首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
Mutations in the leucine-rich, glioma-inactivated 1 gene, LGI1, cause autosomal-dominant lateral temporal lobe epilepsy via unknown mechanisms. LGI1 belongs to a subfamily of leucine-rich repeat genes comprising four members (LGI1-LGI4) in mammals. In this study, both comparative developmental as well as molecular evolutionary methods were applied to investigate the evolution of the LGI gene family and, subsequently, of the functional importance of its different gene members. Our phylogenetic studies suggest that LGI genes evolved early in the vertebrate lineage. Genetic and expression analyses of all five zebrafish lgi genes revealed duplications of lgi1 and lgi2, each resulting in two paralogous gene copies with mostly nonoverlapping expression patterns. Furthermore, all vertebrate LGI1 orthologs experience high levels of purifying selection that argue for an essential role of this gene in neural development or function. The approach of combining expression and selection data used here exemplarily demonstrates that in poorly characterized gene families a framework of evolutionary and expression analyses can identify those genes that are functionally most important and are therefore prime candidates for human disorders.  相似文献   

4.
Kamalika Sen 《FEBS letters》2010,584(18):4015-4018
Pseudogenes, regarded as ‘genomic fossils’, are DNA sequences resembling functional genes in perspective of sequence homology but completely non-functional. In this study, we explored the unique characteristic features of human genes, configuring classical duplicated pseudogenes. We found that progenitors of duplicated pseudogenes are characterized by a high expressivity, and ability to encode hub-proteins in association with a high evolutionary rate. Such unusual features are endorsed by longer protein length, elevated CpG content, and a high recombination rate. The non-functionalization of their duplicated copies can be attributed to the overabundance of gene paralog number in concert with functional redundancy.  相似文献   

5.
The decreasing cost of sequencing is leading to a growing repertoire of personal genomes. However, we are lagging behind in understanding the functional consequences of the millions of variants obtained from sequencing. Global system-wide effects of variants in coding genes are particularly poorly understood. It is known that while variants in some genes can lead to diseases, complete disruption of other genes, called ‘loss-of-function tolerant’, is possible with no obvious effect. Here, we build a systems-based classifier to quantitatively estimate the global perturbation caused by deleterious mutations in each gene. We first survey the degree to which gene centrality in various individual networks and a unified ‘Multinet’ correlates with the tolerance to loss-of-function mutations and evolutionary conservation. We find that functionally significant and highly conserved genes tend to be more central in physical protein-protein and regulatory networks. However, this is not the case for metabolic pathways, where the highly central genes have more duplicated copies and are more tolerant to loss-of-function mutations. Integration of three-dimensional protein structures reveals that the correlation with centrality in the protein-protein interaction network is also seen in terms of the number of interaction interfaces used. Finally, combining all the network and evolutionary properties allows us to build a classifier distinguishing functionally essential and loss-of-function tolerant genes with higher accuracy (AUC = 0.91) than any individual property. Application of the classifier to the whole genome shows its strong potential for interpretation of variants involved in Mendelian diseases and in complex disorders probed by genome-wide association studies.  相似文献   

6.
Gene duplication is one of the major driving forces shaping genome and organism evolution and thought to be itself regulated by some intrinsic properties of the gene. Comparing the essential genes among mouse and human, we observed that the essential genes avoid duplication in mouse while prefer to remain duplicated in humans. In this study, we wanted to explore the reasons behind such differences in gene essentiality by cross-species comparison of human and mouse. Moreover, we examined essential genes that are duplicated in humans are functionally more redundant than that in mouse. The proportion of paralog pseudogenization of essential genes is higher in mouse than that of humans. These duplicates of essential genes are under stringent dosage regulation in human than in mouse. We also observed slower evolutionary rate in the paralogs of human essential genes than the mouse counterpart. Together, these results clearly indicate that human essential genes are retained as duplicates to serve as backed up copies that may shield themselves from harmful mutations.  相似文献   

7.
Duplicated genes frequently evolve at different rates. This asymmetry is evidence of natural selection's ability to discriminate between the 2 copies, subjecting them to different levels of purifying selection or even permitting adaptive evolution of one or both copies. However, if gene duplication creates pairs of protein-coding sequences that are initially identical, this raises the question of how selection tells the 2 copies apart. Here, we investigated asymmetric sequence divergence of recently duplicated genes in rodents and related this to 2 possible sources of such asymmetry: gene relocation as a consequence of duplication and retrotransposition as a mechanism of gene duplication. We found that most young rodent duplicates that have been relocated were created by retrotransposition. The degree of rate asymmetry in gene pairs where one copy has been relocated (either by retrotransposition or DNA-based duplication) is greater than in pairs formed by local DNA-based duplication events. Furthermore, by considering the direction of transposition for distant duplicates, we found a consistent tendency for retrogenes to undergo accelerated protein evolution relative to their static paralogs, whereas DNA-based transpositions showed no such tendency. Finally, we demonstrate that the faster sequence evolution of retrogenes correlates with the profound alteration of their expression pattern that is precipitated by retrotransposition.  相似文献   

8.
9.
Gene duplication events are followed by divergence of initially identical gene copies, due to the subsequent accumulation of mutations. These mutations tend to be degenerative and may lead to either nonfunctionalization or subfunctionalization of the gene copies. Here we report the molecular characterization of a 220-kb genomic DNA fragment from human 2q37.1, in which a double duplication and a partial triplication event has taken place. As a result, this region contains four copies of alkaline phosphatase (P), four copies of the ECEL1 gene (X), two copies of a newly identified gene (N), and two copies of a cholinergic receptor subunit (R), in the order N-P-X-P-X-P-X-N-P-X-R-R. While three of the four ECEL1 copies, one copy of the phosphatase gene and one copy of the newly identified gene have lost their function, three phosphatase gene copies and the two receptor subunits are still functionally active and thus may provide an example for subfunctionalization of duplicated genes.  相似文献   

10.
11.
The ERD2 gene of Saccharomyces cerevisiae encodes the HDEL receptor that sorts ER proteins; it is essential for growth. In the absence of Erd2p the Golgi apparatus is both functionally and morphologically perturbed. Here we describe the isolation of four SED genes (suppressors of the erd2-deletion) which, when present in multiple copies, allow cells to grow in the absence of ERD2. The suppressed strains secrete the ER protein BiP and their internal membranes show a variety of morphological abnormalities. Sequence analysis indicates that all these SED genes encode membrane proteins: SED1 encodes a probable cell surface glycoprotein; SED2 is identical to SEC12, a gene required for the formation of ER-derived transport vesicles; SED4 encodes a protein whose cytoplasmic domain is 45% identical to that of Sec12p; SED3 is DPM1, the structural gene for dolichol-P-mannose synthase. We suggest that the absence of ERD2 causes an imbalance between membrane flow into and out of the Golgi apparatus, and that the SED gene products can compensate for this either by slowing transport from the ER or by stimulating vesicle budding from Golgi membranes.  相似文献   

12.
The evolution of the metazoa has been characterized by gene redundancy, generated by polyploidy, tandem duplication and retrotransposition. Polyploidy can be detected by looking for duplicated chromosomes or segments of orthologous chromosomes in post-polyploid animals. It has been proposed that the evolutionary role of polyploidy is to provide extra-copies of genes, whose subsequent alteration leads to new functions, increased biological complexity, and, ultimately, speciation. We review the theory of evolution by genome duplication, basing our arguments on findings from autopolyploid anurans and fish, undergoing post-polyploidy diploidization. We conclude that: 1) the high genetic variability of autotetraploid anurans is a result of tetrasomic expression, based on studies of isozymes and other proteins. 2) Epigenetic mechanisms mediate the reduced expression or silencing of redundant copies of genes in the regulation of gene expression of these tetraploids. This conclusion is based on data concerning ribosomal and hemoglobin gene activity. 3) Duplication of the genome may have occurred more than once in the phylogeny of the anurans, as exemplified by 4n and 8n Leptodactylidae species.  相似文献   

13.
Human inhibin genes. Genomic characterisation and sequencing   总被引:4,自引:0,他引:4  
Inhibin is a gonadal hormone involved in the non-steroidal regulation of follicle stimulating hormone (FSH) secretion. Using the cDNAs coding for bovine inhibin A and B subunits we have identified inhibin genes within the human genome using Southern blot hybridisation techniques. The genes are likely to be present as single copies. Cloning and sequencing inhibin genes obtained from lambda libraries of human genomic DNA provide structural and sequence data on the human A and B genes. Comparison of the known inhibin gene sequences showed, in particular, that the B subunits have identical sequences in man, pigs and cattle thus demonstrating a remarkable evolutionary conservation in these genes.  相似文献   

14.
Low molecular weight RNA species from chromatin.   总被引:4,自引:0,他引:4  
Several methods of preparing low molecular weight RNA from chick embryo chromatin have been examined. Traditional methods for dissociating chromatin utilizing high concentrations of salt (greater than 2 M) followed by high-speed centrifugation resulted in very low yields of RNA. Increased yields of RNA were obtained by treating chromatin at lower salt concentration (0.2-0.5 M). By using low salt extraction and sodium dodecyl sulfate-phenol deproteinization, six to eight low molecular weight homogeneous RNA species were isolated from chick embryo chromatin and mouse myeloma chromatin. In the myeloma system, all these RNAs are metabolically stable. Each component is homogeneous as examined by gel electrophoresis and hybridizes with mouse DNA at a rate consistent with a single species. There are multiple gene copies for these RNA species in the mouse genome, varying from 100 to 2000 copies for the different species. One of these RNAs is identical with 5S rRNA. In addition, the redundancy of genes for 18S, 28S, and 5S rRNA and tRNA was determined. Approximately 300 copies for 18 and 28S rTRNA and 500 copies for 5S rRNA were found. tRNAs were on an average 110-fold redundant with about 55 different species measured.  相似文献   

15.
Molecular phylogenies based on the molecular clock require the comparison of orthologous genes. Orthologous and paralogous genes usually have very different evolutionary fates. In general, orthologs keep the same functions in species, whereas, particularly over a long time span, paralogs diverge functionally and may become pseudogenes or get lost. In eukaryotic genomes, because of the degree of redundancy of genetic information, homologous genes are grouped in gene families, the evolution of which may differ greatly between the various organisms. This implies that each gene in a species does not always have an ortholog in another species and thus, due to multiple duplication events following a speciation, many orthologous clades of paralogs are generated. We are often dealing with a one-to-many or many-to-many relationship between genes. In this paper, we analyze the evolution of two gene families, the p53 gene family and the porin gene family. The evolution of the p53 family shows a one-to-many gene relationship going from invertebrates to vertebrates. In invertebrates only a single gene has been found, while in vertebrates three members of the family, namely p53, p63, and p73, are present. The evolution of porin (VDAC) genes (VDAC1, VDAC2, and VDAC3) is an example of a many-to-many gene relationship going from yeast to mammals. However, the porin gene redundancy found in invertebrates and possibly in some fishes may indicate a tendency to duplicate the genetic material, rather than a real need for function innovation.  相似文献   

16.
Gene duplication and horizontal gene transfer (HGT) are two events that enable the generation of new genes. Rhodobacter sphaeroides (WS8 and 2.4.1 strains) has four copies of the rpoN gene that are not functionally interchangeable. Until now, this is the only example of specialization of this sigma factor. In this work, we aimed to determine whether the multiple copies of this gene originated from HGT or through gene duplication. Our results suggest a multiplication origin of the different rpoN copies that occurred after the Rhodobacter clade separated. Functional tests indicate that the specialization of the rpoN genes is not restricted to R. sphaeroides. We propose that the rpoN copy involved in nitrogen fixation is the ancestral gene and that the other rpoN genes have acquired new specificities.  相似文献   

17.
We present a hypothesis suggesting that close linkage of functionally related anabolic genes and their ultimate integration into operons developed under selective pressure as a molecular strategy which contributed to the viability of ancestral thermophilic cells. Cotranslation of functionally related proteins is viewed as having facilitated the formation of multienzyme complexes channeling thermolabile substrates and the mutual stabilization of inherently thermolabile proteins. In this perspective, the evolutionary scheme considered the most probable is the evolution of both Bacteria and Archaea by thermoreduction (Forterre 1995) from a mesophilic, protoeukaryotic last common ancestor (LCA) endowed with appreciable genetic redundancy.  相似文献   

18.
Researchers have long been enthralled with the idea that gene duplication can generate novel functions, crediting this process with great evolutionary importance. Empirical data shows that whole-genome duplications (WGDs) are more likely to be retained than small-scale duplications (SSDs), though their relative contribution to the functional fate of duplicates remains unexplored. Using the map of genetic interactions and the re-sequencing of 27 Saccharomyces cerevisiae genomes evolving for 2,200 generations we show that SSD-duplicates lead to neo-functionalization while WGD-duplicates partition ancestral functions. This conclusion is supported by: (a) SSD-duplicates establish more genetic interactions than singletons and WGD-duplicates; (b) SSD-duplicates copies share more interaction-partners than WGD-duplicates copies; (c) WGD-duplicates interaction partners are more functionally related than SSD-duplicates partners; (d) SSD-duplicates gene copies are more functionally divergent from one another, while keeping more overlapping functions, and diverge in their sub-cellular locations more than WGD-duplicates copies; and (e) SSD-duplicates complement their functions to a greater extent than WGD–duplicates. We propose a novel model that uncovers the complexity of evolution after gene duplication.  相似文献   

19.
There are a large number of ‘non‐family’ (NF) genes that do not cluster into families with three or more members per genome. While gene families have been extensively studied, a systematic analysis of NF genes has not been reported. We performed comparative studies on NF genes in 14 plant species. Based on the clustering of protein sequences, we identified ~94 000 NF genes across these species that were divided into five evolutionary groups: Viridiplantae wide, angiosperm specific, monocot specific, dicot specific, and those that were species specific. Our analysis revealed that the NF genes resulted largely from less frequent gene duplications and/or a higher rate of gene loss after segmental duplication relative to genes in both low‐copy‐number families (LF; 3–10 copies per genome) and high‐copy‐number families (HF; >10 copies). Furthermore, we identified functions enriched in the NF gene set as compared with the HF genes. We found that NF genes were involved in essential biological processes shared by all plant lineages (e.g. photosynthesis and translation), as well as gene regulation and stress responses associated with phylogenetic diversification. In particular, our analysis of an Arabidopsis protein–protein interaction network revealed that hub proteins with the top 10% most connections were over‐represented in the NF set relative to the HF set. This research highlights the roles that NF genes may play in evolutionary and functional genomics research.  相似文献   

20.
ABSTRACT: BACKGROUND: In eukaryotes, variation in gene copy numbers is often associated with deleterious effects, but may also have positive effects. For prokaryotes, studies on gene copy number variation are rare. Previous studies have suggested that high numbers of rRNA gene copies can be advantageous in environments with changing resource availability, but further association of gene copies and phenotypic traits are not documented. We used one of the morphologically most diverse prokaryotic phyla to test whether numbers of gene copies are associated with levels of cell differentiation. RESULTS: We implemented a search algorithm that identified 44 genes with highly conserved copies across 22 fully sequenced cyanobacterial taxa. For two very basal cyanobacterial species, Gloeobacter violaceus and a thermophilic Synechococcus species, distinct phylogenetic positions previously found were supported by identical protein coding gene copy numbers. Furthermore, we found that increased ribosomal gene copy numbers showed a strong correlation to cyanobacteria capable of terminal cell differentiation. Additionally, we detected extremely low variation of 16S rRNA sequence copies within the cyanobacteria. We compared our results for 16S rRNA to three other eubacterial phyla (Chroroflexi, Spirochaetes and Bacteroidetes). Based on Bayesian phylogenetic inference and the comparisons of genetic istances, we could confirm that cyanobacterial 16S rRNA paralogs and orthologs show significantly stronger conservation than found in other eubacterial phyla. Conclusions: A higher number of ribosomal operons could potentially provide an advantage to terminally differentiated cyanobacteria. Furthermore, we suggest that 16S rRNA gene copies in cyanobacteria are homogenized by both concerted evolution and purifying selection. In addition, the small ribosomal subunit in cyanobacteria appears to evolve at extraordinary slow evolutionary rates, an observation that has been made previously for morphological characteristics of cyanobacteria.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号