首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
传递细胞广泛存在于植物界的各种群。传递细胞的分化主要与器官的发育程度以及转运物质的供应有关。当植物某个部位所需的运输速率远高于溶质正常跨膜运输速率时,在此部位就可能有传递细胞。传递细胞最基本的特征是细胞壁向内突起生长(壁内突)并与质膜共同形成壁膜器。壁内突从形态上可划分为2种类型:网状内突和肋状内突。大多数传递细胞壁内突的发育在沿着溶质流动的方向表现出极性。传递细胞的胞质一般比周围薄壁组织细胞浓,胞内富含线粒体和内膜分泌系统细胞器如内质网、高尔基体、小囊泡等。传递细胞在物质的短途运输中起作用。玉米胚乳传递细胞可能还具有防御病原微生物进入胚乳和胚的功能。本文就传递细胞的种类和特性、结构和功能、形成机制和诱导因素,以及基因表达调控等方面的研究进展做介绍。  相似文献   

2.
汁胞粒化是柑橘类果实一类普遍的生理失调病害,主要表现为汁胞硬度增加,果实品质降低。为了明确汁胞粒化过程其他果实组织的生理代谢特征,该试验以成熟‘琯溪蜜柚’果实为材料,室温贮藏60 d,测定不同贮藏阶段果实背面维管束汁胞、侧面维管束汁胞、囊衣和果皮总细胞壁物质含量,以及两类汁胞可溶性固形物含量,同时利用透射电子显微镜观察果实背面维管束和侧面维管束细胞超微结构的动态变化。结果显示:(1)贮藏10 d时两类果实维管束的筛管和伴胞次生细胞壁开始明显加厚,韧皮部薄壁细胞线粒体和囊泡数量开始增多,而且次生细胞壁也开始明显加厚;贮藏20 d时两类维管束韧皮部薄壁细胞线粒体和囊泡数量持续增加,而且高尔基体出现(之后消失),同时囊衣和果皮总细胞壁物质含量开始显著提高;贮藏40 d时仅侧面维管束韧皮部薄壁细胞线粒体数量持续增多,侧面维管束汁胞总细胞壁物质含量开始显著升高;贮藏60 d时两类果实维管束次生细胞壁持续加厚,囊衣、果皮和侧面维管束汁胞总细胞壁物质含量均持续显著升高,然而至贮藏期结束背面维管束汁胞总细胞壁物质含量始终无显著变化。(2)贮藏期内囊衣总细胞壁物质含量始终显著高于果皮,而果皮总细胞壁物质含量始终显著高于两类汁胞;贮藏后期侧面维管束汁胞总细胞壁物质含量显著高于背面维管束汁胞。(3)在果实贮藏过程中背面维管束汁胞可溶性固形物含量始终无显著变化,而侧面维管束汁胞可溶性固形物含量从贮藏40 d至贮藏期结束持续显著降低。研究表明,贮藏期柚果实维管束、囊衣和果皮中细胞壁物质代谢的变化早于汁胞;发现果实维管束韧皮部薄壁细胞内线粒体数量增加的同时维管束次生细胞壁明显加厚,在整个贮藏期内侧面维管束汁胞可溶性固形物含量的显著降低伴随着总细胞壁物质含量的显著升高。这些结果可能有助于柑橘类果实粒化机理的全面揭示。  相似文献   

3.
蚕豆叶片细胞中IAA的胶体金免疫电镜定位   总被引:6,自引:0,他引:6  
利用胶体金免疫电镜技术对蚕豆(Vicia faba L.)叶片细胞中的IAA定位进行了研究。幼嫩叶片的叶肉细胞中金颗粒主要分布在细胞核和叶绿体中,细胞质及细胞壁也有金颗粒标记。成熟叶片的叶肉细胞中金颗粒主要分布在叶绿体和细胞质,细胞壁也有少量金颗粒标记,液泡中没有发现金颗粒标记。成熟叶片小叶脉的韧皮细胞发现有大量的金颗粒标记,金颗粒主要标记在传递细胞的细胞壁中。小叶脉的维管束鞘细胞中也有很多的金颗粒标记,金颗粒主要分布在叶绿体、细胞质及细胞壁中。幼嫩叶片组织不进行IAA的固定或用正常兔IgG代替IAA抗体染色的对照,很难发现金颗粒标记。对IAA在组织及亚细胞中的定位及其生理意义进行了讨论。  相似文献   

4.
许多年前就发现植物体内有些细胞的胞壁可以向内生长侵入细胞质,形成瘤状突起。由于细胞壁频繁地内突,质膜也就随之反复凹陷和转折,其表面积显著增加,从而大大地提高了它对溶质吸收或分泌的效率。这种细胞叫做转移细胞(或传递细胞,图1,2)。它们在物质的短途运输中,特别是在维管束输导细胞的物质装卸中起着重要的作用。实际上,转移细胞并不是一种新  相似文献   

5.
对7种豆科植物接种根瘤菌后根部的形态和内部结构进行了研究.结果表明:根瘤菌可诱发根瘤形成部位根段的根毛增生、形变和根外层传递细胞的发育.根外层传递细胞发生在根毛伸长形变时期,一直可持续到根瘤形成,传递细胞壁内突发育过程是先由根表皮细胞外切向壁一侧细胞质膜向细胞质内陷形成囊状壁傍体,次生细胞壁物质在初生壁上沉积并逐渐充满囊状体,最终形成传递细胞典型的壁内突结构.根瘤形成过程中根外层传递细胞的诱发与培养方式(水培、固培)没有直接关系.在不接菌的对照苗的根段内未发现壁内突结构,研究证明豆科植物根外层传递细胞的形成是由根瘤菌诱导所致.  相似文献   

6.
被子植物生殖器官中的传递细胞   总被引:1,自引:0,他引:1  
传递细胞(transfercell)是一类特殊的薄壁细胞,其特征是细胞壁向内突起生长,形成壁内突的结构,质膜紧贴细胞壁生长,从而使质膜的表面积大大增加,扩大了原生质体表面积与体积之比,有利于细胞吸收和分泌某些物质,在细胞物质的短途运输中起重要作用。超微结构研究表明,传递细胞的细胞核较大,细胞质浓,并富含线粒体、高尔基体等细胞器。传递细胞在被子植物生殖器官中普遍存在,对于这些器官完成其功能起到重要作用。下面简单介绍生殖器官各结构中存在的传递细胞及其功能。1 花柱的通道细胞开放型花柱具有花柱道,花柱…  相似文献   

7.
朱澂  胡适宜 《植物学报》1999,16(Z1):35-41
 本文介绍了植物传递细胞的基本概念。记录了高等植物生殖系统中所发现的传递细胞不同的分布位置,并以苔藓植物的胎座、小孢子及花粉、花柱道和柱头的引导组织、胚襄、胚柄和胚乳、种皮和子叶中的传递细胞为例,说明了这些传递细胞与溶解物质短途运输的关系。最后提出了植物传递细胞研究的进展,包括实验方法,新概念和有关质膜运输的基因表达等方面。  相似文献   

8.
应用透射电镜技术研究了宁夏枸杞果实韧皮部细胞的超微结构变化。结果表明:(1)随着枸杞果实的发育成熟,果实维管组织中的韧皮部筛分子筛域逐渐变宽,筛孔大而多,通过筛孔的物质运输十分活跃;筛分子和伴胞间有胞间连丝联系,伴胞属传递细胞类型,与其相邻韧皮薄壁细胞和果肉薄壁细胞连接处的细胞界面发生质膜内突,整个筛分子/伴胞复合体与韧皮薄壁细胞之间形成共质体隔离,韧皮部糖分的卸载方式主要以质外体途径进行。(2)韧皮薄壁细胞间的胞间连丝较多,而韧皮薄壁细胞与果肉薄壁细胞的胞间连丝相对较少,但果肉薄壁细胞间几乎无胞间连丝;果肉薄壁细胞之间胞间隙较大,细胞壁和质膜内突间形成较大的质外体空间,为质外体的糖分运输创造了条件。(3)筛管、伴胞、韧皮薄壁细胞和果肉薄壁细胞中丰富的囊泡以及活跃的囊泡运输现象,暗示囊泡也参与了果实糖分的运输过程。研究推测,枸杞果实韧皮部同化物的卸载方式以及卸载后的同化物运输主要以质外体途径为主。  相似文献   

9.
利用透射电镜技术研究了生长在海南岛的热带落叶树降香黄檀(Dalbegia odorifera T.Chen)1—2年生枝条着叶期和无叶期次生韧皮部筛分子的超微结构,并就这两个时期的筛分子进行了比较。着叶期每个成熟筛分子内有一个带尾的纺锤形P-蛋白质体,主体由稠密而散乱的P-蛋白质细纤维组成,尾部呈结晶状;筛分子具有横向端壁和单筛板,在邻近筛板处,细胞壁向筛分子腔内形成明显的突起。无叶期仍然保持着与着叶期大致相同厚度的有功能韧皮部,筛分子具有正常的原生质体,P-蛋白质和筛板孔的结构也与着叶期的相同,但筛分子内有较多的淀粉粒和囊泡。  相似文献   

10.
芡实种子萌发期,子叶吸收外胚乳中养分供萌发和幼苗发育,具有吸器的功能。在种子萌发过程中,子叶的部分表皮细胞发育为传递细胞。其壁内突的生长以外切向壁为多,形成壁内突的造壁物质主要由高尔基体合成,并由其溢出的囊泡运送的。  相似文献   

11.
Summary The structure of the phloem was studied in stem and leaf ofArtemisia afra Jacq., with particular attention being given to the sieve element walls. Both primary and secondary sieve elements of stem and midvein have nacreous walls, which persist in mature cells. Histochemical tests indicated that the sieve element wall layers contained some pectin. Sieve element wall layers lack lignin. Sieve elements of the minor veins (secondary and tertiary veins) lack nacreous thickening, although their walls may be relatively thick. These walls and those of contiguous transfer cells are rich in pectic substances. Transfer cell wall ingrowths are more highly developed in tertiary than in secondary veins.  相似文献   

12.
K. J. Oparka  P. Gates 《Planta》1981,151(6):561-573
Assimilates entering the developing rice caryopsis traverse a short-distance pathway between the terminal sieve elements of the pericarp vascular bundle and the aleurone layer. The ultrastructure of this pathway has been studied. Sieve elements in the pericarp vascular bundle are smaller than their companion cells.The sieve elements show few connections with surrounding vascular parenchyma elements but are connected to companion cells by compound plasmodesmata. Companion cells, in turn, are connected to vascular parenchyma elements by numerous compound plasmodesmata present in wall thickenings. Assimilates leaving the sieve element — companion cell complex must laterally traverse cells of the pigment strand before they come into contact with the aleurone layer. The pigment strand cells have modified inner walls made up of a suberin-like material. This material may act as a permeability barrier isolating the apoplast from the symplast of the pigment strand. The walls of the pigment strand cells are traversed by numerous plasmodesmata. Water may be conducted to the endosperm through the isolated cell-wall system of the pigment strand while assimilates possibly move via plasmodesmata. High frequencies of plasmodesmata occur at the junction between the pigment strand and the nucellus and also between adjacent cells of the nucellus. By contrast, plasmodesmata are absent between the nucellus and the aleurone layer and also between the nucellus and the seed coat. A predominantly circumferential and symplastic transport pathway is likely between the pigment strand and nucellus. In view of the total absence of plasmodesmata between the nucellus and the aleurone layer assimilates entering the endosperm may have to cross the plasmalemma of the nucellus. It is possible that constraints to the flow of assimilates may occur in the short-distance pathway between the terminal sieve element — companion cell complexes and the endosperm, and this is discussed.  相似文献   

13.
Sieve element plasma membranes reveal a unique distribution of intramembrane particles (IMPs) in tissue cultures fixed and cyroprotected prior to freeze-fracturing. Sieve element IMPs are smaller than those found in the plasma membranes of callus parenchyma cells from these same cultures. The PF/EF ratio of plasma membrane IMPs is 9.6 for parenchyma cells and 1.21 for sieve elements. The increased binding of IMPs to the sieve element E face may be related to the role of membrane proteins in the loading of sucrose and other molecules by these cells. The enlargement of the cell wall at the site of sieve area pores creates complementary ridges and depressions in the E and P fracture faces of sieve element plasma membranes. No alteration of IMP density is seen at the sieve area pore site.  相似文献   

14.
通过向蚕豆叶片饲喂~(14)CO_2,应用液闪和显微放射性自显影技术表明标记同化物经叶脉和果荚韧皮部筛管快速运输至蚕豆种皮。种皮吸收营养、生长,后期逐步降解、供养子叶。种皮内的两类维管束系统同时输送营养并卸出到种皮内侧的质外体空间里。种皮里的反向维管束韧皮部卸出以共质体方式为主。并提供养分供种皮生长,而大部分的同化物由正向完整维管束韧皮部的筛分子一传递细胞进行质外体方式卸出。膨大中的子叶在早期即已成为生理上十分活跃的库。它对标记同化物的摄入随时间进程而急剧上升。  相似文献   

15.
R. F. Evert  W. Eschrich  W. Heyser 《Planta》1978,138(3):279-294
Small and intermediate (longitudinal) vascular bundles of the Zea mays leaf are surrounded by chlorenchymatous bundle sheaths and consist of one or two vessels, variable numbers of vascular parenchyma cells, and two or more sieve tubes some of which are associated with companion cells. Sieve tubes not associated with companion cells have relatively thick walls and commonly are in direct contact with the vessels. The thick-walled sieve tubes have abundant cytoplasmic connections with contiguous vascular parenchyma cells; in contrast, connections between vascular parenchyma cells and thin-walled sieve tubes are rare. Connections are abundant, however, between the thin-walled sieve tubes and their companion cells; the latter have few connections with the vascular parenchyma cells. Plasmolytic studies on leaves of plants taken directly from lighted growth chambers gave osmotic potential values of about-18 bars for the companion cells and thin-walled sieve tubes (the companion cell-sieve tube complexes) and about-11 bars for the vascular parenchyma cells. Judging from the distribution of connections between various cell types of the vascular bundles and from the osmotic potential values of those cell types, it appears that sugar is actively accumulated from the apoplast by the companion cell-sieve tube complex, probably across the plasmalemma of the companion cell. The thick-walled sieve tubes, with their close spatial association with the vessels and possession of plasmalemma tubules, may play a role in retrieval of solutes entering the leaf apoplast in the transpiration stream. The transverse veins have chlorenchymatous bundle sheaths and commonly contain a single vessel and sieve tube. Parenchymatic elements may or may not be present. Like the thick-walled sieve tubes of the longitudinal bundles, the sieve tubes of the transverse veins have plasmalemma tubules, indicating that they too may play a role in retrieval of solutes entering the leaf apoplast in the transpiration stream.  相似文献   

16.
We investigated the phloem loading pathway in barley, by determining plasmodesmatal frequencies at the electron microscope level for both intermediate and small blade bundles of mature barley leaves. Lucifer yellow was injected intercellularly into bundle sheath, vascular parenchyma, and thin-walled sieve tubes. Passage of this symplastically transported dye was monitored with an epifluorescence microscope under blue light. Low plasmodesmatal frequencies endarch to the bundle sheath cells are relatively low for most interfaces terminating at the thin- and thick-walled sieve tubes within this C3 species. Lack of connections between vascular parenchyma and sieve tubes, and low frequencies (0.5% plasmodesmata per μm cell wall interface) of connections between vascular parenchyma and companion cells, as well as the very low frequency of pore-plasmodesmatal connections between companion cells and sieve tubes in small bundles (0.2% plasmodesmata per μm cell wall interface), suggest that the companion cell-sieve tube complex is symplastically isolated from other vascular parenchyma cells in small bundles. The degree of cellular connectivity and the potential isolation of the companion cell-sieve tube complex was determined electrophysiologically, using an electrometer coupled to microcapillary electrodes. The less negative cell potential (average –52 mV) from mesophyll to the vascular parenchyma cells contrasted sharply with the more negative potential (–122.5 mV) recorded for the companion cell-thin-walled sieve tube complex. Although intercellular injection of lucifer yellow clearly demonstrated rapid (0.75 μm s-1) longitudinal and radial transport in the bundle sheath-vascular parenchyma complex, as well as from the bundle sheath through transverse veins to adjacent longitudinal veins, we were neither able to detect nor present unequivocal evidence in support of the symplastic connectivity of the sieve tubes to the vascular parenchyma. Injection of the companion cell-sieve tube complex, did not demonstrate backward connectivity to the bundle sheath. We conclude that the low plasmodesmatal frequencies, coupled with a two-domain electropotential zonation configuration, and the negative transport experiments using lucifer yellow, precludes symplastic phloem loading in barley leaves.  相似文献   

17.
Sieve tube elements occur in the rhizomes and petioles of Marsileaquadrifolia. These are either thick walled with compound sieveplates in oblique end walls or thin walled with simple sieveplates in transverse end walls. Vessels are restricted to themetaxylem in the roots where the phloem contains sieve cellsonly. The sieve pores are invariably callose lined and as inother pteridophytes, excepting the Lycopsida, refractive spherulesare ubiquitous in the sieve elements of Marsilea. The luminaof the protoxylem tracheary elements in the rhizomes and petiolesare occluded by tyloses but probably remain functional in theroots. Pericycle cells backing on to the root protoxylem armspossess wall ingrowths. Transfer cells are however absent fromthe vascular tissue of the rhizomes and leaves. It is suggestedthat their presence in the root pericycle is related to theretrieval of ions from the xylem sap which may be particularlycritical in water plants. The incidence of transfer cells incryptogams appears to be far more sporadic than in angiosperms.The root endodermis of Marsilea possesses a casparian stripand abundant vacuolar tannin deposits. Plasmalemmasomes arenumerous adjacent to the pericycle transfer cells. vascular ultrastructure, Marsilea quadrifolia L, transfer cells, sieve tube elements, tyloses  相似文献   

18.
Vascular development is a central theme in plant science. However, little is known about the mechanism of vascular development in monocotyledons (compared with dicotyledons). Therefore, we investigated sequential processes of differentiation into various different vascular cells by carrying out detailed observations using serial sections of the bases of developing leaves of rice and maize. The developmental process of the longitudinal vascular bundles was divided into six stages in rice and five stages in maize. The initiation of differentiation into procambial progenitor cells forming the commissural vein arose in a circular layer cell that was adjacent to both a metaxylem vessel and one or a few phloem cells in stage V longitudinal vascular bundles. In most cases the differentiation of ground meristem cells into procambial progenitor cells extended in one direction, toward the next longitudinal vascular bundle, and subsequent periclinal divisions and further differentiation produced a vessel element, two companion cells and a sieve element to form a commissural vein. These results suggest the presence of an intercellular signal(s) that induces differentiation of the circular layer cell and the ground meristem cells into procambial progenitor cells, forming a commissural vein sequentially.  相似文献   

19.
Vascular bundles and contiguous tissues of leaf blades of sugarcane (Saccharum interspecific hybrid L62–96) were examined with light and transmission electron microscopes to determine their cellular composition and the frequency of plasmodesmata between the various cell combinations. The large vascular bundles typically are surrounded by two bundle sheaths, an outer chlorenchymatous bundle sheath and an inner mestome sheath. In addition to a chlorenchymatous bundle sheath, a partial mestome sheath borders the phloem of the intermediate vascular bundles, and at least some mestome-sheath cells border the phloem of the small vascular bundles. Both the walls of the chlorenchymatous bundlesheath cells and of the mestome-sheath cells possess suberin lamellae. The phloem of all small and intermediate vascular bundles contains both thick- and thin-walled sieve tubes. Only the thin-walled sieve tubes have companion cells, with which they are united symplastically by pore-plasmodesmata connections. Plasmodesmata are abundant at the Kranz mesophyll-cell-bundlesheath-cell interface associated with all sized bundles. Plasmodesmata are also abundant at the bundle-sheathcell-vascular-parenchyma-cell, vascular-parenchyma-cellvascular-parenchyma-cell, and mestome-sheath-cell-vascular-parenchyma-cell interfaces in small and intermediate bundles. The thin-walled sieve tubes and companion cells of the large vascular bundles are symplastically isolated from all other cell types of the leaf. The same condition is essentially present in the sieve-tube-companion-cell complexes of the small and intermediate vascular bundles. Although few plasmodesmata connect either the thin-walled sieve tubes or their companion cells to the mestome sheath of small and intermediate bundles, plasmodesmata are somewhat more numerous between the companion cells and vascular-parenchyma cells. The thick-walled sieve tubes are united with vascular-parenchyma cells by pore-plasmodesmata connections. The vascular-parenchyma cells, in turn, have numerous plasmodesmatal connections with the bundle-sheath cells.This study was supported by National Science Foundation grants DCB 87-01116 and DCB 90-01759 to R.F.E. and a University of Wisconsin-Madison Dean's Fellowship to K. R.-B. We also thank Claudia Lipke and Kandis Elliot for photographic and artistic assistance, respectively.  相似文献   

20.
The vascular transfer cells in garlic scape havebeen examined with electron microscope. Their structure, distributive feature and adenosine triphosphatase (ATPase) activity are studied. The mature vascular transfer cells exhibit the characteristic cell wall ingrowths. The cell contents include a large nucleus, dense cytoplasm and various normal organelles. It is notable that there are numerous mitochondria with well developed, cristae. Plasmodesmata are extensively present in the wall, and transfer cells are connected to adjacent cells by them. The senescing transfer cells become more vacuolated and have a large central vacuole and dense parietal cytoplasm. Their wall ingrowths seem to degenerate and finally disappear. The transfer cells show a particular pattern of distribution in the vascular bundle of the garlic scape. Some of them are present between the vessels of xylem and the sieve tubes of phloem. However, more abundant cell wall ingrowths occur on those walls which abut on, or are close to the vessel of xylem. The other transfer cells are located between the sieve tubes and parenehyma cells. The phloem transfer cell which is adjacent to sieve tube has developed from companion cell. All the transfer cells are mainly concerned with the loading and unloading of sieve tubes. And they may play an important role in facilitating intensive material transfer between two independent systems (i.e. the vessels and sieve tubes, the symplast and apoplast). The results of the cytochemical localization of ATPase using a lead precipitation technique exhibit strong enzyme activity on the plasmalemma of the transfer cells. It is suggested that the transfer cells are especially active in solute movement through them to which cellular energy metabolism coupled.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号