首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The present paper analyzes the use and understanding of the homology concept across different biological disciplines. It is argued that in its history, the homology concept underwent a sort of adaptive radiation. Once it migrated from comparative anatomy into new biological fields, the homology concept changed in accordance with the theoretical aims and interests of these disciplines. The paper gives a case study of the theoretical role that homology plays in comparative and evolutionary biology, in molecular biology, and in evolutionary developmental biology. It is shown that the concept or variant of homology preferred by a particular biological field is used to bring about items of biological knowledge that are characteristic for this field. A particular branch of biology uses its homology concept to pursue its specific theoretical goals.  相似文献   

3.
We present here an outline of the lectures and laboratory exercises for undergraduate developmental biology students at the University of Tokyo. The main aim of our course is to help students fill the gap between natural history, classical embryology and molecular developmental biology. To achieve this aim, we take up various topics in the lectures, from fertilization and early development to developmental engineering. Our laboratory exercises begin with an introduction to the natural history of the organism. The entire class and the instructors collect newts in the field and discuss features of their mating behavior and so on. In the laboratory, students are absorbed by exercises such as a lampbrush chromosome preparation and an in vitro beating heart induction. After that, students choose their own research projects for which they will employ both classical embryological and modern molecular biological techniques. At the end of our course, the connectivity principle from field to gel blot will be part of the students' understanding.  相似文献   

4.
Accounting for the evolutionary origins of morphological novelty is one of the core challenges of contemporary evolutionary biology. A successful explanatory framework requires the integration of different biological disciplines, but the relationships between developmental biology and standard evolutionary biology remain contested. There is also disagreement about how to define the concept of evolutionary novelty. These issues were the subjects of a workshop held in November 2009 at the University of Alberta. We report on the discussion and results of this workshop, addressing questions about (i) how to define evolutionary novelty and understand its significance, (ii) how to interpret evolutionary developmental biology as a synthesis and its relation to neo-Darwinian evolutionary theory, and (iii) how to integrate disparate biological approaches in general.  相似文献   

5.
In this article, we inquire into the intellectual history ofthe application of the biological concept of metabolism to social systems-not as a metaphor; but as a material and energetic process within the economy and society vis-A-vis various natural systems. The paper reviews several scientific traditions that may contribute to such a view, including biology and ecology, social theory, cultural anthropology, and social geography It assembles widely scattered approaches dating from the 1860s onward and shows how they prepare the ground for the pioneers of "industrial metabolism" in the late 1960s. In connection to varying political perspedives, metabolism gradually takes shape as a powerful interdisciplinary concept It will take another 25 years before this approach becomes one of the most important paradigms for the empirical analysis of the society-nature-interaction across various disciplines. This later period will be the subject of part II of this literature review  相似文献   

6.
Summary After the disappearance of organism was diagnosed, the discussion about the role of a theory of organism in biology is characterised by a significant contradiction. On the one hand, the importance of a theory of organism is stated. Particularly developmental biology demands organism-centred approaches as a basis for conceptual integration. On the other hand, several modern biological disciplines such as genetics and molecular biology simply don’t need a theory of organism for their work. Consequently, the determination of the status of the organism and its relevance for biology at all is an unsolved problem. In order to clarify the methodological status of the organism in biology we start with the reconstruction of three important propositions. A life oriented approach and a hierarchy concept - which both are from a neo-Darwinian origin - are confronted with a structuralist approach of organism, that can be characterised as a non-Darwinist approach. Our own attempt for the solution of the organism problem applies the tools of culturalist methodology. In accordance to this pragmatic approach, the term organism is introduced as a concept of notion. A constructional morphological case study exemplifies the applicability of this concept. From the culturalist point of view a methodological foundation of biology can be achieved, that provides a consistent basis for a comprehensive integration of biological knowledge.  相似文献   

7.
Twenty-one biology teachers from a variety of disciplines (genetics, ecology, physiology, biochemistry, etc.) met at the University of Colorado to begin discussions about approaches to assessing students' conceptual understanding of biology. We considered what is meant by a "concept" in biology, what the important biological concepts might be, and how to go about developing assessment items about these concepts. We also began the task of creating a community of biologists interested in facilitating meaningful learning in biology. Input from the physiology education community is essential in the process of developing conceptual assessments for physiology.  相似文献   

8.
An appreciation of the potential applications of molecular biology is of growing importance in many areas of life sciences, including marine biology. During the past two decades, the development of sophisticated molecular technologies and instruments for biomedical research has resulted in significant advances in the biological sciences. However, the value of molecular techniques for addressing problems in marine biology has only recently begun to be cherished. It has been proven that the exploitation of molecular biological techniques will allow difficult research questions about marine organisms and ocean processes to be addressed. Marine molecular biology is a discipline, which strives to define and solve the problems regarding the sustainable exploration of marine life for human health and welfare, through the cooperation between scientists working in marine biology, molecular biology, microbiology and chemistry disciplines. Several success stories of the applications of molecular techniques in the field of marine biology are guiding further research in this area. In this review different molecular techniques are discussed, which have application in marine microbiology, marine invertebrate biology, marine ecology, marine natural products, material sciences, fisheries, conservation and bio-invasion etc. In summary, if marine biologists and molecular biologists continue to work towards strong partnership during the next decade and recognize intellectual and technological advantages and benefits of such partnership, an exciting new frontier of marine molecular biology will emerge in the future.  相似文献   

9.
Biodiversity is a key concept in the biological sciences. While it has its origin in conservation biology, it has become useful across multiple biological disciplines as a means to describe biological variation. It remains, however, unclear what particular biological units the concept refers to. There are currently multiple accounts of which biological features constitute biodiversity and how these are to be measured. In this paper, I draw from the species concept debate to argue for a set of desiderata for the concept of “biodiversity” that is both principled and coheres with the concept’s use. Given these desiderata, this concept should be understood as referring to difference quantified in terms of the phylogenetic structure of lineages, also known as the ‘tree of life’.  相似文献   

10.
In this review, we summarize the successful interplay between three disciplines, organic synthesis, biophysics and cell biology, in the study of protein lipidation and its relevance to targeting of proteins to the plasma membrane of cells in molecular detail. Highlighting the example of the Ras proteins, we show how the development of new synthetic methodologies paved the road to the synthesis of lipidated peptides and--by a combination of chemical and molecular biological techniques--lipidated proteins as molecular tools. We further give an overview of the results of the biophysical properties and biological activities of the molecules synthesized by means of this interdisciplinary approach. This successful combination of different disciplines led to a better understanding of the selective targeting of Ras and related lipoproteins to the plasma membrane.  相似文献   

11.
Computational biology, a term coined from analogy to the role of computing in the physical sciences, is now coming into its own as a major element of contemporary biological and biomedical research. Information science and computational science provide essential tools for next generation biological science efforts, from focusing the direction of experimental studies to providing knowledge and insight that can not otherwise be obtained. Going beyond the revolution in biology reflected in the successes of the genome project and driven by the power of molecular biology techniques, computational approaches will provide an underpinning for the integration of broad disciplines for development of a quantitative systems approach to understanding the mechanisms in the life of the cell.  相似文献   

12.
Biology is now entering the new era of systems biology and exerting a growing influence on the future development of various disciplines within life sciences. In early classical and molecular periods of Biology, the theoretical frames of classical and molecular quantitative genetics have been systematically established, respectively. With the new advent of systems biology, there is occurring a paradigm shift in the field of quantitative genetics. Where and how the quantitative genetics would develop after having undergone its classical and molecular periods? This is a difficult question to answer exactly. In this perspective article, the major effort was made to discuss the possible development of quantitative genetics in the systems biology era, and for which there is a high potentiality to develop towards "systems quantitative genetics". In our opinion, the systems quantitative genetics can be defined as a new discipline to address the generalized genetic laws of bioalleles controlling the heritable phenotypes of complex traits following a new dynamic network model. Other issues from quantitative genetic perspective relating to the genetical genomics, the updates of network model, and the future research prospects were also discussed.  相似文献   

13.
A firm grasp of evolution is invaluable for understanding our own species in addition to the rest of the biological world; however, not only does much of the American public reject evolution, but many thinkers within the scientific community resist its application to their own disciplines. In an attempt to overcome these challenges through education, the Evolutionary Studies (EvoS) program at Binghamton University (B.U.) strives to present evolution as a theory relevant to all human-related subjects. Here, we present the cornerstone of this program, “Evolution for Everyone,” an introductory-level, general education course with an academically diverse student population. The curriculum delves into Darwin’s theory and uses it to illustrate not only classical biology but how the same ideas pertain to the full range of human-related disciplines. This material is framed in terms of scientific inquiry, including direct participation in research. An evaluation of the course has demonstrated that it increases both understanding and acceptance of evolution and its relevance to human-related academic disciplines and everyday life. The EvoS program has received National Science Foundation funding to expand into a nationwide consortium, providing a strong infrastructure for the development of similar courses at other institutions.  相似文献   

14.
Structural biology has advanced our understanding of membrane proteins like no other scientific discipline in the past two decades and the number of high resolution membrane transporter structures solved by X-ray crystallography has increased exponentially over this time period. Currently, single particle cryo-EM is in full swing due to a recent resolution revolution and permits for structural insights of proteins that were refractory to crystallization. It is foreseeable that multiple structures of many human transporters will be solved in the coming five years. Nevertheless, many scientifically important questions remain unanswered despite of available structures, as is illustrated in this article at the example of multidrug efflux pumps and ABC transporters. Structure-function studies likely continue to be a supporting pillar of membrane transporter research. However, there is a trend towards the “integrated structural biologist”, whose research focusses on a biological question and who closely collaborates with other research groups specialized in spectroscopy techniques or molecular dynamics simulation. Future membrane protein research requires joint efforts from specialists of various disciplines to finally work towards a molecular understanding of membrane transport in the context of the living cell. This article is part of a Special Issue entitled: Beyond the Structure-Function Horizon of Membrane Proteins edited by Ute Hellmich, Rupak Doshi and Benjamin McIlwain  相似文献   

15.
As a biological discipline, zoology has one of the longest histories. Today it occasionally appears as though, due to the rapid expansion of life sciences, zoology has been replaced by more or less independent sub-disciplines amongst which exchange is often sparse. However, the recent advance of molecular methodology into "classical" fields of biology, and the development of theories that can explain phenomena on different levels of organisation, has led to a re-integration of zoological disciplines promoting a broader than usual approach to zoological questions. Zoology has re-emerged as an integrative discipline encompassing the most diverse aspects of animal life, from the level of the gene to the level of the ecosystem.The new journal Frontiers in Zoology is the first Open Access journal focussing on zoology as a whole. It aims to represent and re-unite the various disciplines that look at animal life from different perspectives and at providing the basis for a comprehensive understanding of zoological phenomena on all levels of analysis. Frontiers in Zoology provides a unique opportunity to publish high quality research and reviews on zoological issues that will be internationally accessible to any reader at no cost.  相似文献   

16.
Today’s cell biology could be considered a fusion of disciplines that blends advanced genetics, molecular biology, biochemistry, and engineering to answer fundamental as well as medically relevant scientific questions. Accordingly, our understanding of diseases is greatly aided by an existing vast knowledge base of fundamental cell biology. Gunter Blobel captured this concept when he said, “the tremendous acquisition of basic knowledge will allow a much more rational treatment of cancer, viral infection, degenerative disease and mental disease.” In other words, without cell biology can we truly understand, prevent, or effectively treat a disease?

R. M. Perera  相似文献   

17.
新一代植物志:iFlora   总被引:2,自引:0,他引:2  
进入21世纪,随着分子生物学及计算机信息等技术的快速发展,人们认知自然的手段和方式发生了根本性的变化。在现有电子植物志(eFlora)的基础上,融入新一代测序技术、DNA条形码数据、地理信息数据和计算机信息技术等新元素的新一代植物志(iFlora)应运而生。iFlora是通过系列关键技术的集成和攻关,构建便捷、准确识别植物和掌握相关数字化信息的新一代植物志(或智能装备),它将极大地促进植物分类学和系统发育、演化生物学、生态学、生物地理学和保护生物学等相关学科的发展,有效地服务于生物多样性保护和生物资源可持续利用、国家生态安全和社会公共教育等,并进一步提升公众对生物多样性的认识。iFlora的实施,将为培育和拓展物种识别圈(taxasphere)和生物文化圈(bioliterate world)做出应有的贡献,并可能成为引领国际植物学发展新的生长点。  相似文献   

18.
The 21st century has witnessed a rapid development in technologies of molecular biology and computer informatics. Fundamental changes have taken place in means and methods in which humans take cognition of the world. Based on the currently available eFlora and combining this with elements of next generation sequencing techniques, DNA sequence data, geographical information system data and computer information technology, the next-generation Flora (iFlora) is bursting. Through a series of key technological innovations and integrations, the main objective of iFlora is to construct the next-generation Flora, which will fulfill the function of accurately and rapidly identifying species and acquiring species related digital information. iFlora will greatly advance the development of plant taxonomy, phylogenetics, evolutionary biology, ecology, biogeography, conservation biology and other related disciplines. Furthermore, iFlora will be a valuable tool for biodiversity conservation and sustainable utilization of biological resources, ecological security, public education and services, and will profoundly promote public understanding of biodiversity. The application of iFlora will tremendously nurture and boost the taxasphere and bioliterate world, and will be a new focal point that may reshape modern botany at the global and regional levels.  相似文献   

19.
The integration of pathology with molecular biology is vital if we are to enhance the translational value of cancer research. Pathology represents a bridge between medicine and basic biology, it remains the gold standard for cancer diagnosis, and it plays an important role in discovery studies. In the past, pathology and cancer research were closely associated; however, the molecular biology revolution has shifted the focus of investigators toward the molecular alterations of tumors. The reductionist approach taken in molecular studies is producing great insight into the inner workings of neoplasia, but it can also minimize the importance of histopathology and of understanding the disease as a whole. In turn, pathologists can underestimate the role of molecular studies in developing new ancillary techniques for clinical diagnosis. A multidisciplinary approach that integrates pathology and molecular biology within a translational research system is needed. This process will require overcoming cultural barriers and can be achieved through education, a more effective incorporation of pathology into biological research, and conversely an integration of biological research into the pathology laboratory.  相似文献   

20.
An agent-based perspective in the study of complex systems is well established in diverse disciplines, yet is only beginning to be applied to evolutionary developmental biology. In this essay, we begin by defining agency and associated terminology formally. We then explore the assumptions and predictions of an agency perspective, apply these to select processes and key concept areas relevant to practitioners of evolutionary developmental biology, and consider the potential epistemic roles that an agency perspective might play in evo devo. Throughout, we discuss evidence supportive of agential dynamics in biological systems relevant to evo devo and explore where agency thinking may enrich the explanatory reach of research efforts in evolutionary developmental biology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号