首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Aim of the study was to quantify cerebral vasospasm in rats after subarachnoid hemorrhage (SAH) by morphometric examination of basilar artery and to evaluate the influence of endothelin receptor blocker BQ-123 on basilar artery constriction. The rat cisterna magna (CM) was cannulated and after 7 days SAH was developed by administration of 100 microl autologic, non-heparinized blood to the CM. The sham subarachnoid hemorrhage was developed by intracisternal administration of 100 microl of artificial cerebrospinal fluid. Endothelin receptor blocker BQ-123 was injected into the CM in a dose of 40 nmol diluted in 50 microl of cerebrospinal fluid 20 min. before SAH, and 24h and 48 h after SAH. After perfusion fixation the brains were removed from the skull and histological preparations of basilar artery were done. The internal diameter and wall thickness of basilar arteries was measured by interactive morphometric method. The most severe vasospasm was found in rats after SAH. The presence of numerous infiltrations composed of neutrophils and macrophages correlated with advanced vasospasm (index of constriction 5 times lower than in normal), suggesting the role of other factors participating in the late phase of vasospasms after SAH. Administration of BQ-123 in the late phase after SAH caused the dilatation of basilar artery. Following the administration of BQ-123 in the late phase (48 h after SAH) the basilar artery dilated, its wall became thinner, and the number of leukocyte infiltrations in the subarachnoid space decreased compared to the values after SAH alone.  相似文献   

2.

Introduction

Previous studies have suggested that cerebrospinal fluid from patients with subarachnoid hemorrhage (SAH) leads to pronounced vasoconstriction in isolated arteries. We hypothesized that only cerebrospinal fluid from SAH patients with vasospasm would produce an enhanced contractile response to endothelin-1 in rat cerebral arteries, involving both endothelin ETA and ETB receptors.

Methods

Intact rat basilar arteries were incubated for 24 hours with cerebrospinal fluid from 1) SAH patients with vasospasm, 2) SAH patients without vasospasm, and 3) control patients. Arterial segments with and without endothelium were mounted in myographs and concentration-response curves for endothelin-1 were constructed in the absence and presence of selective and combined ETA and ETB receptor antagonists. Endothelin concentrations in culture medium and receptor expression were measured.

Results

Compared to the other groups, the following was observed in arteries exposed to cerebrospinal fluid from patients with vasospasm: 1) larger contractions at lower endothelin concentrations (p<0.05); 2) the increased endothelin contraction was absent in arteries without endothelium; 3) higher levels of endothelin secretion in the culture medium (p<0.05); 4) there was expression of ETA receptors and new expression of ETB receptors was apparent; 5) reduction in the enhanced response to endothelin after ETB blockade in the low range and after ETA blockade in the high range of endothelin concentrations; 6) after combined ETA and ETB blockade a complete inhibition of endothelin contraction was observed.

Conclusions

Our experimental findings showed that in intact rat basilar arteries exposed to cerebrospinal fluid from patients with vasospasm endothelin contraction was enhanced in an endothelium-dependent manner and was blocked by combined ETA and ETB receptor antagonism. Therefore we suggest that combined blockade of both receptors may play a role in counteracting vasospasm in patients with SAH.  相似文献   

3.
Vasospasm after subarachnoid hemorrhage (SAH) is associated with lipid peroxidation. However, lipid peroxides increase in a delayed fashion after SAH and may be a byproduct of but not a cause of vasospasm. This study correlated vasospasm with hydroxyl free radical and lipid peroxide levels. 24 dogs had baseline cerebral angiography and induction of SAH by 2 injections of blood into the cisterna magna at baseline and 2 days later. Angiography was repeated 4, 7, 10, 14 or 21 days after the first injection (n = 4 per group) and a microdialysis catheter was inserted into the premedullary cistern. Control dogs (n = 4) underwent angiography and microdialysis but not SAH. Salicylic acid, 100 mg/kg, was administered intravenously, and microdialysis fluid was collected and analyzed by high pressure liquid chromatography for 2,3- and 2,5-dihydroxybenzoic acids (DHBA). Malondialdehyde was measured in subarachnoid clot removed from the prepontine cistern and in the basilar artery itself at the time of euthanasia. Significant vasospasm developed 4 to 14 days after SAH. Malondialdehyde levels were significantly elevated in the basilar artery and subarachnoid clot 4 days after SAH (p < 0.0001, ANOVA) but not at other times. 2,5-DHBA levels were significantly greater than control at 4 to 14 days and they peaked at 4 days (p < 0.05, ANOVA). 2,3-DHBA was significantly increased at 4 days after SAH (p < 0.05, ANOVA). There were significant correlations between basilar artery malondialdehyde levels and vasospasm and cerebrospinal fluid 2,5-DHBA levels and vasospasm. These results suggest the presence of hydroxyl free radical after SAH and demonstrate a correlation between such production, as measured by trapping with salicylate, and the early phase of vasospasm. The correlation with vasospasm implicates free radicals and lipid peroxidation in this phase of vasospasm.  相似文献   

4.
The chronic stage of vasospasm occurring several days after subarachnoid hemorrhage (SAH) is characterized by the development of histopathologic changes in cerebral arteries causing cerebral ischemia. Numerous experimental data indicate the involvement of immune mechanisms in the angiopathy caused by SAH. Endogenous opioids play also an important role in the ischemic lesions of the brain. Corticotropin releasing hormone (CRH) induces the release of beta-endorphin (beta-END) from hypothalamic neurons and also from mononuclear white blood cells. The function of CRH and beta-END in vasospasm following SAH and the interrelationship between neuroendocrine and immune changes requires further elucidation. In the present study we investigated the influence of CRH injected into cerebral cisterna magna (CM) of rats on beta-END-like level in cerebrospinal fluid (CSF) in acute and chronic phase of cerebral vasospasm following artificial SAH. Acutely CRH induced a significant rise of beta-END-like in CSF both in SAH and sham SAH rats. However, in rats subjected to SAH, a single injection of CRH caused a prolonged rise of 5-END in CSF, which was also seen 2 days after SAH, during the chronic phase of vasospasm. The obtained results indicate that CRH increases neuroendocrine changes induced by SAH, probably by an activation of immune cells involved in the patomechanism of chronic vasospasm.  相似文献   

5.
There is increasing evidence that the conversion of big endothelin-1 (big ET-1) to endothelin-1 (ET-1) is specifically inhibited by the metalloproteinase inhibitor phosphoramidon. We investigated the effect of phosphoramidon on delayed cerebral vasospasm from subarachnoid hemorrhage (SAH) using a two-hemorrhage canine model. The magnitude of the vasospasm and the drug effect were determined angiographically. On SAH Day 7, diameter of the basilar artery decreased to about 55% of the control value obtained before SAH (on Day 0). Immunoreactive ET (IR-ET) in the cerebrospinal fluid (CSF) significantly increased after SAH (on Day 7). The intracisternal pretreatment of phosphoramidon potently suppressed the decrease in diameter of the basilar artery after SAH, i.e., observed decrease was only about 20%, compared with the value before SAH. In the phosphoramidon group, IR-ET in CSF markedly increased (on SAH Day 2), but the increased levels of IR-ET significantly declined on SAH Day 7. These results clearly indicate that phosphoramidon effectively prevents delayed cerebral vasospasm. Whether the prevention is due to the inhibition of conversion of big ET-1 to ET-1 is now under study.  相似文献   

6.
Though cerebral vasospasm after aneurysmal subarachnoid hemorrhage (SAH) has been recognized for over half a century, it remains a major complication in patients with SAH. Clinical studies have shown that elevated levels of endothelin-1 (ET-1) are present in the cerebrospinal fluid of patients with SAH, suggesting that ET-1-mediated vasoconstriction contributes to vascular constriction after SAH. Administration of estrogen promotes vasodilation in humans and in experimental animals, in part by decreasing the production of ET-1. This study evaluated the influence of 17beta-estradiol (E2) on the production of ET-1 and cerebrovasospasm in an experimental SAH 2-hemorrhage model in rat. A 30-mm Silastic tube filled with E2 in corn oil (0.3 mg/ml) was subcutaneously implanted in male rats just before SAH induction. The degree of vasospasm was determined by averaging the cross-sectional areas of basilar artery 7 days after first SAH. Plasma samples collected before death were assayed for ET-1. The protective effect of E2 in attenuating vasospasm achieved statistical significance when compared with the SAH only or SAH plus vehicle groups (P < 0.01). Concentrations of ET-1 were higher in the SAH only and SAH plus vehicle groups than in controls (P < 0.001). Serum levels of ET-1 in the SAH plus E2 and E2 only groups were significantly lower than those in the SAH only and SAH plus vehicle groups (P < 0.001). There was no significant difference between ET-1 levels in the healthy control and SAH plus E2 groups. A significant correlation was found between the cross-sectional areas of basilar artery and ET-1 levels (P < 0.001). The beneficial effect of E2 in attenuating SAH-induced vasospasm may be due in part to decreasing ET-1 production after SAH. The role of E2 in the treatment of cerebral vasospasm after SAH is promising and is worthy of further investigation.  相似文献   

7.
《Cytokine》2011,53(3):245-251
Inflammatory responses have been implicated in the elaboration of several forms of central nervous system injury, including cerebral vasospasm after subarachnoid hemorrhage (SAH). A critical event participating in such responses is the recruitment of circulating leukocytes into the inflammatory site. CD34 is a key adhesion molecule responsible for recruitment of monocytes/macrophages and the attachment of leukocytes to endothelial cells. However, it has not been investigated whether, and to what degree, CD34 is induced by SAH and also the role of CD34 in the pathogenesis of cerebral vasospasm following SAH remains unknown. Experiment 1 aimed to investigate the timecourse of the CD34 expression in the basilar artery after SAH. In experiment 2, we chose the maximum time point of vasospasm (day 3) and assessed the effect of monoclonal antibody against CD34 on regulation of cerebral vasospasm. As a result, the elevated expression of CD34 was detected in the basilar artery after SAH and peaked on day 3. After intracisternal administration of CD34 monoclonal antibody, the vasospasm was markedly attenuated after blood injection on day 3. Our results suggest that CD34 is increasingly expressed in a parallel time course to the development of cerebral vasospasm in a rat experimental model of SAH and administration of the specific CD34 antibody could prevent or reduce cerebral vasospasm caused by SAH.  相似文献   

8.
It is suggested that endothelin-1 (ET-1), a potent vasoconstrictor peptide, is involved in the pathogenesis of cerebral vasospasm following subarachnoid hemorrhage (SAH). We examined the effects of intracisternal administration of big ET-1 on the cerebral arteries in the absence or presence of pretreatment with phosphoramidon, an inhibitor of ET converting enzyme, in anesthetized dogs. After intracisternal administration of big ET-1 (10 micrograms/dog), the caliber of the basilar artery on the angiogram was decreased to about 59% of the control. This was accompanied by a marked increase in immunoreactive ET in the cerebrospinal fluid. Systemic arterial pressure was markedly elevated following big ET-1 injection. All changes induced by big ET-1 were effectively prevented with phosphoramidon. These data suggest that intracisternally administered big ET-1 is converted to ET-1 and that the generated ET-1 produces cerebral vasospasm and hypertension. A phosphoramidon-sensitive metalloproteinase appears to contribute to this conversion.  相似文献   

9.
Biomarkers for neurodegeneration could be early prognostic measures of brain damage and dysfunction in aneurysmal subarachnoid hemorrhage (aSAH) with clinical and medical applications. Recently, we developed a new panel of neurodegeneration biomarkers, and report here on their relationships with pathophysiological complications and outcomes following severe aSAH. Fourteen patients provided serial cerebrospinal fluid samples for up to 10 days and were evaluated by ultrasonography, angiography, magnetic resonance imaging, and clinical examination. Functional outcomes were assessed at hospital discharge and 6-9 months thereafter. Eight biomarkers for acute brain damage were quantified: calpain-derived α-spectrin N- and C-terminal fragments (CCSntf and CCSctf), hypophosphorylated neurofilament H,14-3-3 β and ζ, ubiquitin C-terminal hydrolase L1, neuron-specific enolase, and S100β. All 8 biomarkers rose up to 100-fold in a subset of patients. Better than any single biomarker, a set of 6 correlated significantly with cerebral vasospasm, brain infarction, and poor outcome. Furthermore, CSF levels of 14-3-3β, CCSntf, and NSE were early predictors of subsequent moderate-to-severe vasospasm. These data provide evidence that a panel of neurodegeneration biomarkers may predict lasting brain dysfunction and the pathophysiological processes that lead to it following aSAH. The panel may be valuable as surrogate endpoints for controlled clinical evaluation of treatment interventions and for guiding aSAH patient care.  相似文献   

10.
11.
Objective: To characterize and establish a reproducible model that demonstrates delayed cerebral vasospasm after aneurysmal subarachnoid hemorrhage (SAH) in rats, in order to identify the initiating events, pathophysiological changes and potential targets for treatment.Methods: Twenty-eight male Sprague-Dawley rats (250 - 300 g) were arbitrarily assigned to one of two groups - SAH or saline control. Rat subarachnoid hemorrhage in the SAH group (n=15) was induced by double injection of autologous blood, 48 hr apart, into the cisterna magna. Similarly, normal saline (n=13) was injected into the cisterna magna of the saline control group. Rats were sacrificed on day five after the second blood injection and the brains were preserved for histological analysis. The degree of vasospasm was measured using sections of the basilar artery, by measuring the internal luminal cross sectional area using NIH Image-J software. The significance was tested using Tukey/Kramer''s statistical analysis.Results: After analysis of histological sections, basilar artery luminal cross sectional area were smaller in the SAH than in the saline group, consistent with cerebral vasospasm in the former group. In the SAH group, basilar artery internal area (.056 μm ± 3) were significantly smaller from vasospasm five days after the second blood injection (seven days after the initial blood injection), compared to the saline control group with internal area (.069 ± 3; p=0.004). There were no mortalities from cerebral vasospasm.Conclusion: The rat double SAH model induces a mild, survivable, basilar artery vasospasm that can be used to study the pathophysiological mechanisms of cerebral vasospasm in a small animal model. A low and acceptable mortality rate is a significant criterion to be satisfied for an ideal SAH animal model so that the mechanisms of vasospasm can be elucidated 7, 8. Further modifications of the model can be made to adjust for increased severity of vasospasm and neurological exams.  相似文献   

12.
In the present study, we investigated the in vivo effects of melatonin on SAH-induced cerebral vasospasm and oxidative stress, resulting from SAH in an experimental rat model. Twenty-eight rats (225–250 g) were divided into four groups equally: group 1; control, group 2; SAH, group 3; SAH plus placebo, and group 4; SAH plus melatonin. We used double haemorrhage method for SAH groups. Beginning 6 h after SAH, 20 mg/kg melatonin or equal volume of 0.9% saline was administered intraperitoneally twice daily for 5 days to groups 3 and 4, respectively. Melatonin or 0.9% saline injections were continued up to fifth day after SAH and rats were sacrificed at the end of this period. Brain sections at the level of the pons were examined by light microscopy. The lumen diameter and the vessel wall thickness of basilar artery were measured using a micrometer. The serum levels of cerebral vasodilator nitric oxide (NO), the brain levels of an intrinsic antioxidant superoxide dismutase (SOD) and a NO regulator arginase activities were measured. The brain levels of inducible nitric oxide (iNOS) and nitrotyrosine, a nitrosative stress parameter immunohistochemiacally determined. In conclusion, melatonin administration ameliorated cerebral vasospasm by increasing serum NO level and decreasing the brain the levels of arginase and oxidative stress. It is therefore possible that increased brain arginase activity after SAH may also have a significant role in the pathogenesis of vasospasm by limiting the availability of arginine for NO production.  相似文献   

13.
Delayed cerebral vasospasm after subarachnoid hemorrhage (SAH) may be due, in part, to altered regulation of arterial smooth muscle contraction. Contraction of cerebral arteries to serotonin is augmented after experimental SAH. We hypothesized that activation of Rho-associated kinase (Rho kinase) contributes to augmented contraction of cerebral arteries to serotonin after SAH. Autologous arterial blood (SAH) or artificial cerebrospinal fluid (control) was injected into the cisterna magna of anesthetized rabbits. At 2 days after injection, the basilar artery was excised and isometric contraction of arterial rings was recorded. Maximum contraction of the basilar artery to serotonin was augmented about fourfold in SAH compared with control rabbits (P < 0.01). Contraction to histamine was similar in the two groups. Fasudil hydrochloride (3 mumol/l), an inhibitor of Rho kinase, markedly attenuated serotonin-induced contraction. Fasudil had little effect on contractions induced by histamine or phorbol 12,13-dibutyrate. In addition, phosphorylation of myosin phosphatase, a major target of Rho kinase in regulation of smooth muscle contraction, in the basilar artery was examined by Western blotting. In basilar arteries of SAH, but not control, rabbits, serotonin increased phosphorylation of myosin phosphatase about twofold at Thr(853) of the myosin-targeting subunit. These results suggest that enhanced activation of Rho kinase contributes to augmented contraction of the basilar artery to serotonin after SAH.  相似文献   

14.
S100 calcium binding protein B (S100B), a well-studied marker for neurologic injury, has been suggested as a candidate for predicting outcome after subarachnoid hemorrhage. We performed a pooled analysis summarizing the associations between S100B protein in serum and cerebrospinal fluid (CSF) with radiographic vasospasm, delayed ischemic neurologic deficit (DIND), delayed cerebral infarction, and Glasgow Outcome Scale (GOS) outcome. A literature search using PubMed, the Cochrane Library, and the EMBASE databases was performed to identify relevant studies published up to May 2015. The weighted Stouffer’s Z method was used to perform a pooled analysis of outcome measures with greater than three studies. A total of 13 studies were included in this review. Higher serum S100B level was found to be associated with cerebral infarction as diagnosed by CT (padj = 3.1 x 10−4) and worse GOS outcome (padj = 5.5 x 10−11). There was no association found between serum and CSF S100B with radiographic vasospasm or DIND. S100B is a potential prognostic marker for aSAH outcome.  相似文献   

15.
蛛网膜下腔出血对大鼠脑血流量和体感诱发电位的影响   总被引:2,自引:0,他引:2  
目的:探讨蛛网膜下腔出血(SAH)后脑血流量、体感诱发电位(SEP)潜伏期的改变及其与一氧化氮(NO)的关系。方法:对假手术对照组和SAH模型组大鼠检测24h局部脑血流量(rCBF)、SEP潜伏期和血清及脑组织NO含量动态变化。结果:非开颅刺破Willis环的方法可成功地诱发SAH。SAH后rCBF立即降低,在24h内无恢复趋势。SEP潜伏期于SAH后1h开始至24h明显延长。血清和脑组织NO含量  相似文献   

16.
ABSTRACT: BACKGROUND: Vasospasm-related delayed cerebral ischemia (DCI) significantly impacts on outcome after aneurysmal subarachnoid hemorrhage (SAH). Erythropoietin (EPO) may reduce the severity of cerebral vasospasm and improve outcome, however, underlying mechanisms are incompletely understood. In this study, the authors aimed to investigate the effect of EPO on cerebral metabolism and brain tissue oxygen tension (PbtO2). METHODS: Seven consecutive poor grade SAH patients with multimodal neuromonitoring (MM) received systemic EPO therapy (30.000 IU per day for 3 consecutive days) for severe cerebral vasospasm. Cerebral perfusion pressure (CPP), mean arterial blood pressure (MAP), intracranial pressure (ICP), PbtO2 and brain metabolic changes were analyzed during the next 24 hours after each dose given. Statistical analysis was performed with a mixed effects model. RESULTS: A total of 22 interventions were analyzed. Median age was 47 years (32-68) and 86% were female. Three patients (38%) developed DCI. MAP slightly decreased 2 hours after intervention (P<0.04) without significantly affecting CPP and ICP. PbtO2 significantly increased over time (P<0.05) to a maximum of 7+/-4mmHg increase 16 hours after infusion. Brain metabolic parameters did not change over time. CONCLUSIONS: EPO increases PbtO2 in poor grade SAH patients with severe cerebral vasospasm. The effect on outcome needs further investigation.  相似文献   

17.
We examined the effect of ET-1 on cyclic AMP levels in rat cerebral cortex. The peptide caused a concentration-dependent increase of [(3)H]cyclic AMP accumulation after 10 min of treatment. This effect was due to adenosine accumulation since it was inhibited by the treatment with adenosine deaminase. ET-1, apart from being able to increase cyclic AMP, also potentiated the cyclic AMP generated by isoprenaline in the presence of adenosine deaminase. Experiments performed in the presence of BQ-123 or BQ-788, specific ET(A) or ET(B) receptor antagonists respectively indicated that ET(B) was the receptor involved. This effect was dependent on extracellular and intracellular calcium concentration. These findings suggest that ET-1 plays a modulatory role in cyclic AMP generation systems in cerebral cortex.  相似文献   

18.
ABSTRACT: BACKGROUND: One of the main causes of mortality and morbidity following subarachnoid haemorrhage (SAH) is the development of cerebral vasospasm, a frequent complication arising in the weeks after the initial bleeding. Despite extensive research, to date no effective treatment of vasospasm exists. Prostacyclin is a potent vasodilator and inhibitor of platelet aggregation. In vitro models have shown a relaxing effect of prostacyclin after induced contraction in cerebral arteries and a recent pilot trial showed positive effect on cerebral vasospasm in a clinical setting. No randomised, clinical trials have been conducted, investigating the possible pharmacodynamic effects of prostacyclin on the human brain following SAH. METHODS: This trial is a single-center, randomised, placebo controlled, parallel group, blinded, clinical, pilot trial. A total of 90 patients with SAH will be randomised to one of 3 intervention arms; epoprostenol 1 ng/kg/min, epoprostenol 2 ng/kg/min or placebo in addition to standard treatment. Trial medication will start day 5 after SAH and continue to day 10. Primary outcome measure is changes in regional cerebral blood flow from baseline in the arterial territories of the anterior cerebral artery, medial cerebral artery and the posterior cerebral artery, measured by CT perfusion scan. The secondary outcomes will be vasospasm measured by CT angiography, ischaemic parameters measured by brain microdialysis, flow velocities in the medial cerebral artery, clinical parameters and outcome (Glasgow Outcome Scale) at 3 months. CONCLUSION: The trial is an explorative, pilot trial designed to investigate the feasibility and possible effects of low-dose prostacyclin on a primary outcome of regional blood flow and vasospasm in the human brain following SAH. Trial registration: Clinicaltrials.gov NCT01447095.  相似文献   

19.

Background

One of the main causes of mortality and morbidity following subarachnoid haemorrhage (SAH) is the development of cerebral vasospasm, a frequent complication arising in the weeks after the initial bleeding. Despite extensive research, to date no effective treatment of vasospasm exists. Prostacyclin is a potent vasodilator and inhibitor of platelet aggregation. In vitro models have shown a relaxing effect of prostacyclin after induced contraction in cerebral arteries, and a recent pilot trial showed a positive effect on cerebral vasospasm in a clinical setting. No randomised, clinical trials have been conducted, investigating the possible pharmacodynamic effects of prostacyclin on the human brain following SAH.

Methods

This trial is a single-centre, randomised, placebo-controlled, parallel group, blinded, clinical, pilot trial. A total of 90 patients with SAH will be randomised to one of three intervention arms: epoprostenol 1?ng/kg/min, epoprostenol 2?ng/kg/min or placebo in addition to standard treatment. Trial medication will start day 5 after SAH and continue to day 10. The primary outcome measure is changes in regional cerebral blood flow from baseline in the arterial territories of the anterior cerebral artery, medial cerebral artery and the posterior cerebral artery, measured by CT perfusion scan. The secondary outcomes will be vasospasm measured by CT angiography, ischaemic parameters measured by brain microdialysis, flow velocities in the medial cerebral artery, clinical parameters and outcome (Glasgow Outcome Scale) at 3?months.

Trial registration

Clinicaltrials.gov NCT01447095.  相似文献   

20.
The decreased local cerebral blood flow (LCBF) and cerebral ischemia that occur after subarachnoid hemorrhage (SAH) may be caused by acute and/or delayed vasospasm. In 36 Sprague-Dawley (350-450 g) rats SAH was induced by transclival puncture of the basilar artery. Mean arterial blood pressure (MABP), LCBF, intracranial pressure (ICP), and cerebral perfusion pressure (CPP) were measured in all rats for 30 min before and 60 min after SAH was induced. One set of control (n : 7) and experimental animals (n : 7) was sacrificed after the 60 min of initial post-hemorrhage measurements were recorded. Four days after SAH induction, LCBF and MABP were measured again for 60 min in subgroups of surviving experimental rats (n : 7) and control rats (n : 7). Histopathologic and morphologic examinations of the basilar artery were performed in each subgroup. There was a sharp drop in LCBF just after SAH was induced (55.50 +/- 11.46 mlLD/min/100 g and 16.1 +/- 3.6 mlLD/min/100 g for baseline and post-SAH, respectively; p < 0.001). The flow then gradually increased but had not returned to pre-SAH values by 60 min (p < 0.05). At 4 days after SAH induction, although LCBF was lower than that observed in the control group and pre-SAH values, it was not significantly different from either of these flow rates (p > 0.05). ICP (baseline 7.05 +/- 0.4 mmHg) increased acutely to 75.2 +/- 7.1 mmHg, but returned to normal levels by 60 min after SAH. CPP (baseline 84.5 +/- 6.3 mmHg) dropped accordingly (to 18.6 +/- 3.1 mmHg), and then increased, reaching 72.2 +/- 4.9 mmHg at 60 min after SAH (p > 0.05). Examinations of the arteries revealed decreased inner luminal diameter and distortion of the elastica layer in the early stage. LCBF in nonsurviver rats (n : 8) was lower than that in the animals that survived (p < 0.01). At 4 days post-hemorrhage, the rats' basilar arteries showed marked vasculopathy. The findings showed that acute SAH alters LCBF, ICP, and CPP, and that decreased LCBF affects mortality rate. Subsequent vasculopathy occurs in delayed fashion, and this was observed at 4 days after the hemorrhage event.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号