首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Regulated endothelial exocytosis of Weibel-Palade bodies (WPBs), the first stage in leukocyte trafficking, plays a pivotal role in inflammation and injury. Acute mechanical stretch has been closely associated with vascular inflammation, although the precise mechanism is unknown. Here, we show that hypertensive stretch regulates the exocytosis of WPBs of endothelial cells (ECs) through VEGF receptor 2 (VEGFR2) signaling pathways. Stretch triggers a rapid release (within minutes) of von Willebrand factor and interleukin-8 from WPBs in cultured human ECs, promoting the interaction between leukocytes and ECs through the translocation of P-selectin to the cell membrane. We further show that hypertensive stretch significantly induces P-selectin translocation of intact ECs and enhances leukocyte adhesion both ex vivo and in vivo. Stretch-induced endothelial exocytosis is mediated via a VEGFR2/PLCγ1/calcium pathway. Interestingly, stretch also induces a negative feedback via a VEGFR2/Akt/nitric oxide pathway. Such dual effects are confirmed using pharmacological and genetic approaches in carotid artery segments, as well as in acute hypertensive mouse models. These studies reveal mechanical stretch as a potent agonist for endothelial exocytosis, which is modulated by VEGFR2 signaling. Thus, VEGFR2 signaling pathways may represent novel therapeutic targets in limiting hypertensive stretch-related inflammation.  相似文献   

2.
The biogenesis of endothelial-specific Weibel-Palade bodies (WPB) is poorly understood, despite their key role in both haemostasis and inflammation. Biogenesis of specialized organelles of haemopoietic cells is often adaptor protein complex 3-dependent (AP-3-dependent), and AP-3 has previously been shown to play a role in the trafficking of both WPB membrane proteins, P-selectin and CD63. However, WPB are thought to form at the trans Golgi network (TGN), which is inconsistent with a role for AP-3, which operates in post-Golgi trafficking. We have therefore investigated in detail the mechanisms of delivery of these two membrane proteins to WPB. We find that P-selectin is recruited to forming WPB in the trans-Golgi by AP-3-independent mechanisms that use sorting information within both the cytoplasmic tail and the lumenal domain of the receptor. In contrast, CD63 is recruited to already-budded WPB by an AP-3-dependent route. These different mechanisms of recruitment lead to the presence of distinct immature and mature populations of WPB in human umbilical vein endothelial cells (HUVEC).  相似文献   

3.
Endothelial cells contain specialized storage organelles called Weibel-Palade bodies (WPBs) that release their content into the vascular lumen in response to specific agonists that raise intracellular Ca(2+) or cAMP. We have previously shown that cAMP-mediated WPB release is dependent on protein kinase A (PKA) and involves activation of the small GTPase RalA. Here, we have investigated a possible role for another PKA-independent cAMP-mediated signaling pathway in the regulation of WPB exocytosis, namely the guanine nucleotide exchange factor Epac1 and its substrate, the small GTPase Rap1. Epinephrine stimulation of endothelial cells leads to Rap1 activation in a PKA-independent fashion. siRNA-mediated knockdown of Epac1 abolished epinephrine-induced activation of Rap1 and resulted in decreased epinephrine-induced WPB exocytosis. Down-regulation of Rap1 expression and prevention of Rap1 activation through overexpression of Rap1GAP effectively reduced epinephrine- but not thrombin-induced WPB exocytosis. Taken together, these data uncover a new Epac-Rap1-dependent pathway by which endothelial cells can regulate WPB exocytosis in response to agonists that signal through cAMP.  相似文献   

4.
Vascular endothelial cells are able to store the chemotactic cytokine interleukin-8 (IL-8) in specialized storage vesicles, Weibel-Palade bodies, together with von Willebrand factor (VWF) and P-selectin. We investigated whether VWF plays a role in the sorting of IL-8 into these organelles. We examined the effect of VWF expression on IL-8 targeting in an endothelial cell line (EC-RF24). This cell line has retained the typical phenotypic characteristics of primary endothelial cells but has lost the capacity to produce VWF in appreciable amounts. EC-RF24 cells were retrovirally transduced with a vector encoding a VWF-green fluorescent protein chimera (VWF-GFP). This approach enables direct visualization of the cellular distribution and secretory behavior of the VWF-GFP hybrid. Expression of VWF-GFP resulted in the generation of Weibel-Palade body-like organelles as shown by the colocalization of VWF-GFP and P-selectin. VWF-GFP expressing EC-RF24 cells also showed significant colocalization of VWF-GFP with IL-8 in these storage vesicles. Live cell imaging revealed that the number of VWF-GFP-containing granules decreased upon cell stimulation. These observations indicate that VWF plays an active role in sequestering IL-8 into Weibel-Palade bodies.  相似文献   

5.
The endothelial cell-specific granule Weibel-Palade body releases vasoactive substances capable of modulating vascular inflammation. Although innate recognition of pathogens by Toll-like receptors (TLRs) is thought to play a crucial role in promotion of inflammatory responses, the molecular basis for early-phase responses of endothelial cells to bacterial pathogens has not fully been understood. We here report that human aortic endothelial cells respond to bacterial lipoteichoic acid (LTA) and synthetic bacterial lipopeptides, but not lipopolysaccharide or peptidoglycan, to induce Weibel-Palade body exocytosis, accompanied by release or externalization of the storage components von Willebrand factor and P-selectin. LTA could activate rapid Weibel-Palade body exocytosis through a TLR2- and MyD88-dependent mechanism without de novo protein synthesis. This process was at least mediated through MyD88-dependent phosphorylation and activation of phospholipase Cgamma. Moreover, LTA activated interleukin-1 receptor-associated kinase-1-dependent delayed exocytosis with de novo protein synthesis and phospholipase Cgamma-dependent activation of the NF-kappaB pathway. Increased TLR2 expression by transfection or interferon-gamma treatment increased TLR2-mediated Weibel-Palade body exocytosis, whereas reduced TLR2 expression under laminar flow decreased the response. Thus, we propose a novel role for TLR2 in induction of a primary proinflammatory event in aortic endothelial cells through Weibel-Palade body exocytosis, which may be an important step for linking innate recognition of bacterial pathogens to vascular inflammation.  相似文献   

6.
Neutrophil elastase (NE) and proteinase 3 (PR3) differ in intracellular localization, which may reflect different trafficking mechanisms of the precursor forms when synthesized at immature stages of neutrophils. To shed further light on these mechanisms, we compared the trafficking of precursor NE (proNE) and precursor PR3 (proPR3). Like proNE [1], proPR3 interacted with CD63 upon heterologous co-expression in COS cells but endogenous interaction was not detected although cell surface proNE/proPR3/CD63 were co-endocytosed in myelomonocytic cells. Cell surface proNE/proPR3 turned over more rapidly than cell surface CD63 consistent with processing/degradation of the pro-proteases but recycling of CD63. Colocalization of proNE/proPR3/CD63 with clathrin and Rab 7 suggested trafficking through coated vesicles and late endosomes. Partial caveolar trafficking of proNE/CD63 but not proPR3 was suggested by colocalization with caveolin-1. Blocking the C-terminus of proNE/proPR3 by creating a fusion with FK506 binding protein inhibited endosomal re-uptake of proNE but not proPR3 indicating “proC”-peptide-dependent structural/conformational requirements for proNE but not for proPR3 endocytosis. The NE aminoacid residue Y199 of a proposed NE sorting motif that interacts with AP-3 [2] was not required for proNE processing, sorting or endocytosis in rat basophilic leukemia (RBL) cells expressing heterologous Y199-deleted proNE; this suggests operation of another AP-3-link for proNE targeting. Our results show intracellular multi-step trafficking to be different between proNE and proPR3 consistent with their differential subcellular NE/PR3 localization in neutrophils.  相似文献   

7.
Weibel-Palade bodies (WPBs) are secretory organelles of endothelial cells that store the thrombogenic glycoprotein von Willebrand factor (vWF). Endothelial activation, e.g. by histamine and thrombin, triggers the Ca2+-dependent exocytosis of WPB that releases vWF into the vasculature and thereby initiates platelet capture and thrombus formation. Towards understanding the molecular mechanisms underlying this regulated WPB exocytosis, we here identify components of the soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) machinery associated with WPB. We show that vesicle-associated membrane protein (VAMP) 3 and VAMP8 are present on WPB and that VAMP3, but not VAMP8 forms a stable complex with syntaxin 4 and SNAP23, two plasma membrane-associated SNAREs in endothelial cells. By introducing mutant SNARE proteins into permeabilized endothelial cells we also show that soluble VAMP3 but not VAMP8 mutants comprising the cytoplasmic domain interfere with efficient vWF secretion. This indicates that endothelial cells specifically select VAMP 3 over VAMP8 to cooperate with syntaxin 4 and SNAP23 in the Ca2+-triggered fusion of WPB with the plasma membrane. This article is part of a Special Issue entitled: 11th European Symposium on Calcium.  相似文献   

8.
P-selectin, a cell adhesion protein participating in the early stages of inflammation, contains multiple sorting signals that regulate its cell surface expression. Targeting to secretory granules regulates delivery of P-selectin to the cell surface. Internalization followed by sorting from early to late endosomes mediates rapid removal of P-selectin from the surface. We show here that the P-selectin cytoplasmic domain bound AP-2 and AP-3 adaptor complexes in vitro . The amino acid substitution L768A, which abolishes endosomal sorting and impairs granule targeting of P-selectin, reduced binding of AP-3 adaptors but not AP-2 adaptors. Turnover of P-selectin was 2.4-fold faster than turnover of transferrin receptor in AP-3-deficient mocha fibroblasts, similar to turnover of these two proteins in AP-3-competent cells, demonstrating that AP-3 function is not required for endosomal sorting. However, sorting P-selectin to secretory granules was defective in endothelial cells from AP-3-deficient pearl mice, demonstrating a role for AP-3 adaptors in granule assembly in endothelial cells. P-selectin sorting to platelet α-granules was normal in pearl mice, consistent with earlier evidence that granule targeting of P-selectin is mechanistically distinct in endothelial cells and platelets. These observations establish that AP-3 adaptor functions in assembly of conventional secretory granules, in addition to lysosomes and the 'lysosome-like' secretory granules of platelets and melanocytes.  相似文献   

9.
Proteins are sorted and packaged into regulated secretory granules at the trans Golgi network but how such granules form is poorly understood. We are studying Muclin, the major sulfated protein of the mouse pancreatic acinar cell, and what its role may be in zymogen granule formation. Muclin behaves as a peripheral membrane protein localized to the lumen of the zymogen granule but the cDNA for this protein predicts it is a type I membrane protein with a short, 16-amino-acid, cytosolic tail (C-Tail). Using domain-specific antibodies, we demonstrate that Muclin is derived from a precursor, pro-Muclin, which is cleaved to produce Muclin and an approximately 80-kDa membrane glycoprotein (p80). Incubation of pulse-labeled cells at < or = 22 degrees C to block exit from the trans Golgi network also blocks cleavage of pro-Muclin but not sulfation, a trans Golgi network event, suggesting that cleavage occurs in a post-Golgi compartment. After cleavage the two products of pro-Muclin diverge with Muclin remaining in the regulated secretory pathway and p80 trafficking to the apical plasma membrane, presumably via the constitutive-like pathway. When transfected into exocrine AR42J cells, Muclin labeling is perinuclear and in large sub-plasma membrane puncta. Transiently transfected AR42J cells have greater immunolabeling for amylase than nontransfected cells, suggesting a role for Muclin in cargo accumulation in the regulated secretory pathway. A construct with the C-Tail deleted targets to small diffusely-distributed puncta and without the large sub-plasma membrane structures. Thus, the C-Tail is required for proper Muclin targeting. When transfected into neuroendocrine AtT-20 cells Muclin is not colocalized with ACTH in cell processes, and it appears to be constitutively trafficked to the plasma membrane, suggesting that Muclin has exocrine-specific information. We present a working model for pro-Muclin as a Golgi cargo receptor for exocrine secretory granule formation at the trans Golgi network.  相似文献   

10.
11.
Multimers of von Willebrand Factor (vWF), a protein mediating blood clotting in response to vascular injury, are stored as tubular structures by endothelial cells in specific organelles, the Weibel–Palade Bodies (WPBs). To date very little is known about the 3D structure of WPBs in relation to the organization of the tubules. Therefore, we have initiated a thorough electron microscopic study in human umbilical vein endothelial cells (HUVECs) using electron tomography to gain further understanding of the ultrastructure of WPBs. We found that in addition to the well-documented cigar-shape, WPBs adopt irregular forms, which appeared to result from homotypic fusion. In transverse views of WPBs the tubular striations appear evenly spaced, which indicates a high level of organization that is likely to involve an underlying scaffold of structural proteins. Additionally, we found that the tubular striations twisted in an orderly fashion, suggesting that they are stored within the WPBs by a spring-loading mechanism. Altogether these data suggest that WPBs undergo a relatively complex maturation process involving homotypic fusion. Although the mechanism of assembly of vWF multimers into tubules is still unknown, the curled arrangement of the tubules within WPBs suggests a high degree of folding of the protein inside the organelle.  相似文献   

12.
Many newly synthesized membrane proteins traverse endocytic intermediates en route to the surface in polarized epithelial cells; however, the biosynthetic itinerary of secreted proteins has not been elucidated. We monitored the trafficking route of two secreted proteins with different apical sorting signals: the N-glycan-dependent cargo glycosylated growth hormone (gGH) and Ensol, a soluble version of endolyn whose apical sorting is independent of N-glycans. Both proteins were observed to colocalize in part with apical recycling endosome (ARE) markers. Cargo that lacks an apical targeting signal and is secreted in a nonpolarized manner did not localize to the ARE. Expression of a dominant-negative mutant of myosin Vb, which disrupts ARE export of glycan-dependent membrane proteins, selectively inhibited apical release of gGH but not Ensol. Fluorescence recovery after photobleaching (FRAP) measurements revealed that gGH in the ARE was less mobile than Ensol, consistent with tethering to a sorting receptor. However, knockdown of galectin-3 or galectin-4, lectins implicated in apical sorting, had no effect on the rate or polarity of gGH secretion. Together, our results suggest that apically secreted cargoes selectively access the ARE and are exported via differentially regulated pathways.  相似文献   

13.
In vivo trafficking and localization of p24 proteins in plant cells   总被引:1,自引:0,他引:1  
p24 proteins constitute a family of putative cargo receptors that traffic in the early secretory pathway. p24 proteins can be divided into four subfamilies (p23, p24, p25 and p26) by sequence homology. In contrast to mammals and yeast, most plant p24 proteins contain in their cytosolic C-terminus both a dilysine motif in the −3, −4 position and a diaromatic motif in the −7, −8 position. We have previously shown that the cytosolic tail of Arabidopsis p24 proteins has the ability to interact with ARF1 and coatomer (through the dilysine motif) and with COPII subunits (through the diaromatic motif). Here, we establish the localization and trafficking properties of an Arabidopsis thaliana p24 protein ( At p24) and have investigated the contribution of the sorting motifs in its cytosolic tail to its in vivo localization. At p24-red fluorescent protein localizes exclusively to the endoplasmic reticulum (ER), in contrast with the localization of p24 proteins in other eukaryotes, and the dilysine motif is necessary and sufficient for ER localization. In contrast, At p24 mutants lacking the dilysine motif are transported along the secretory pathway to the prevacuolar compartment and the vacuole, although a significant fraction is also found at the plasma membrane. Finally, we have found that ER export of At p24 is COPII dependent, while its ER localization requires COPI function, presumably for efficient Golgi to ER recycling.  相似文献   

14.
In secretory cells, calcium-regulated exocytosis is rapidly followed by compensatory endocytosis. Neuroendocrine cells secrete hormones and neuropeptides through various modes of exo-endocytosis, including kiss-and-run, cavicapture and full-collapse fusion. During kiss-and-run and cavicapture modes, the granule membrane is maintained in an omega shape, whereas it completely merges with the plasma membrane during full-collapse mode. As the composition of the granule membrane is very different from that of the plasma membrane, a precise sorting process of granular proteins must occur. However, the fate of secretory granule membrane after full fusion exocytosis remains uncertain. Here, we investigated the mechanisms governing endocytosis of collapsed granule membranes by following internalization of antibodies labeling the granule membrane protein, dopamine-β-hydroxylase (DBH) in cultured chromaffin cells. Using immunofluorescence and electron microscopy, we observed that after full collapse, DBH remains clustered on the plasma membrane with other specific granule markers and is subsequently internalized through vesicular structures composed mainly of granule components. Moreover, the incorporation of this recaptured granule membrane into an early endosomal compartment is dependent on clathrin and actin. Altogether, these results suggest that after full collapse exocytosis, a selective sorting of granule membrane components is facilitated by the physical preservation of the granule membrane entity on the plasma membrane.  相似文献   

15.
CD40 ligand is an important immunoregulatory protein expressed by T cells. This protein exists as two isoforms, a membrane glycoprotein and a truncated soluble form. Here we demonstrate that membrane and soluble CD40L (sCD40L) are differentially regulated depending upon the activation stimulus. In T cell receptor activated cells, both membrane and sCD40L proteins are expressed and CD28 costimulation further increases their expression. The dissection of TCR generated signals into calcium and PKC-dependent pathways demonstrates that calcium is sufficient to induce membrane CD40L yet insufficient for sCD40L. In contrast, sCD40L is preferentially induced by PKC. Moreover, sCD40L production is blocked by Zn(2+)-dependent metalloproteinase inhibitors while membrane CD40L is concurrently increased. This profile suggests the potential involvement of the ADAM-10 protease which was subsequently shown to cleave membrane CD40L to generate sCD40L. Given the role of sCD40L in numerous disease pathologies and its ability to activate proximal and distal immune responses, the regulated cleavage of CD40L may likely contribute to disease mechanisms.  相似文献   

16.
Ubiquitination induced down-regulation of cell surface proteins by internalization and lysosomal targeting plays a fundamental role in cell physiology and pathogenesis of diseases. The molecular basis of a single ubiquitin (Ub) as an autonomous endocytic signal, the widely accepted mechanism, however, remains elusive in higher eukaryotes. Using Ub containing reporter proteins without signalling abilities, we present evidence that only multiple Ub moieties, linked either covalently or assembled as oligomers with an intact interface for recognition by Ub-interacting motifs (UIMs), are recognized by the endocytic machinery in vivo and associate with a subset of Ub-binding clathrin adaptors in vitro. Genetic and pharmacological approaches show that internalization of plasma membrane proteins harbouring multiple Ub moieties is clathrin-dependent, but caveolin-independent. Functional assays demonstrate the cargo-dependent involvement of eps15/15R and epsin, UIM containing clathrin adaptors, in the endocytosis of model proteins, CD4 and the activated beta(2)-adrenergic receptor complex, containing polymeric or oligomeric Ub. These results provide a paradigm for the clathrin-mediated uptake of ubiquitinated membrane proteins in mammalian cells, requiring the assembly of multiple UIM-Ub interactions to overcome the low affinity binding of mono-Ub to UIM.  相似文献   

17.
STARD4, a member of the evolutionarily conserved START gene family, has been implicated in the nonvesicular intracellular transport of cholesterol. However, the direction of transport and the membranes with which this protein interacts are not clear. We present studies of STARD4 function using small hairpin RNA knockdown technology to reduce STARD4 expression in HepG2 cells. In a cholesterol-poor environment, we found that a reduction in STARD4 expression leads to retention of cholesterol at the plasma membrane, reduction of endoplasmic reticulum-associated cholesterol, and decreased ACAT synthesized cholesteryl esters. Furthermore, D4 KD cells exhibited a reduced rate of sterol transport to the endocytic recycling compartment after cholesterol repletion. Although these cells displayed normal endocytic trafficking in cholesterol-poor and replete conditions, cell surface low density lipoprotein receptor (LDLR) levels were increased and decreased, respectively. We also observed a decrease in NPC1 protein expression, suggesting the induction of compensatory pathways to maintain cholesterol balance. These data indicate a role for STARD4 in nonvesicular transport of cholesterol from the plasma membrane and the endocytic recycling compartment to the endoplasmic reticulum and perhaps other intracellular compartments as well.  相似文献   

18.
Vascular damage caused by Shiga toxin (Stx)-producing Escherichia coli is largely mediated by Stxs, which in particular, injure microvascular endothelial cells in the kidneys and brain. The majority of Stxs preferentially bind to the glycosphingolipid (GSL) globotriaosylceramide (Gb3Cer) and, to a lesser extent, to globotetraosylceramide (Gb4Cer). As clustering of receptor GSLs in lipid rafts is a functional requirement for Stxs, we analyzed the distribution of Gb3Cer and Gb4Cer to membrane microdomains of human brain microvascular endothelial cells (HBMECs) and macrovascular EA.hy 926 endothelial cells by means of anti-Gb3Cer and anti-Gb4Cer antibodies. TLC immunostaining coupled with infrared matrix-assisted laser desorption/ionization (IR-MALDI) mass spectrometry revealed structural details of various lipoforms of Stx receptors and demonstrated their major distribution in detergent-resistant membranes (DRMs) compared with nonDRM fractions of HBMECs and EA.hy 926 cells. A significant preferential partition of different receptor lipoforms carrying C24:0/C24:1 or C16:0 fatty acid and sphingosine to DRMs was not detected in either cell type. Methyl-β-cyclodextrin (MβCD)-mediated cholesterol depletion resulted in only partial destruction of lipid rafts, accompanied by minor loss of GSLs in HBMECs. In contrast, almost entire disintegration of lipid rafts accompanied by roughly complete loss of GSLs was detected in EA.hy 926 cells after removal of cholesterol, indicating more stable microdomains in HBMECs. Our findings provide first evidence for differently stable microdomains in human endothelial cells from different vascular beds and should serve as the basis for further exploring the functional role of lipid raft-associated Stx receptors in different cell types.  相似文献   

19.
20.
Scavenger receptor Class B type 1 (SR-B1) is a lipid transporter and sensor. In intestinal epithelial cells, SR-B1-dependent lipid sensing is associated with SR-B1 recruitment in raft-like/ detergent-resistant membrane domains and interaction of its C-terminal transmembrane domain with plasma membrane cholesterol. To clarify the initiating events occurring during lipid sensing by SR-B1, we analyzed cholesterol trafficking and raft-like domain composition in intestinal epithelial cells expressing wild-type SR-B1 or the mutated form SR-B1-Q445A, defective in membrane cholesterol binding and signal initiation. These features of SR-B1 were found to influence both apical cholesterol efflux and intracellular cholesterol trafficking from plasma membrane to lipid droplets, and the lipid composition of raft-like domains. Lipidomic analysis revealed likely participation of d18:0/16:0 sphingomyelin and 16:0/0:0 lysophosphatidylethanolamine in lipid sensing by SR-B1. Proteomic analysis identified proteins, whose abundance changed in raft-like domains during lipid sensing, and these included molecules linked to lipid raft dynamics and signal transduction. These findings provide new insights into the role of SR-B1 in cellular cholesterol homeostasis and suggest molecular links between SR-B1-dependent lipid sensing and cell cholesterol and lipid droplet dynamics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号