首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The major outer sheath protein (Msp) of Treponema denticola inhibits neutrophil polarization and directed chemotaxis together with actin dynamics in vitro in response to the chemoattractant N-formyl-methionine-leucine-phenylanine (fMLP). Msp disorients chemotaxis through inhibition of a Rac1-dependent signaling pathway, but the upstream mechanisms are unknown. We challenged murine bone marrow neutrophils with enriched native Msp to determine the role of phospholipid modifying enzymes in chemotaxis and actin assembly downstream of fMLP-stimulation. Msp modulated cellular phosphoinositide levels through inhibition of phosphatidylinositol 3-kinase (PI3-kinase) together with activation of the lipid phosphatase, phosphatase and tensin homolog deleted on chromosome 10 (PTEN). Impaired phosphatidylinositol[(3,4,5)]-triphosphate (PIP3) levels prevented recruitment and activation of the downstream mediator Akt. Release of the actin capping proteins gelsolin and CapZ in response to fMLP was also inhibited by Msp exposure. Chemical inhibition of PTEN restored PIP3 signaling, as measured by Akt activation, Rac1 activation, actin uncapping, neutrophil polarization and chemotaxis in response to fMLP-stimulation, even in the presence of Msp. Transduction with active Rac1 also restored fMLP-mediated actin uncapping, suggesting that Msp acts at the level of PIP3 in the hierarchical feedback loop of PIP3 and Rac1 activation. Taken together, Msp alters the phosphoinositide balance in neutrophils, impairing the cell “compass”, which leads to inhibition of downstream chemotactic events.  相似文献   

2.
Tang W  Zhang Y  Xu W  Harden TK  Sondek J  Sun L  Li L  Wu D 《Developmental cell》2011,21(6):1038-1050
Neutrophils, in response to a chemoattractant gradient, undergo dynamic F-actin remodeling, a process important for their directional migration or chemotaxis. However, signaling mechanisms for chemoattractants to regulate the process are incompletely understood. Here, we characterized chemoattractant-activated signaling mechanisms that regulate cofilin dephosphorylation and actin cytoskeleton reorganization and are critical for neutrophil polarization and chemotaxis. In neutrophils, chemoattractants induced phosphorylation and inhibition of GSK3 via both PLCβ-PKC and PI3Kγ-AKT pathways, leading to the attenuation of GSK3-mediated phosphorylation and inhibition of the cofilin phosphatase slingshot2 and an increase in dephosphorylated, active cofilin. The relative contribution of this GSK3-mediated pathway to neutrophil chemotaxis regulation depended on neutrophil polarity preset by integrin-induced polarization of PIP5K1C. Therefore, our study characterizes a signaling mechanism for chemoattractant-induced actin cytoskeleton remodeling and elucidates its context-dependent role in regulating neutrophil polarization and chemotaxis.  相似文献   

3.
Neutrophil chemotaxis is a critical component of the innate immune response. Neutrophils can sense an extremely shallow gradient of chemoattractants and produce relatively robust chemotactic behavior. This directional migration requires cell polarization with actin polymerization occurring predominantly in the leading edge. Synthesis of phosphatidylinositol (3,4,5) trisphosphate (PIP3) by phosphoinositide 3-kinase (PI3K) contributes to asymmetric F-actin synthesis and cell polarization during neutrophil chemotaxis. To determine the contribution of the hemopoietic cell-restricted PI3K delta in neutrophil chemotaxis, we have developed a potent and selective PI3K delta inhibitor, IC87114. IC87114 inhibited polarized morphology of neutrophils, fMLP-stimulated PIP3 production and chemotaxis. Tracking analysis of IC87114-treated neutrophils indicated that PI3K delta activity was required for the directional component of chemotaxis, but not for random movement. Inhibition of PI3K delta, however, did not block F-actin synthesis or neutrophil adhesion. These results demonstrate that PI3K delta can play a selective role in the amplification of PIP3 levels that lead to neutrophil polarization and directional migration.  相似文献   

4.
In the best understood models of eukaryotic directional sensing, chemotactic cells maintain a uniform distribution of surface receptors even when responding to chemical gradients. The yeast pheromone receptor is also uniformly distributed on the plasma membrane of vegetative cells, but pheromone induces its polarization into “crescents” that cap the future mating projection. Here, we find that in pheromone-treated cells, receptor crescents are visible before detectable polarization of actin cables and that the receptor can polarize in the absence of actin-dependent directed secretion. Receptor internalization, in contrast, seems to be essential for the generation of receptor polarity, and mutations that deregulate this process confer dramatic defects in directional sensing. We also show that pheromone induces the internalization and subsequent polarization of the mating-specific Gα and Gβ proteins and that the changes in G protein localization depend on receptor internalization and receptor–Gα coupling. Our data suggest that the polarization of the receptor and its G protein precedes actin polarization and is important for gradient sensing. We propose that the establishment of receptor/G protein polarity depends on a novel mechanism involving differential internalization and that this serves to amplify the shallow gradient of activated receptor across the cell.  相似文献   

5.
Big roles for small GTPases in the control of directed cell movement   总被引:1,自引:0,他引:1  
Small GTPases are involved in the control of diverse cellular behaviours, including cellular growth, differentiation and motility. In addition, recent studies have revealed new roles for small GTPases in the regulation of eukaryotic chemotaxis. Efficient chemotaxis results from co-ordinated chemoattractant gradient sensing, cell polarization and cellular motility, and accumulating data suggest that small GTPase signalling plays a central role in each of these processes as well as in signal relay. The present review summarizes these recent findings, which shed light on the molecular mechanisms by which small GTPases control directed cell migration.  相似文献   

6.
Severe trauma renders patients susceptible to infection. In sepsis, defective bacterial clearance has been linked to specific deviations in the innate immune response. We hypothesized that innate immune modulations observed during sepsis also contribute to increased bacterial susceptibility after severe trauma. A well-established murine model of burn injury, used to replicate infection following trauma, showed that wound inoculation with P. aeruginosa quickly spreads systemically. The systemic IL-10/IL-12 axis was skewed after burn injury with infection as indicated by a significant elevation in serum IL-10 and polarization of neutrophils into an anti-inflammatory (“N2”; IL-10+ IL-12) phenotype. Infection with an attenuated P. aeruginosa strain (ΔCyaB) was cleared better than the wildtype strain and was associated with an increased pro-inflammatory neutrophil (“N1”; IL-10IL-12+) response in burn mice. This suggests that neutrophil polarization influences bacterial clearance after burn injury. Administration of a TLR5 agonist, flagellin, after burn injury restored the neutrophil response towards a N1 phenotype resulting in an increased clearance of wildtype P. aeruginosa after wound inoculation. This study details specific alterations in innate cell populations after burn injury that contribute to increased susceptibility to bacterial infection. In addition, for the first time, it identifies neutrophil polarization as a therapeutic target for the reversal of bacterial susceptibility after injury.  相似文献   

7.
RhoA is thought to be essential for coordination of the membrane protrusions and retractions required for immune cell motility and directed migration. Whether the subfamily of Rho (Ras homolog) GTPases (RhoA, RhoB, and RhoC) is actually required for the directed migration of primary cells is difficult to predict. Macrophages isolated from myeloid-restricted RhoA/RhoB (conditional) double knock-out (dKO) mice did not express RhoC and were essentially “pan-Rho”-deficient. Using real-time chemotaxis assays, we found that retraction of the trailing edge was dissociated from the advance of the cell body in dKO cells, which developed extremely elongated tails. Surprisingly, velocity (of the cell body) was increased, whereas chemotactic efficiency was preserved, when compared with WT macrophages. Randomly migrating RhoA/RhoB dKO macrophages exhibited multiple small protrusions and developed large “branches” due to impaired lamellipodial retraction. A mouse model of peritonitis indicated that monocyte/macrophage recruitment was, surprisingly, more rapid in RhoA/RhoB dKO mice than in WT mice. In comparison with dKO cells, the phenotypes of single RhoA- or RhoB-deficient macrophages were mild due to mutual compensation. Furthermore, genetic deletion of RhoB partially reversed the motility defect of macrophages lacking the RhoGAP (Rho GTPase-activating protein) myosin IXb (Myo9b). In conclusion, the Rho subfamily is not required for “front end” functions (motility and chemotaxis), although both RhoA and RhoB are involved in pulling up the “back end” and resorbing lamellipodial membrane protrusions. Macrophages lacking Rho proteins migrate faster in vitro, which, in the case of the peritoneum, translates to more rapid in vivo monocyte/macrophage recruitment.  相似文献   

8.
Chemotaxis is a cellular sensing mechanism that guides immune cells to sites of infection and leads fibroblasts to sites of injury. Here, we show in migrating primary dendritic cells and fibroblasts that the leading edge is not a uniform signaling entity, but instead consists of independent coupling units in which transient activation of PI3-kinase links to local lamellipod extension and small discrete turns in the direction of migration. These findings led to a model in which global cell polarization is independent from the chemotaxis mechanism. In this model, chemotaxis does not require spatial integration but is instead a stochastic process in which each receptor binding event within the leading edge triggers a local lamellipod extension and a small turn in the direction of migration. We show that this model and a derived "compass parameter" are sufficient to simulate the observed random migration, biased random walk, and persistent chemotactic behaviors of eukaryotic cells.  相似文献   

9.
Collective cell migration is a widely observed phenomenon during animal development, tissue repair, and cancer metastasis. Considering its broad involvement in biological processes, it is essential to understand the basics behind the collective movement. Based on the topology of migrating populations, tissue-scale kinetics, called the “leader–follower” model, has been proposed for persistent directional collective movement. Extensive in vivo and in vitro studies reveal the characteristics of leader cells, as well as the special mechanisms leader cells employ for maintaining their positions in collective migration. However, follower cells have attracted increasing attention recently due to their important contributions to collective movement. In this Perspective, the current understanding of the molecular mechanisms behind the “leader–follower” model is reviewed with a special focus on the force transmission and diverse roles of leaders and followers during collective cell movement.  相似文献   

10.
Transmigration through the endothelium is a key step in the immune response. In our recent work, the mechanical properties of the subendothelial matrix and biophysical state of the endothelium have been identified as key modulators of leukocyte trans-endothelial migration. Here, we demonstrated that neutrophil contractile forces and cytoskeletal dynamics also play an active biophysical role during transmigration through endothelial cell-cell junctions. Using our previously-established model for leukocyte transmigration, we first discovered that >93% of human neutrophils preferentially exploit the paracellular mode of transmigration in our in vitro model, and that is independent of subendothelial matrix stiffness. We demonstrated that inhibition of actin polymerization or depolymerization completely blocks transmigration, thus establishing a critical role for neutrophil actin dynamics in transmigration. Next, inhibition of neutrophil myosin II-mediated contractile forces renders 44% of neutrophils incapable of retracting their trailing edge under the endothelium for several minutes after the majority of the neutrophil transmigrates. Meanwhile, inhibition of neutrophil contractile forces or stabilization of microtubules doubles the time to complete transmigration for the first neutrophils to cross the endothelium. Notably, the time to complete transmigration is significantly reduced for subsequent neutrophils that cross through the same path as a previous neutrophil and is less dependent on neutrophil contractile forces and microtubule dynamics. These results suggest that the first neutrophil induces a gap in endothelial cell-cell adhesions, which “opens the door” in the endothelium and facilitates transmigration of subsequent neutrophils through the same hole. Collectively, this work demonstrates that neutrophils play an active biophysical role during the transmigration step of the immune response.  相似文献   

11.
Treponema denticola major outer sheath protein (Msp) inhibits neutrophil chemotaxis in vitro , but key regulatory mechanisms have not been identified. Because the Rac small GTPases regulate directional migration in response to chemoattractants, the objective was to analyse the effects of Msp on formyl -methionyl-leucyl-phenylalanine (fMLP)-mediated neutrophil polarization and Rac activation in murine neutrophils. Msp pretreatment of neutrophils inhibited both polarization and chemotactic migration in response to fMLP. Activation of small GTPases was measured by p21 binding domain (PBD) pulldown assays, followed by Western analysis, using monoclonal anti-Rac1, anti-Rac2, anti-cdc42 and anti-RhoA antibodies. Enriched native Msp selectively inhibited fMLP-stimulated Rac1 activation in a concentration-dependent manner, but did not affect Rac2, cdc42 or RhoA activation. Murine neutrophils transfected with vectors expressing fluorescent probes PAK-PBD-YFP and PH-AKT-RFP were used to determine the effects of Msp on the localization of activated Rac and PI3 kinase products. Real-time confocal images showed that Msp inhibited the polarized accumulation of activated Rac and PI3-kinase products upon exposure to fMLP. The findings indicate that T. denticola Msp inhibition of neutrophil polarity may be due to the selective suppression of the Rac1 pathway.  相似文献   

12.
Migrating cells must interpret chemical gradients to guide themselves within tissues. A long-held principle is that gradients guide cells via reorientation of leading-edge protrusions. However, recent evidence indicates that protrusions can be dispensable for locomotion in some contexts, raising questions about how cells interpret endogenous gradients in vivo and whether other mechanisms are involved. Using laser wound assays in zebrafish to elicit acute endogenous gradients and quantitative analyses, we demonstrate a two-stage process for leukocyte chemotaxis in vivo: first a “search” phase, with stimulation of actin networks at the leading edge, cell deceleration, and turning. This is followed by a “run” phase, with fast actin flows, cell acceleration, and persistence. When actin dynamics are perturbed, cells fail to resolve the gradient, suggesting that pure spatial sensing of the gradient is insufficient for navigation. Our data suggest that cell contractility and actin flows provide memory for temporal sensing, while expansion of the leading edge serves to enhance gradient sampling.  相似文献   

13.
Cells migrating within tissues may encounter multiple chemoattractant signals in complex spatial and temporal patterns. To understand leukocyte navigation in such settings, we have explored the migratory behavior of neutrophils in model scenarios where they are presented with two chemoattractant sources in various configurations. We show that, over a wide range of conditions, neutrophils can migrate “down” a local chemoattractant gradient in response to a distant gradient of a different chemoattractant. Furthermore, cells can chemotax effectively to a secondary distant agonist after migrating up a primary gradient into a saturating, nonorienting concentration of an initial attractant. Together, these observations suggest the potential for cells' step-by-step navigation from one gradient to another in complex chemoattractant fields. The importance of such sequential navigation is confirmed here in a model system in which neutrophil homing to a defined domain (a) requires serial responses to agonists presented in a defined spatial array, and (b) is a function of both the agonist combination and the sequence in which gradients are encountered. We propose a multistep model of chemoattractant-directed migration, which requires that leukocytes display multiple chemoattractant receptors for successful homing and provides for combinatorial determination of microenvironmental localization.  相似文献   

14.
A key problem of eukaryotic cell motility is the signaling mechanism of chemoattractant gradient sensing. Recent experiments have revealed the molecular correlate of gradient sensing: Frontness molecules, such as PI3P and Rac, localize at the front end of the cell, and backness molecules, such as Rho and myosin II, accumulate at the back of the cell. Importantly, this frontness-backness polarization occurs spontaneously even if the cells are exposed to uniform chemoattractant profiles. The spontaneous polarization suggests that the gradient sensing machinery undergoes a Turing bifurcation. This has led to several classical activator-inhibitor and activator-substrate models which identify the frontness molecules with the activator. Conspicuously absent from these models is any accounting of the backness molecules. This stands in sharp contrast to experiments which show that the backness pathways inhibit the frontness pathways. Here, we formulate a model based on the mutually inhibitory interaction between the frontness and backness pathways. The model builds upon the mutual inhibition model proposed by Bourne and coworkers [Xu et al., 2003. Divergent signals and cytoskeletal assemblies regulate self-organizing polarity in neutrophils. Cell 114, 201-214.]. We show that mutual inhibition alone, without the help of any positive feedback (autocatalysis), can trigger spontaneous polarization of the frontness and backness pathways. The spatial distribution of the frontness and backness molecules in response to inhibition and activation of the frontness and backness pathways are consistent with those observed in experiments. Furthermore, depending on the parameter values, the model yields spatial distributions corresponding to chemoattraction (frontness pathways in-phase with the external gradient) and chemorepulsion (frontness pathways out-of-phase with the external gradient). Analysis of the model suggests a mechanism for the chemorepulsion-to-chemoattraction transition observed in neurons.  相似文献   

15.
Phospholipase cbeta is critical for T cell chemotaxis   总被引:1,自引:0,他引:1  
Chemokines acting through G protein-coupled receptors play an essential role in the immune response. PI3K and phospholipase C (PLC) are distinct signaling molecules that have been proposed in the regulation of chemokine-mediated cell migration. Studies with knockout mice have demonstrated a critical role for PI3K in G(alphai) protein-coupled receptor-mediated neutrophil and lymphocyte chemotaxis. Although PLCbeta is not essential for the chemotactic response of neutrophils, its role in lymphocyte migration has not been clearly defined. We compared the chemotactic response of peripheral T cells derived from wild-type mice with mice containing loss-of-function mutations in both of the two predominant lymphocyte PLCbeta isoforms (PLCbeta2 and PLCbeta3), and demonstrate that loss of PLCbeta2 and PLCbeta3 significantly impaired T cell migration. Because second messengers generated by PLCbeta lead to a rise in intracellular calcium and activation of PKC, we analyzed which of these responses was critical for the PLCbeta-mediated chemotaxis. Intracellular calcium chelation decreased the chemotactic response of wild-type lymphocytes, but pharmacologic inhibition of several PKC isoforms had no effect. Furthermore, calcium efflux induced by stromal cell-derived factor-1alpha was undetectable in PLCbeta2beta3-null lymphocytes, suggesting that the migration defect is due to the impaired ability to increase intracellular calcium. This study demonstrates that, in contrast to neutrophils, phospholipid second messengers generated by PLCbeta play a critical role in T lymphocyte chemotaxis.  相似文献   

16.
Popular culture has recently produced several “alternate histories” that describe worlds where key historical events had different outcomes. Beyond entertainment, asking “could this have happened a different way?” and “what would the consequences be?” are valuable approaches for exploring molecular mechanisms in many areas of research, including cell biology. Analogous to alternate histories, studying how the evolutionary trajectories of related organisms have been selected to provide a range of outcomes can tell us about the plasticity and potential contained within the genome of the ancestral cell. Among eukaryotes, a group of model organisms has been employed with great success to identify a core, conserved framework of proteins that segregate the duplicated cellular organelles into two daughter cells during cell division, a process known as cytokinesis. However, these organisms provide relatively sparse sampling across the broad evolutionary distances that exist, which has limited our understanding of the true potential of the ancestral eukaryotic toolkit. Recent work on the trypanosomatids, a group of eukaryotic parasites, exemplifies alternate historical routes for cytokinesis that illustrate the range of eukaryotic diversity, especially among unicellular organisms.  相似文献   

17.
Escherichia coli responds to its environment by means of a network of intracellular reactions which process signals from membrane-bound receptors and relay them to the flagellar motors. Although characterization of the reactions in the chemotaxis signaling pathway is sufficiently complete to construct computer simulations that predict the phenotypes of mutant strains with a high degree of accuracy, two previous experimental investigations of the activity remaining upon genetic deletion of multiple signaling components yielded several contradictory results (M. P. Conley, A. J. Wolfe, D. F. Blair, and H. C. Berg, J. Bacteriol. 171:5190–5193, 1989; J. D. Liu and J. S. Parkinson, Proc. Natl. Acad. Sci. USA 86:8703–8707, 1989). For example, “building up” the pathway by adding back CheA and CheY to a gutted strain lacking chemotaxis genes resulted in counterclockwise flagellar rotation whereas “breaking down” the pathway by deleting chemotaxis genes except cheA and cheY resulted in alternating episodes of clockwise and counterclockwise flagellar rotation. Our computer simulation predicts that trace amounts of CheZ expressed in the gutted strain could account for this difference. We tested this explanation experimentally by constructing a mutant containing a new deletion of the che genes that cannot express CheZ and verified that the behavior of strains built up from the new deletion does in fact conform to both the phenotypes observed for breakdown strains and computer-generated predictions. Our findings consolidate the present view of the chemotaxis signaling pathway and highlight the utility of molecularly based computer models in the analysis of complex biochemical networks.  相似文献   

18.
The α6β4 integrin promotes carcinoma in-vasion by its activation of a phosphoinositide 3-OH (PI3-K) signaling pathway (Shaw, L.M., I. Rabinovitz, H.H.-F. Wang, A. Toker, and A.M. Mercurio. Cell. 91: 949–960). We demonstrate here using MDA-MB-435 breast carcinoma cells that α6β4 stimulates chemotactic migration, a key component of invasion, but that it has no influence on haptotaxis. Stimulation of chemotaxis by α6β4 expression was observed in response to either lysophosphatidic acid (LPA) or fibroblast conditioned medium. Moreover, the LPA-dependent formation of lamellae in these cells is dependent upon α6β4 expression. Both lamellae formation and chemotactic migration are inhibited or “gated” by cAMP and our results reveal that a critical function of α6β4 is to suppress the intracellular cAMP concentration by increasing the activity of a rolipram-sensitive, cAMP-specific phosphodiesterase (PDE). This PDE activity is essential for lamellae formation, chemotactic migration and invasion based on data obtained with PDE inhibitors. Although PI3-K and cAMP-specific PDE activities are both required to promote lamellae formation and chemotactic migration, our data indicate that they are components of distinct signaling pathways. The essence of our findings is that α6β4 stimulates the chemotactic migration of carcinoma cells through its ability to influence key signaling events that underlie this critical component of carcinoma invasion.  相似文献   

19.
The polarization of tumor cells and leukocytes into a front end and a rear end is a crucial prerequisite for their autonomous, directed movement. Phosphatidylinositol 3-kinase (PI3K) is assumed to play an important role in this polarization process, whereas the results obtained with different cell types and different migration assays widely vary. Thus, we conducted a comparative study on the role of the PI3K in the locomotor activity and directionality of the migration of tumor cells on the example of MDA-MB-468 breast carcinoma cells in comparison with CTLs and neutrophil granulocytes. We used our well-established, collagen-based, three-dimensional migration assay for the investigation of the chemokinesis and chemotaxis of these cells. Our results show that the role of the PI3K in the regulation of migratory activity is distinct between the investigated cell types: the migration of CTLs and MDA-MB-468 cells was impaired by the inhibition of the PI3K with wortmannin, whereas neutrophil granulocytes were only slightly affected. However, neither cell type was impaired in the ability to respond chemotactically to gradients of ligands to G protein-coupled receptors. Thus, the PI3K contributes to the regulation of migratory activity but not to the directionality of migration of MDA-MB-468 breast carcinoma cells. As a further conclusion with regard to cancer treatment, the PI3K is not a suitable target for the inhibition of metastasis formation, because the migration of leukocytes is also affected, which leads to a dysfunction of the immune defense.  相似文献   

20.
Understanding of the intracellular molecular machinery that is responsible for the complex collective behavior of multicellular populations is an exigent problem of modern biology. Quorum sensing, which allows bacteria to activate genetic programs cooperatively, provides an instructive and tractable example illuminating the causal relationships between the molecular organization of gene networks and the complex phenotypes they control. In this work we—to our knowledge for the first time—present a detailed model of the population-wide transition to quorum sensing using the example of Agrobacterium tumefaciens. We construct a model describing the Ti plasmid quorum-sensing gene network and demonstrate that it behaves as an “on–off” gene expression switch that is robust to molecular noise and that activates the plasmid conjugation program in response to the increase in autoinducer concentration. This intracellular model is then incorporated into an agent-based stochastic population model that also describes bacterial motion, cell division, and chemical communication. Simulating the transition to quorum sensing in a liquid medium and biofilm, we explain the experimentally observed gradual manifestation of the quorum-sensing phenotype by showing that the transition of individual model cells into the “on” state is spread stochastically over a broad range of autoinducer concentrations. At the same time, the population-averaged values of critical autoinducer concentration and the threshold population density are shown to be robust to variability between individual cells, predictable and specific to particular growth conditions. Our modeling approach connects intracellular and population scales of the quorum-sensing phenomenon and provides plausible answers to the long-standing questions regarding the ecological and evolutionary significance of the phenomenon. Thus, we demonstrate that the transition to quorum sensing requires a much higher threshold cell density in liquid medium than in biofilm, and on this basis we hypothesize that in Agrobacterium quorum sensing serves as the detector of biofilm formation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号