan alone in inhibiting cell adhesion to immobilized hyaluronan. Link_TSG6 mutants with impaired hyaluronan binding function had a reduced ability to modulate ligand binding by cell surface CD44. However, some mutants that exhibited close to wild-type hyaluronan binding were found to have either reduced or increased activity, suggesting that some amino acid residues outside of the hyaluronan binding site might be involved in protein self-association, potentially leading to the formation of cross-linked hyaluronan fibers. In turn, cross-linked hyaluronan could increase the binding avidity of CD44 by inducing receptor clustering. The ability of TSG-6 to modulate the interaction of hyaluronan with CD44 has important implications for CD44-mediated cell activity at sites of inflammation, where TSG-6 is expressed.  相似文献   

14.
Toll-like receptors (TLRs) are receptors of the innate immune system responsible for recognizing pathogen-associated molecular patterns. TLR2 seems to be the most promiscuous TLR receptor able to recognize the most diverse set of pathogen-associated patterns. Its promiscuity has been attributed to its unique ability to heterodimerize with TLRs 1 and 6 and, most recently, to its association with CD36 in response to diacylated lipoproteins. Thus, it seems that TLR2 forms receptor clusters in response to different microbial ligands. In this study we investigated TLR2 cell surface heterotypic interactions in response to different ligands as well as internalization and intracellular trafficking. Our data show that TLR2 forms heterodimers with TLR1 and TLR6 and that these heterodimer pre-exist and are not induced by the ligand. Upon stimulation by the specific ligand, these heterodimers are recruited within lipid rafts. In contrast, heterotypic associations of TLR2/6 with CD36 are not preformed and are ligand-induced. All TLR2 receptor clusters accumulate in lipid rafts and are targeted to the Golgi apparatus. This localization and targeting is ligand-specific. Activation occurs at the cell surface, and the observed trafficking is independent of signaling.  相似文献   

15.
Homotypic and heterotypic cell adhesion activities of a carcinoembryonic antigen (CEA) family member, biliary glycoprotein a (BGPa), have been examined. CHO cells transfected with the cDNA for BGPa, CEA, non-specific cross-reacting antigen (NCA) and CGM6 have been used. The BGPa producers showed both homotypic and heterotypic adhesion to CEA and NCA producers. However, they hardly adhered to CGM6 producers. Calcium ion was not required for BGPa-mediated homotypic and heterotypic cell adhesion as well as for the adhesions of other members of CEA family. The results strongly suggested that BGPa may play some important roles through Ca(++)-independent cell adhesion activities.  相似文献   

16.
Kim H  McCulloch CA 《FEBS letters》2011,585(1):760-22
Cell adhesion, spreading and migration on extracellular matrices are regulated by complex processes that involve the cytoskeleton and a large array of adhesion receptors, including the β1 integrin. Filamin A is a large, multi-domain, homodimeric actin binding protein that contributes to the mechanical stability of cells and interacts with several proteins that regulate cell adhesion including β1 integrin and several protein kinases. Here we review current data on the structure, mechanical properties and intracellular signaling functions of filamin that regulate cell adhesion. We also consider new data showing that interactions of filamin A with intermediate filaments and protein kinase C enable tight regulation of β1 integrin function and consequently early events in cell adhesion and migration on extracellular matrix proteins.  相似文献   

17.
ObjectiveWe investigated effects of salazosulfapyridine (SASP) on the protein profile of cell surface (CS)-proteins of SW982, a human synovial sarcoma cell line, using biotinylation of CS-proteins and 2-dimensional fluorescence difference gel electrophoresis (2D-DIGE).MethodsSW982 cells were treated with SASP and its metabolites, sulfapyridine (SP) and 5-aminosalicylic acid (5ASA). Then the cells were treated with a membrane-impermeable biotinylating reagent. Biotinylated CS-proteins were isolated using NeutrAvidin-bound beads. CS-proteins affected by the drugs were detected by 2D-DIGE and subjected to mass spectrometry.ResultsBy the 2D-DIGE analysis, in total 576 spots were detected, 29 out of which showed more than ±1.5-fold different intensity in the SASP-, SP-, and 5ASA-treated cells, compared to non-treated cells (p < 0.05). Interestingly, 7 out of the 29 spots changed their intensity only by SASP and 17 spots changed their intensity only by SP. We identified 9 protein from 15 out of the 29 spots, most of which were evidenced to exist on the cell surface by flow cytometry.ConclusionWe found novel effects of SASP and its metabolites on SW982 cells by the combination of biotinylation of cell surface proteins and 2D-DIGE analysis. These data would help understanding of anti-rheumatic actions of SASP. Furthermore, the combination would be a useful method for the analysis of CS-proteins in various conditions.  相似文献   

18.
Proteases have been used as a tool to investigate the role of surface molecules in fibronectin-mediated cell adhesion. Proteolytic digestion of membrane-proteins by pronase (1 mg/ml for 20 min at 37 degrees C) completely inhibited adhesion of baby hamster kidney (BHK) fibroblasts on fibronectin-coated plastic dishes. Various degrees of inhibition were also obtained after treatment with proteinase K, chymotrypsin, papain, subtilopeptidase A, and thermolysin. Protein synthesis was required to restore the adhesive properties of pronase-treated cells, showing the protein nature of the molecules involved in adhesion to fibronectin. A peculiar feature of these proteins was their resistance to cleavage by trypsin. After prolonged trypsin treatment (1 mg/ml for 20 min at 37 degrees C), cells adhered and spread on fibronectin-coated dishes, even when protein synthesis was inhibited by 4 microM cycloheximide. Under these conditions only three glycoproteins (gp) of molecular weight 130,000, 120,000, and 80,000 were left on the cell surface. These were precipitated by a rabbit antiserum against BHK cells that also inhibited adhesion of trypsin-treated cells. gp120 and gp80 were left at the cell surface after mild pronase digestion (0.2 mg/ml for 20 min at 37 degrees C), under conditions not affecting adhesion. These data suggest that these glycoproteins may be involved in fibronectin-mediated cell adhesion in some yet unknown way.  相似文献   

19.
It has previously been shown that during degranulation Mac-1 (CD11b/CD18)--a glycoprotein that plays a central role in neutrophil adhesion-is up-regulated on PMN surfaces. It has been assumed that this quantitative change in adhesion Ag expression on the cell surface would in turn lead to increased cellular adhesiveness. In contrast, we found that at an incubation temperature of 16 degrees C, stimulated neutrophil adhesion to plastic tissue culture dishes in the presence of FMLP (2.5 x 10(-6) M), TNF (10 ng/ml), or PAF (1 x 10(-4) M) occurred without cellular degranulation or Mac-1 surface up-regulation as measured cytofluorometrically. As shown by functional inhibition studies employing monoclonal antibodies 60.3 (anti-CD18) and 60.1 (anti-CD11b), adhesion at 16 degrees C, where no CD11b/CD18 up-regulation was seen, is mediated by CD11b/CD18 just as it is at 37 degrees C, where degranulation and CD11b/CD18 up-regulation could be demonstrated. The physiologic importance of these findings was underscored by experiments done on endothelial monolayers, which showed that PMN association with endothelial cells is absolutely independent from the quantitative up-regulation of Mac-1 on PMN surfaces. When neutrophils were stimulated at 37 degrees C by endotoxin, an agent that does not induce aggregation (a form of intercellular adhesion), Mac-1 surface expression increased only after cells had become adherent, whereas cells held in suspension to prevent cell-substrate adhesion neither degranulated nor up-regulated their Mac-1 surface expression. Thus, not only is adherence independent of degranulation and Mac-1 cell surface up-regulation, but both degranulation and Mac-1 surface up-regulation appear to depend on the process of adhesion. Correspondingly, incubation of neutrophils with antibodies 60.1 and 60.3 inhibited not only adhesion of cells stimulated with FMLP at 37 degrees C but degranulation as well. These results indicate that Mac-1 influences degranulation as well as it controls adhesion not by its mere quantity on the cell surface, but rather by an yet undefined molecular modulation.  相似文献   

20.
The effects of mastoparan and compound 48/80 on the activities of alpha beta gamma-trimeric GTP-binding proteins (G proteins) were studied with purified Go and Gi-1 which had been reconstituted into phospholipid vesicles. Pertussis toxin-catalyzed ADP-ribosylation of Go or Gi-1 was inhibited by mastoparan or compound 48/80, suggesting that the G proteins were dissociated into their constituent alpha- and beta gamma-subunits in the presence of these compounds. The steady-state rate of GTP hydrolysis catalyzed by Go or Gi-1 was stimulated by the two compounds. Both the stimulations were due to increases in the rate of the GDP-GTP exchange reaction occurring on the G proteins. However, the modes stimulation of the GTPase activity depended on the type of G protein used, and the stimulations caused by the two compounds were differently affected by pertussis toxin-catalyzed ADP-ribosylation of G proteins. Moreover, the mastoparan-induced stimulation of the GTPase activity was partially inhibited by compound 48/80. Thus, the two histamine secretagogues mastoparan and compound 48/80 appear to activate G proteins differently, though they interact with the signal-transducing proteins, at least partly, at a common binding site.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号