首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Regulation of the immunoglobulin gene transcription   总被引:2,自引:0,他引:2  
  相似文献   

2.
3.
4.
5.
6.
Cytochromes P450 beta NF-A, beta NF-B, and beta NF-C were purified from beta-naphthoflavone-treated adult hens. Cytochrome P450 beta NF-A, however, appeared at two places in the purification scheme. They were designated as cytochromes P450 beta NF-A1 and beta NF-A2 for property comparison. The cytochromes beta NF-A1 and beta NF-A2 were induced by both phenobarbital and beta-naphthoflavone treatment and were similar to P450 PB-A (previously purified from phenobarbital-induced hen livers) in molecular weights, isoelectric pH, spectral properties, behavior on chromatography columns, catalysis of substrates, immunological cross-reactivity on Ouchterlony plates and by immunoblotting, and NH2-terminal amino acid sequence. However, P450 PB-A differed from beta NF-A1/beta NF-A2 in peptide pattern after partial proteolysis by alpha-chymotrypsin and Staphylococcus aureus V8 protease, and complete digestion of 125I-labeled cytochromes by trypsin. The cytochrome P450 PB-A also differed from beta NF-A1/beta NF-A2, in that its antibodies cross-reacted with P-450 of normal, PB-, and beta-NF-induced rabbit liver microsomes. The cytochromes beta NF-B and beta NF-C, although immunochemically cross-reactive with each other, were distinct enzymes on the basis of molecular weights, spectral characteristics, isoelectric pH, peptide pattern on partial proteolysis, tryptic peptide pattern, cross-reactivity of their antibodies with other species, and NH2-terminal amino acid sequence. The most notable difference between beta NF-B and beta NF-C was that the anti-beta NF-C IgG completely inhibited O-dealkylation of 7-methoxyresorufin and 7-ethoxyresorufin by beta-NF-induced microsomes. These activities increased 40- to 50-fold in beta-NF-induced microsomes as compared to only 2- to 4-fold in PB-treated hens. The amino-terminal sequences of beta NF-B and beta NF-C were different from those of mammalian and other nonmammalian species.  相似文献   

7.
8.
9.
10.
11.
12.
13.
The B-lymphocyte-specific activity of the immunoglobulin mu heavy-chain gene enhancer has been attributed to the octamer motif (ATTTGCAT) present within the enhancer that binds a B-cell-specific factor designated NF-A2/OTF-2. However, significant residual enhancer activity even after deletion of this element has suggested the presence of a second critical functional determinant. We have used deletion and mutational analyses to define an element, microB (TTTGGGGAA), that is essential for B-cell-specific enhancer activity in S194 myeloma cells in the absence of the octamer. Transfection analysis in a panel of lymphoid cell lines suggests that the presence of either microB or octamer leads to considerable enhancer activity in cell lines representing later stages of B-cell differentiation, whereas both elements are needed for function in cell lines representing earlier stages. Furthermore, in contrast to the results in pre-B-cell lines, both microB and octamer elements function independently in certain T-cell lines in which the mu enhancer is active.  相似文献   

14.
15.
HeLa cell OTF-1 has been purified on the basis of its DNA binding activity and used to raise a polyclonal rabbit antiserum. This antiserum is shown to recognize both native and denatured OTF-1 from both human and a similar protein from Xenopus culture cells, but to react either more weakly or not at all with the lymphoid cell-specific OTF-2. Separately, NFIII has been purified on the basis of its ability to stimulate Adenovirus DNA replication in vitro. On denaturing polyacrylamide gels OTF-1 and NFIII exhibit identical mobility. Anti-OTF-1 antiserum recognizes NFIII and neutralizes its stimulatory effect on DNA replication. Moreover, OTF-1 can functionally replace NFIII. Taken together with previously published DNA binding data, this indicates that OTF-1 and NFIII are either very closely related or identical.  相似文献   

16.
17.
18.
A variant human H2B histone gene (GL105), previously shown to encode a 2300 nt replication independent mRNA, has been cloned. We demonstrate this gene expresses alternative mRNAs regulated differentially during the HeLa S3 cell cycle. The H2B-Gl105 gene encodes both a 500 nt cell cycle dependent mRNA and a 2300 nt constitutively expressed mRNA. The 3' end of the cell cycle regulated mRNA terminates immediately following the region of hyphenated dyad symmetry typical of most histone mRNAs, whereas the constitutively expressed mRNA has a 1798 nt non-translated trailer that contains the same region of hyphenated dyad symmetry but is polyadenylated. The cap site for the H2B-GL105 mRNAs is located 42 nt upstream of the protein coding region. The H2B-GL105 histone gene was localized to chromosome region 1q21-1q23 by chromosomal in situ hybridization and by analysis of rodent-human somatic cell hybrids using an H2B-GL105 specific probe. The H2B-GL105 gene is paired with a functional H2A histone gene and this H2A/H2B gene pair is separated by a bidirectionally transcribed intergenic promoter region containing consensus TATA and CCAAT boxes and an OTF-1 element. These results demonstrate that cell cycle regulated and constitutively expressed histone mRNAs can be encoded by the same gene, and indicate that alternative 3' end processing may be an important mechanism for regulation of histone mRNA. Such control further increases the versatility by which cells can modulate the synthesis of replication-dependent as well as variant histone proteins during the cell cycle and at the onset of differentiation.  相似文献   

19.
20.
Detailed stopped-flow studies in combination with site-directed mutagenesis, isothermal titration calorimetry data and x-ray crystallographic knowledge have revealed that the biphasic pre-equilibrium fluorescence changes reported for a single Ig-binding domain of protein L from Peptostreptococcus magnus binding to kappa light chain are due to the binding of the kappa light chain at two separate sites on the protein L molecule. Elimination of binding site 2 through the mutation A66W has allowed the K(d) for kappa light chain binding at site 1 to be measured by stopped-flow fluorescence and isothermal titration calorimetry techniques, giving values of 48.0 +/- 8.0 nM and 37.5 +/- 7.3 nM respectively. Conversely, a double mutation Y53F/L57H eliminates binding at site 1 and has allowed the K(d) for binding at site 2 to be determined. Stopped-flow fluorimetry suggests this to be 3.4 +/- 0.8 microM in good agreement with the value of 4.6 +/- 0.8 microM determined by isothermal titration calorimetry. The mutation Y53F reduces the affinity of site 1 to approximately that of site 2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号