首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Frequency resolving power (FRP) was measured in normal listeners. FRP was estimated on the basis of the maximum resolvable ripple density in rippled-spectrum signals. Two measurement procedures were compared: detection of ripple-pattern change and comparison of rippled-spectrum signals. In the change detection method, two successive sound signals were presented to the listener: a test signal and a reference signal. The test signal contained ripple phase reversals every 400 ms; in the reference signal, the ripple phase was constant. The listener’s task was to identify the test signal. In the comparison method, three signals were presented to the listener. The ripple phase in one of the three signals was opposite to that in other two signals. The listener’s task was to identify the signal different from the other two signals. The signal frequency bands varied from 0.5 to 5 oct at a level of 0.5 of the maximum. At all frequency bands, the change-detection method yielded, on average, 1.75 oct–1 higher FRP estimates compared to the comparison method. This difference between the two methods is supposed to be due to the greater involvement of cognitive processes (short-term memory) in the comparison method. The change-detection method is more preferable for measuring the sensory component of FRP.  相似文献   

2.
Some smartphones have the capability to process video streams from both the front- and rear-facing cameras simultaneously. This paper proposes a new monitoring method for simultaneous estimation of heart and breathing rates using dual cameras of a smartphone. The proposed approach estimates heart rates using a rear-facing camera, while at the same time breathing rates are estimated using a non-contact front-facing camera. For heart rate estimation, a simple application protocol is used to analyze the varying color signals of a fingertip placed in contact with the rear camera. The breathing rate is estimated from non-contact video recordings from both chest and abdominal motions. Reference breathing rates were measured by a respiration belt placed around the chest and abdomen of a subject; reference heart rates (HR) were determined using the standard electrocardiogram. An automated selection of either the chest or abdominal video signal was determined by choosing the signal with a greater autocorrelation value. The breathing rate was then determined by selecting the dominant peak in the power spectrum. To evaluate the performance of the proposed methods, data were collected from 11 healthy subjects. The breathing ranges spanned both low and high frequencies (6–60 breaths/min), and the results show that the average median errors from the reflectance imaging on the chest and the abdominal walls based on choosing the maximum spectral peak were 1.43% and 1.62%, respectively. Similarly, HR estimates were also found to be accurate.  相似文献   

3.

Hyperscanning

Most neuroimaging studies of human social cognition have focused on brain activity of single subjects. More recently, “two-person neuroimaging” has been introduced, with simultaneous recordings of brain signals from two subjects involved in social interaction. These simultaneous “hyperscanning” recordings have already been carried out with a spectrum of neuroimaging modalities, such as functional magnetic resonance imaging (fMRI), electroencephalography (EEG), and functional near-infrared spectroscopy (fNIRS).

Dual MEG Setup

We have recently developed a setup for simultaneous magnetoencephalographic (MEG) recordings of two subjects that communicate in real time over an audio link between two geographically separated MEG laboratories. Here we present an extended version of the setup, where we have added a video connection and replaced the telephone-landline-based link with an Internet connection. Our setup enabled transmission of video and audio streams between the sites with a one-way communication latency of about 130 ms. Our software that allows reproducing the setup is publicly available.

Validation

We demonstrate that the audiovisual Internet-based link can mediate real-time interaction between two subjects who try to mirror each others’ hand movements that they can see via the video link. All the nine pairs were able to synchronize their behavior. In addition to the video, we captured the subjects’ movements with accelerometers attached to their index fingers; we determined from these signals that the average synchronization accuracy was 215 ms. In one subject pair we demonstrate inter-subject coherence patterns of the MEG signals that peak over the sensorimotor areas contralateral to the hand used in the task.  相似文献   

4.
The accuracy of the underwater and airborne horizontal localization of different acoustic signals by the northern fur seal was investigated by the method of instrumental conditioned reflexes with food reinforcement. For pure-tone pulsed signals in the frequency range of 0.5-25 kHz the minimum angles of sound localization at 75% of correct responses corresponded to sound transducer azimuth of 6.5-7.5 degrees +/- 0.1-0.4 degrees underwater (at impulse duration of 3-90 ms) and of 3.5-5.5 degrees +/- 0.05-0.5 degrees in air (at impulse duration of 3-160 ms). The source of pulsed noise signals (of 3-ms duration) was localized with the accuracy of 3.0 degrees +/- 0.2 degrees underwater. The source of continuous (of 1-s duration) narrow band (10% of c.fr.) noise signals was localized in air with the accuracy of 2-5 degrees +/- 0.02-0.4 degrees and of continuous broad band (1-20 kHz) noise, with the accuracy of 4.5 degrees +/- 0.2 degrees.  相似文献   

5.
In this paper, a new approach for the diagnosis of the subjects with Parkinson's disease (PD) from the healthy control subjects is proposed. This method uses the measurements of gait signals using the ground reaction forces under usual walking of the subjects. These measurements were computed using 8 sensors placed underneath of each foot. The absolute value of the difference between the force measurements were calculated for each sensor at each time and these signals went through a short-time Fourier transform (STFT) and several features were extracted from the spectrum of the signals. The histogram of these features was computed and the bin selection was performed using the feature discriminant ratio (FDR) method. Then the chi-square distance between the reduced histograms was computed and it formed a kernel for support vector machines (SVMs) for classification. The results on 93 subjects with PD and 73 healthy control subjects show that the proposed approach obtains an accuracy of 91.20% for the diagnosis of the PD using gait signals.  相似文献   

6.
The detection and recognition of acoustic communication signals masked by noise was investigated in a grasshopper (Chorthippus biguttulus) whose auditory system exhibits only poor spectral resolution and therefore has to operate in the time domain. The signals of this species consist of numerous identical subunits that enable the receiver, in principle, to make repetitive measurements. We aimed at determining the maximum integration time in this species by using stimuli of different durations under increasing noise levels. As a criterion for recognition the typical phonotactic turning response of the males was evaluated, which is reliably triggered by a female song, and thus is a sensitive indicator for recognition of conspecific signals. When confronted with a long signal (1000 ms) males tolerated a 2.4 dB higher noise level as compared to a short signal (250 ms). Noise tolerance improved with increasing signal duration from 250 ms to 450 ms. Beyond this signal duration, however, no further improvement was observed, indicating an upper limit for temporal integration that corresponds to only five song subunits. The gain in noise tolerance had a slope of 2.7 dB per doubling duration, which corresponds to the expectation derived from an energy detector model (3 dB per doubling duration) rather than to the value expected from signal detection theory (1.5 dB per doubling duration).  相似文献   

7.
This paper proposes and evaluates an innovative video-based method for measuring the trunk volume during respiration, using projected light and surface reconstruction. The method consists of the following main steps: (a) to project a grid of circular light markers on the anterior and posterior human body trunk surface during breathing, (b) to register the subject's trunk surface using two pairs of pre-calibrated digital video cameras, (c) to segment the video stream and track the projected markers using pre-processing techniques, morphological operators and detection algorithms, (d) to label the corresponding markers in the video sequences registered by each pair of stereo cameras, (e) to reconstruct the 3-D coordinates of all markers, (f) to reconstruct the surfaces from the unordered cloud of points using the Power Crust method and (g) to calculate the trunk volume in function of time using the divergence theorem. The evaluation of the method was based on two experiments. (1) Comparison of the volume of a trunk model (mannequin) by immersion and using the proposed optical method. (2) Analysis of the applicability of the method for measuring a subject's trunk volume during a vital capacity respiratory manoeuvre. The results showed that the method was able to automatically measure more than 2000 projected points per image and to provide a very detailed representation of the subject's trunk. The relative accuracy of the volume measurement was estimated to be better than 3%. The analysis of the experiments revealed that signals coherent with the respiratory cycles could be identified through this method. In conclusion, the method based on light projection and surface reconstruction provides an accurate, non-invasive and useful means to calculate human trunk volumes during breathing.  相似文献   

8.
This paper proposes and evaluates an innovative video-based method for measuring the trunk volume during respiration, using projected light and surface reconstruction. The method consists of the following main steps: (a) to project a grid of circular light markers on the anterior and posterior human body trunk surface during breathing, (b) to register the subject's trunk surface using two pairs of pre-calibrated digital video cameras, (c) to segment the video stream and track the projected markers using pre-processing techniques, morphological operators and detection algorithms, (d) to label the corresponding markers in the video sequences registered by each pair of stereo cameras, (e) to reconstruct the 3-D coordinates of all markers, (f) to reconstruct the surfaces from the unordered cloud of points using the Power Crust method and (g) to calculate the trunk volume in function of time using the divergence theorem. The evaluation of the method was based on two experiments. (1) Comparison of the volume of a trunk model (mannequin) by immersion and using the proposed optical method. (2) Analysis of the applicability of the method for measuring a subject’s trunk volume during a vital capacity respiratory manoeuvre. The results showed that the method was able to automatically measure more than 2000 projected points per image and to provide a very detailed representation of the subject's trunk. The relative accuracy of the volume measurement was estimated to be better than 3%. The analysis of the experiments revealed that signals coherent with the respiratory cycles could be identified through this method. In conclusion, the method based on light projection and surface reconstruction provides an accurate, non-invasive and useful means to calculate human trunk volumes during breathing.  相似文献   

9.
Single-plain video used for measurements of epicardial strains is a technique that yields minor interference with the studied mechanical properties of the ventricle. Due to its low temporal resolution, the existing technique is, however, not appropriate for small animals. We questioned whether the technique could be improved enough to cope with higher heart rates and miniaturization necessary for experiments on rats, mice and guinea pigs. Therefore, we developed a high-speed video system and used it for measuring epicardial strains in guinea pig hearts in situ with the open chest. The improvement was achieved in video hardware (camera: Dalsa D6-0256; framegraber: EPIX PIXCI D32) and software, the markers (glowing acrylate crystals; diameter approximately 0.15 mm) and illumination (UVA light, OSRAM L). Three markers were attached onto the epicardium in the equatorial region of the left ventricular free wall, 1.5 mm apart, with fibrin glue. From their coordinates, we calculated two-dimensional finite strains with end diastole as the reference point. The accuracy of the displacement measurement of the technique and the error introduced by approximate-visual estimation of the left ventricle coordinate system were evaluated. The accuracy of the displacement measurement was +/-1.6 microm and the temporal resolution was 2 ms. Error due to approximate coordinate system orientation was +/-3% of the strain amplitude. The typical amplitude of strains was -0.06, -0.11 and 0.04 in circumferential, axial direction and in-plane shear, respectively. The improvements enable us to perform physiologically relevant measurements of epicardial deformations on guinea pig heart.  相似文献   

10.
A method for mapping nonisotopically labeled probes to human metaphase chromosomes that can be used with laser scanning confocal microscopy has been developed. Only a limited number of wavelengths are available from the argon ion lasers used in most commercial instruments and therefore a method that allowed the visualization of bands on human chromosomes stained with propidium iodide and, simultaneously, the detection of hybridization signals using FITC-labeled antibodies was developed. The confocal microscope was used to map single-copy probes to chromosome bands and the positions of the probes on the R-banded chromosomes corresponded to map positions previously determined on Hoechst 33258-stained chromosomes (G-banded). A comparison of confocal imaging of single-copy hybridization signals with conventional fluorescence microscopy and high-sensitivity video cameras revealed little difference in sensitivity but greater resolution of chromosome bands with the confocal microscope. The polymerase chain reaction was used to prepare nonisotopically labeled probes for in situ hybridization and to amplify Alu and KpnI family repeats from cloned DNA to be used to suppress hybridization of these repeat sequences so that a cosmid probe could be mapped to a chromosome band.  相似文献   

11.
The Ala344 residue of the D1 protein has been identified as a crucial residue of the catalytic cluster of the water-oxidizing complex, however, its function has not been fully clarified. Here we have used thermoluminescence and flash-induced chlorophyll fluorescence measurements to characterize the effect of the D1-Ala344stop mutation on the electron transport of Photosystem II in intact cells of the cyanobacterium Synechocystis 6803. Although the mutant cannot grow photoautotrophically it shows flash-induced thermoluminescence and chlorophyll fluorescence signals reflecting the stabilization of negative and positive charges on the Q(A) and Q(B) quinone electron acceptors, and stable Photosystem II donors, respectively. Decay of flash induced chlorophyll fluorescence yield is multiphasic in the presence of 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU), with 6 ms, 350 ms, and 26 s time constants. When cells are illuminated with repetitive flashes, fired at 1 ms intervals, the 6 ms phase is gradually decreased with the concomitant increase of the 350 ms phase. After 45 min dark adaptation of mutant cells the 6 ms and 350 ms phases were significantly decreased and a very slow decaying component was formed. Flash induced oscillation of the thermoluminescence B band, which reflects the redox cycling of the water-oxidizing complex in the wild-type cells, was completely abolished in the D1-Ala344stop mutant. The results demonstrate that low efficiency photooxidation of Mn occurs in about 60% of the PSII centers. The photooxidizable Mn is unstable in the dark, and formation of higher S states is inhibited. In addition, the Q(A) to Q(B) electron transfer step is slowed down as an indirect consequence of the donor side modification. Our data indicate that the stabilization of a Mn ion by the alpha-carboxylate chain of the D1-Ala344 residue might represent one of the final steps in the assembly of functional catalytic sites for water oxidation.  相似文献   

12.
Algorithms to predict heelstrike and toeoff times during normal walking using only kinematic data are presented. The accuracy of these methods was compared with the results obtained using synchronized force platform recordings of two subjects walking at a variety of speeds for a total of 12 trials. Using a 60Hz data collection system, the absolute value errors (AVE) in predicting heelstrike averaged 4.7ms, while the AVE in predicting toeoff times averaged 5.6ms. True average errors (negative for an early prediction) were +1.2ms for both heelstrike and toeoff, indicating that no systematic errors occurred. It was concluded that the proposed algorithms provide an easy and reliable method of determining event times during walking when kinematic data are collected, with a considerable improvement in resolution over visual inspection of video records, and could be utilized in conjunction with any 2-D or 3-D kinematic data collection system.  相似文献   

13.
In this study, we investigate the brain networks during positive and negative emotions for different types of stimulus (audio only, video only and audio + video) in \(\alpha , \beta\), and \(\gamma\) bands in terms of phase locking value, a nonlinear method to study functional connectivity. Results show notable hemispheric lateralization as phase synchronization values between channels are significant and high in right hemisphere for all emotions. Left frontal electrodes are also found to have control over emotion in terms of functional connectivity. Besides significant inter-hemisphere phase locking values are observed between left and right frontal regions, specifically between left anterior frontal and right mid-frontal, inferior-frontal and anterior frontal regions; and also between left and right mid frontal regions. ANOVA analysis for stimulus types show that stimulus types are not separable for emotions having high valence. PLV values are significantly different only for negative emotions or neutral emotions between audio only/video only and audio only/audio + video stimuli. Finding no significant difference between video only and audio + video stimuli is interesting and might be interpreted as that video content is the most effective part of a stimulus.  相似文献   

14.
Numerous investigations on the primary events of the bacteriorhodopsin photocycle indicate that the first steps of the energy transformation process take place in the 500 fs-5 ps region. These processes are known to be followed by others in the μs and ms regions. Recent observations indicate also the existence of nanosecond intermediate(s). Here we are reporting on direct measurements of the light-induced electric response signal of purple membrane carried out in the ps and ns regions. The laser flash-induced electric response of dried oriented purple membrane samples were detected by an ultrafast sampling oscilloscope. The measured kinetic curves were analyzed by exponential fitting and by a simulation-optimization method taking into account the time characteristics of the measuring setup. This analysis revealed a two phase real charge separation process. The first phase (tau = 21 ± 2 ps) coincides well with the overall bR-[unk] K transition. The second phase (tau = 6 ± 0.5 ns) can be correlated with the nanosecond optical transitions reported by several workers, or may be an optically silent charge movement inside the protein moiety or on the surface of the membrane.  相似文献   

15.
The properties of biophoton signals emitted by samples of lichen species P. tinctorum are investigated. The shape of a light induced signal is determined from 5 ms onwards using successively the bin resolution of 1, 10 and 100 ms; 1000 measurements in successive bins are made at each resolution. The measurement of the shape is repeated at various temperatures in the range (1 degree-40 degrees C) in steps of 1 degree C. It is found that a biophoton signal is very sensitive to temperature and different portions of the signal show different sensitivity. The temperature dependence of the decaying part is even qualitatively different from that of the non-decaying part. The signal responds to temperature changes of 0.1 degrees C in less than 1 ms. The effect of monochromatic stimulation on the strengths of the signal and its red, blue and green spectral components are determined in the wavelength range (400-700) nm in steps of 10 nm. The signal and its broad spectral components have similar excitation curves. The relative strength of spectral component appears independent of the stimulating wavelength. The shape of the decaying portion of the signal and its red, blue and green components is also determined. The character of decay in all four cases is non-exponential. The measurements with various interference filters spanning the entire visible region are made with the bin size of 20 s. These measurements are qualitative because of large fluctuations but suggest that the spectral components of a biophoton signal are distributed in the entire visible region. The probabilities of detecting different number of photons in the non-decaying portion are determined by making 30,000 measurements in each set with the bin size of 50, 100, 200, 300, 400, 500 and 700 ms. The probabilities determine the parameters of a squeezed state of light--the magnitude of its displacement parameter is different but the phase of its displacement parameter and its squeezing parameter are same for different sizes of a bin. These measurements further indicate that the average signal strength remains constant for 19 hr.  相似文献   

16.
In this study we aim at investigating the applicability of underwater 3D motion capture based on submerged video cameras in terms of 3D accuracy analysis and trajectory reconstruction. Static points with classical direct linear transform (DLT) solution, a moving wand with bundle adjustment and a moving 2D plate with Zhang's method were considered for camera calibration. As an example of the final application, we reconstructed the hand motion trajectories in different swimming styles and qualitatively compared this with Maglischo's model. Four highly trained male swimmers performed butterfly, breaststroke and freestyle tasks. The middle fingertip trajectories of both hands in the underwater phase were considered. The accuracy (mean absolute error) of the two calibration approaches (wand: 0.96 mm – 2D plate: 0.73 mm) was comparable to out of water results and highly superior to the classical DLT results (9.74 mm). Among all the swimmers, the hands' trajectories of the expert swimmer in the style were almost symmetric and in good agreement with Maglischo's model. The kinematic results highlight symmetry or asymmetry between the two hand sides, intra- and inter-subject variability in terms of the motion patterns and agreement or disagreement with the model. The two outcomes, calibration results and trajectory reconstruction, both move towards the quantitative 3D underwater motion analysis.  相似文献   

17.
1. Techniques and experiments are described concerned with the millisecond kinetics of EPT-detectable changes brought about in cytochrome c oxidase by reduced cytochrome c and, after reduction with various agents, by reoxidation with O2 or ferricyanide. Some experiments in the presence of ligands are also reported. Light absorption was monitored by low-temperature reflectance spectroscopy. 2. In the rapid phase of reduction of cytochrome c oxidase by cytochrome c (less than 50 ms) approx. 0.5 electron equivalent per heme a is transferred mainly to the low-spin heme component of cytochrome c oxidase and partly to the EPR-detectable copper. In a slow phase (less than 1 s) the copper is reoxidized and high-spin ferric heme signals appear with a predominant rhombic component. Simultaneously the absorption band at 655 nm decreases and the Soret band at 444 nm appears between the split Soret band (442 and 447 nm) of reduced cytochrome a. 3. On reoxidation of reduced enzyme by oxygen all EPR and optical features are restored within 6 ms. On reoxidation by O2 in the presence of an excess of reduced cytochrome c, states can be observed where the low-spin heme and copper signals are largely absent but the absorption at 655 nm is maximal, indicating that the low-spin heme and copper components are at the substrate side and the component(s) represented in the 655 nm absorption at the O2 side of the system. On reoxidation with ferricyanide the 655 nm absorption is not readily restored but a ferric high-spin heme, represented by a strong rhombic signal, accumulates. 4. On reoxidation of partly reduced enzyme by oxygen, the rhombic high-spin signals disappear within 6 ms., whereas the axial signals disappear more slowly, indicating that these species are not in rapid equilibrium. Similar observations are made when partly reduced enzyme is mixed with CO. 5. The results of this and the accompanying paper are discussed and on this basis an assignment of the major EPR signals and of the 655 nm absorption is proposed, which in essence is that published previously (Hartzell, C.R., Hansen, R.E. and Beinert, H. (1973) Proc. Natl. Acad. Sci. U.S. 70, 2477-2481). Both the low-spin (g=o; 2.2; 1.5) and slowly appearing high-spin (g=6; 2) signals are attributed to ferric cytochrome a, whereas the 655 nm absorption is thought to arise from ferric cytochrome a3, when it is present in a state of interaction with EPR-undectectable copper. Alternative possibilities and possible inconsistencies with this proposal are discussed.  相似文献   

18.
Summary Echolocating bats judge the distance to a target on basis of the delay between the emitted cry and the returning echo. In a phantom echo set-up it was investigated how changes in the time-frequency structure of synthetic echoes affect ranging accuracy of big brown bats, Eptesicus fuscus.A one channel phantom target simulator and a Y/N paradigm was used. Five Eptesicus fuscus were trained to discriminate between phantom targets with different virtual distances (delays). The phantom echo was stored in a memory and broadcast from a loudspeaker after a certain delay following the bat's triggering of the system via a trigger microphone. The ranging accuracy was compared using 5 different signals with equal energy as phantom echoes: a standard cry (a natural bat cry), two kinds of noise signals, a high pass, and a low pass filtered version of the standard cry.The standard cry was recorded from one of the bats while judging the distance to a real target. The duration was 1.1 ms, the first harmonic swept down from 55 to 25 kHz and there was energy also in the second and third harmonic. Both noise signals had the same duration, power spectrum, and energy as the standard cry. One noise signal was stored in a memory and hence was exactly the same each time the bat triggered the system. The other variable noise signal was produced by storing the envelope of the standard cry and multiplying on-line with band pass filtered noise. The time-frequency structure (e.g. rise time) of this noise signal changed from triggering to triggering. The filtered signals were produced by either 40 kHz high pass or 40 kHz low pass filtering of the standard cry.The range difference thresholds for the 5 bats were around 1–2 cm (51–119 us) using the standard cry as echo. The range difference threshold with both noise signals was 7–8 cm (around 450 s delay difference). The 40 kHz high pass filtered cry increased the threshold to approximately twice the threshold with the standard cry. With the 40 kHz low pass filtered cry the threshold was increased 2.5–3 times relative to the threshold with the standard cry. A single bat was tested with a signal filtered with a 55 kHz low pass filter leaving the whole first harmonic. The threshold was the same as that with the standard signal.The reduced ranging accuracy with the filtered signals indicates that the full band width of the first harmonic is utilised for ranging by the bats. The substantial reduction in accuracy with the noise signals indicates that not only the full band width but also the orderly time-frequency structure (the FM sweep) of the cry is important for ranging in echolocating bats.Abbreviations FM frequency modulated - CF constant frequency - peSPL peak equivalent sound pressure level - SD standard deviation - SE standard error of mean - EPROM erasable programmable read only memory - FFT fast Fourier transform - S/N signal-to-noise ratio  相似文献   

19.
The objective of this study was to assess the precision and accuracy of a nonproprietary, optical three-dimensional (3D) motion analysis system for the simultaneous measurement of soft tissue strains and joint kinematics. The system consisted of two high-resolution digital cameras and software for calculating the 3D coordinates of contrast markers. System precision was assessed by examining the variation in the coordinates of static markers over time. Three-dimensional strain measurement accuracy was assessed by moving contrast markers fixed distances in the field of view and calculating the error in predicted strain. Three-dimensional accuracy for kinematic measurements was assessed by simulating the measurements that are required for recording knee kinematics. The field of view (190 mm) was chosen to allow simultaneous recording of markers for soft tissue strain measurement and knee joint kinematics. Average system precision was between +/-0.004 mm and +/-0.035 mm, depending on marker size and camera angle. Absolute error in strain measurement varied from a minimum of +/-0.025% to a maximum of +/-0.142%, depending on the angle between cameras and the direction of strain with respect to the camera axes. Kinematic accuracy for translations was between +/-0.008 mm and +/-0.034 mm, while rotational accuracy was +/-0.082 deg to +/-0.160 deg. These results demonstrate that simultaneous optical measurement of 3D soft tissue strain and 3D joint kinematics can be performed while achieving excellent accuracy for both sets of measurements.  相似文献   

20.
Quantitative measurements of nuclear DNA content based on Feulgen reaction and the analysis of CCD images has been proposed. The measurements were performed in the monochrome CCD option (650 × 514 pixels) with a wavelength of 551 nm. The linear dependence of photomatrix element signals on the falling light was shown with a multigrade light absorption filter. The optimal microscope and camera settings and an approach for elimination of the optic blur are proposed. It was found that the contribution of background fluorescence of Feulgen-stained nuclei into the measurements was negligible. Densitometric measurements of the DNA content in blood cells of four vertebrate species (Gallus domesticus, Danio rerio, Homo sapiens, Rana arvalis) were consistent with the literature data. The precision of our approach is comparable to other known cytometry methods (). The current improvement of CCD technical parameters and the widespread use of CCD cameras in biological applications give perspectives for the development of the suggested approach for measuring the quantity of cellular DNA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号