首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The hyperphagia and rapid body weight gain normally observed in young obese (ob/ob) mice were abolished by removal of their adrenal glands, whereas food intake and weight gain of lean mice were not significantly affected by adrenalectomy. Adrenalectomy lowered body energy density (kcal/g carcass) in obese mice more than could be attributed to reduced food intake per se, suggesting that their energy expenditure was also increased. In control obese mice, low stimulation of brown adipose tissue by the sympathetic nervous system, as indicated by the low fractional rates of norepinephrine (NE) turnover in their brown adipose tissue may have contributed to the reduced energy expenditure in these animals. Adrenalectomy increased the rates of NE turnover in brown adipose tissue of obese mice to rates nearly equal to those observed in lean mice without affecting NE turnover in this tissue of lean mice. Likewise, removal of the adrenals normalized the low rates of NE turnover in hearts of obese mice without affecting lean mice. Rates of NE turnover in two other organs, white adipose tissue and pancreas, of control and adrenalectomized obese mice were similar to rates observed in lean counterparts. The adrenal may thus contribute to both the hyperphagia and the low energy expenditure by brown adipose tissue that together cause gross obesity in ob/ob mice.  相似文献   

2.
Isolated mitochondria from liver or brown adipose tissue of obese ob/ob mice demonstrated increased rates of Ca2+ uptake and release compared with those of lean mice. This enhanced transport activity was not found in mitochondria from kidney or skeletal muscle. Respiration-induced membrane potential was the same in mitochondria from lean and ob/ob mice. It is therefore concluded that the increased Ca2+ uptake rates reflect an activation of the Ca2+ uniporter rather than a change in the electrophoretic driving force. As mitochondria from pre-obese ob/ob mice did not show elevated rates of Ca2+ transport, the activated transport in the obese animals was thus a consequence of the state of obesity rather than being a direct effect of the ob/ob genotype. It is suggested that the enhanced activity of the Ca2+-transport pathways in liver and brown adipose tissue may alter metabolic functions in these tissues by modifying cytoplasmic or intramitochondrial Ca2+ concentrations.  相似文献   

3.
Stearic acid desaturase activity was assayed in preparations from perigenital adipose tissue and liver from lean and genetically obese female mice (ob/ob). The total activity in the perigenital adipose tissue from obese mice was threefold greater than in the tissue from lean mice, but per g of adipose tissue the activity was twofold greater in tissue from lean mice. In liver, the activity in obese mice was elevated at 8 weeks of age, remained elevated up to 24 weeks and then decreased by half at 48 weeks, but at all ages was higher than that in lean mice. The decrease in desaturase activity of liver from obese mice at 48 weeks corresponded to a change in the fatty acid composition of liver lipids toward that found in lean mice. Whereas in adipose tissue much of the increased enzyme activity may be due to tissue hyperplasia, in liver it is mainly an increased activity per cell.  相似文献   

4.
The level of mRNA for uncoupling protein was measured in brown adipose tissue of young (8-10 weeks) and old (11 months) lean and ob/ob mice using a cDNA clone constructed previously. The level of poly(A)+ RNA was also measured using an oligo(dT)18 probe. Mice were kept at 28 degrees C or exposed to 14 degrees C for 12 h. The level of mRNA for uncoupling protein was normal in brown adipose tissue of younger obese mice but reduced in brown adipose tissue of old obese mice. The cold-induced absolute increase in uncoupling protein mRNA was smaller in obese mice, regardless of age. It is concluded that the known attenuation of the acute thermogenic response of brown adipose tissue of the ob/ob mouse to cold is accompanied by a similar attenuation of the initiation of the trophic response. It is likely, however, that these defects are secondary to the chronic reduction in sympathetic nervous system activity in brown adipose tissue of the ob/ob mouse, which results in a functional atrophy of the tissue.  相似文献   

5.
The suggestion that defective thermoregulatory thermogenesis in the genetically obese (ob/ob) mouse is due to a low thermic response to noradrenaline has been investigated using both noradrenaline and the longer-acting sympathomimetic compounds, ephedrine and BRL 26830A. Below thermoneutrality (23.5°C) the metabolic rate of obese mice was lower than that of their lean littermates, whereas at a thermoneutral temperature (31°C) the metabolic rate of the obese nice was as high as that of lean mice. This confirms the view that the ob/ob mouse has defective thermoregulatory thermogenesis. However, in C57BL/6 mice, this defect is not due to a failure to respond to noradrenaline, because at 31°C the maximum thermic effects of noradrenaline, ephedrine and BRL 26830A were as high in obese as in lean mice and at 23.5°C they were higher in obese than in lean mice. Furthermore, the response of brown adipose tissue to β-adrenoceptor stimulation appears normal since noradrenaline caused a normal rise in brown adipose tissue temperature, and treatment with noradrenaline or BRL 26830A invivo caused a normal increase in GDP binding by brown adipose tissue mtiochondria. At 31°C propranolol depressed metabolic rate equally in lean and obese C57BL/6 mice, whereas at 23.5°C it depressed metabolic rate more in lean than obese mice. In contrast to C57BL/6 mice, Aston ob/ob mice showed a reduced thermic response to noradrenaline. These results suggest that defective thermoregulatory thermogenesis in the ob/ob mouse is primarily due to a reduced ability to raise sympathetic tone, but in some strains an additional failure in the thermic response to noradrenaline may develop.  相似文献   

6.
The activation of brown adipose tissue adenylate cyclase by catecholamines was studied in genetically obese (ob/ob) and lean mice. In obese mice, the maximum activation of the enzyme by several beta-adrenergic agonists was only two-thirds that in lean mice and, as an activator, noradrenaline was only one-eighth as potent. The adenylate cyclase was also less responsive to guanine nucleotides. In these respects, the defect in catecholamine-stimulated adenylate cyclase was similar in both white and brown adipose tissue of the obese mouse. The enzyme in brown adipose tissue differed from that in white adipose tissue in its sensitivity to other beta-adrenergic agonists and in its requirement for Mg2+. It is suggested that this abnormal catecholamine-activated adenylate cyclase in brown adipose tissue may be relate to the thermoregulatory defect of the obese mouse and hence may contribute to the obesity syndrome.  相似文献   

7.
In this study, we investigate the in vitro effect of zinc addition on guanosine diphosphate (GDP) binding to mitochondria in brown adipocytes of genetically obese (ob/ob) mice. Interscapular brown adipocytes of male mice (obese; lean) at 4 and 12 wk of age were incubated with 0, 50, 100, or 200 μM zinc sulfate. Mitochondria were then isolated and their GDP binding capacities were measured. The GDP-binding capacities of ob/ob mice were lower than lean mice, with or without zinc addition, in both age groups (p<0.05). Zinc addition did not have any significant effect on GDP binding in lean mice. GDP binding decreased with increasing zinc addition in ob/ob mice, and this attenuation was more predominant in 12-wk old ob/ob mice. Moreover, we found that high magnesium addition (5 mM) increased GDP binding in lean mice, but this effect was not significant in ob/ob mice. This study reveals that brown adipose tissue thermogenesis in ob/ob mice could be greatly attenuated by zinc addition, suggesting that zinc may play a regulatory role in obesity.  相似文献   

8.
Genetically obese (ob/ob) mice develop insulin resistance in brown adipose tissue during the fifth week of life. Prior to this, at 26 days of age, oh/oh mice show a substantial increase in GDP binding to brownadipose-tissue mitochondria during acute cold exposure. When insulin resistance in brown fat develops, by 35 days of age, the increase in GDP binding in response to cold is markedly reduced. Studies with 2-deoxyglucose suggest that insulin resistance in brown adipose tissue could impair thermogenic responsiveness during acute cold exposure by limiting the ability of the tissue to take up glucose.  相似文献   

9.
We have examined the protein content and gene expression of three superoxide dismutase (SOD) isoenzymes in eight tissues from obese ob/ob mice, particularly placing the focus on extracellular-SOD (EC-SOD) in the white adipose tissue (WAT). Obesity significantly increased EC-SOD level in liver, kidney, testis, gastrocnemius muscle, WAT, brown adipose tissue (BAT), and plasma, but significantly decreased the isoenzyme level in lung. Tumor necrosis factor-alpha and interleukin-1beta contents in WAT were significantly higher in obese mice than in lean control mice. Immunohistochemically, both WAT and BAT from obese mice could be stained deeply with anti-mouse EC-SOD antibody compared with those from lean mice. Each primary culture per se almost time-dependently enhanced EC-SOD production, and overtly expressed its mRNA. The loss of heparin-binding affinity of EC-SOD type C with high affinity for heparin occurred in kidney of obese mice. These results suggest that the physiological importance of this SOD isoenzyme in WAT may be a compensatory adaptation to oxidative stress.  相似文献   

10.
1. The synthesis of long-chain fatty acids de novo was measured in the liver and in regions of adipose tissue in intact normal and genetically obses mice throughout the daily 24h cycle. 2. The total rate of synthesis, as measured by the rate of incorporation of 3H from 3H2O into fatty acid, was highest during the dark period, in liver and adipose tissue of lean or obese mice. 3. The rate of incorporation of 14C from [U-14C]glucose into fatty acid was also followed (in the same mice). The 14C/3H ratios were higher by a factor of 5-20 in parametrial and scapular fat than that in liver. This difference was less marked during the dark period (of maximum fatty acid synthesis). 4. In normal mice, the total rate of fatty acid synthesis in the liver was about twofold greater than that in all adipose tissue regions combined. 5. In obese mice, the rate of fatty acid synthesis was more rapid than in lean mice, in both liver and adipose tissue. Most of the extra lipogenesis occurred in adipose tissue. The extra hepatic fatty acids synthesized in obese mice were located in triglyceride rather than phospholipid. 6. In adipose tissue of normal mice, the rate of fatty acid synthesis was most rapid in the intra-abdominal areas and in brown fat. In obese mice, all regions exhibited rapid rates of fatty acid synthesis. 7. These results shed light on the relative significance of liver and adipose tissue (i.e. the adipose 'organ') in fatty acid synthesis in mice, on the mino importance of glucose in hepatic lipogenesis, and on the alterations in the rate of fatty acid synthesis in genetically obese mice.  相似文献   

11.
Obese-hyperglycaemic mice and lean mice were injected with dichloroacetate to determine the significance of gluconeogenesis in maintaining the hyperglycaemia of obese mice and to investigate the effects of a fall in blood glucose on fatty acid synthesis. One hour after the second of two, hourly, injections of dichloroacetate the blood glucose concentrations in fed and starved lean mice were decreased, whereas in obese mice they were sharply increased. In obese and lean mice, both fed and starved, dichloroacetate decreased plasma lactate but insulin was unchanged. The quantity of liver glycogen was decreased in all dichloroacetate treated mice, with the largest falls in fed and starved obese mice, which had much larger glycogen stores than lean mice. Dichloroacetate treatment decreased the concentration of plasma non-esterified fatty acids in fed and starved obese mice and fed lean mice but not in starved lean mice. Fatty acid synthesis in white (inguinal, subcutaneous) adipose tissue was stimulated by dichloroacetate in fed obese mice and inhibited in fed lean mice. Fatty acid synthesis in brown adipose tissue (scapular) was faster than in white adipose tissue and was less affected by dichloroacetate although the changes were in the same direction as in white adipose tissue. We attribute the increased hyperglycaemia of obese mice treated with dichloroacetate to increased glycogenolysis coupled with a failure to secrete additional insulin in response to the raised blood glucose. This high blood glucose concentration in dichloroacetate treated obese mice may in turn explain the increased fatty acid synthesis in their white adipose tissue.  相似文献   

12.
We have examined the protein content and gene expression of three superoxide dismutase (SOD) isoenzymes in eight tissues from obese ob/ob mice, particularly placing the focus on extracellular-SOD (EC-SOD) in the white adipose tissue (WAT). Obesity significantly increased EC-SOD level in liver, kidney, testis, gastrocnemius muscle, WAT, brown adipose tissue (BAT), and plasma, but significantly decreased the isoenzyme level in lung. Tumor necrosis factor-α and interleukin-1β contents in WAT were significantly higher in obese mice than in lean control mice. Immunohistochemically, both WAT and BAT from obese mice could be stained deeply with anti-mouse EC-SOD antibody compared with those from lean mice. Each primary culture per se almost time-dependently enhanced EC-SOD production, and overtly expressed its mRNA. The loss of heparin-binding affinity of EC-SOD type C with high affinity for heparin occurred in kidney of obese mice. These results suggest that the physiological importance of this SOD isoenzyme in WAT may be a compensatory adaptation to oxidative stress.  相似文献   

13.
The development of the lipogenic capacity in brown adipose tissue was studied in suckling lean (Fa/fa) and obese (fa/fa) Zucker pups aged from 7 to 22 days. In both lean and obese pups, activities of the two key lipogenic enzymes, fatty acid synthetase and acetyl-CoA carboxylase, and of citrate cleavage enzyme rose from the early to the late suckling period. Compared with lean pups, 7-day-old fa/fa pups showed a 35% increase in fat accumulation in interscapular brown adipose tissue and a 25% increase in fatty acid synthetase activity. By 10 days of age, fat deposition, lipogenesis in vivo (assessed by the incorporation of 3H from 3H2O into fatty acids) and fatty acid synthetase activity were 1.5-2-fold higher in pre-obese than in lean pups. Compared with lean pups, the increased lipogenesis in vivo observed in brown adipose tissue of 10-day-old pre-obese pups could not entirely account for the difference in fat deposition observed in this tissue, suggesting that additional mechanisms are at play to explain the increased fat content of this tissue.  相似文献   

14.
Recent evidence has been presented that expression of lipogenic genes is downregulated in adipose tissue of ob/ob mice as well as in human obesity, suggesting a functionally lipoatrophic state. Using (2)H(2)O labeling, we measured three adipose tissue biosynthetic processes concurrently: triglyceride (TG) synthesis, palmitate de novo lipogenesis (DNL), and cell proliferation (adipogenesis). To determine the effect of the ob/ob mutation (leptin deficiency) on these parameters, adipose dynamics were compared in ob/ob, leptin-treated ob/ob, food-restricted ob/ob, and lean control mice. Adipose tissue fluxes for TG synthesis, de novo lipogenesis (DNL), and adipogenesis were dramatically increased in ob/ob mice compared with lean controls. Low-dose leptin treatment (2 microg/day) via miniosmotic pump suppressed all fluxes to control levels or below. Food restriction in ob/ob mice only modestly reduced DNL, with no change in TG synthesis or adipogenesis. Measurement of mRNA levels in age-matched ob/ob mice showed generally normal expression levels for most of the selected lipid anabolic genes, and leptin treatment had, with few exceptions, only modest effects on their expression. We conclude that leptin deficiency per se results in marked elevations in flux through diverse lipid anabolic pathways in adipose tissue (DNL, TG synthesis, and cell proliferation), independent of food intake, but that gene expression fails to reflect these changes in flux.  相似文献   

15.
Adrenalectomy (ADX) prevents the excessive weight gain in the genetically obese ob/ob and db/db mice. To test the possibility that this results from increased energy expenditure due to increased thermogenesis in brown adipose tissue (BAT), we measured GDP binding to mitochondria from interscapular brown adipose tissue (BAT) in db/db and ob/ob mice and their lean controls after adrenalectomy, with and without corticosterone replacement. Both the vehicle treated and corticosterone treated db/db and ob/ob mice had lower body weights than the sham-operated mice GDP binding to mitochondria from IBAT was significantly lower in both the db/db and ob/ob mice than in their lean controls. Adrenalectomy significantly increased GDP binding in all mice compared to the respective sham-operated mice, but, the percentage increase was always greater in the db/db and ob/ob mice. Corticosterone treatment of adrenalectomized db/db, ob/ob or lean mice lowered GDP binding to sham levels. Our data confirm previous findings that adrenalectomy results in increased GDP binding to mitochondria from IBAT. Injections of corticosterone into adrenalectomized mice results in a decrease in GDP binding to values which are similar to values in sham-operated mice. Thus adrenalectomy may inhibit the development of obesity by increasing the thermic activity in IBAT.  相似文献   

16.
This study evaluates the role of adrenal hormones in the development of hyperinsulinaemia and impaired glucose homeostasis in genetically obese hyperglycaemic C57BL/6J ob/ob mice. Lean (+/?) and obese mice were bilaterally adrenalectomised or sham operated at 5 weeks of age, and glucose tolerance was examined after 7 and 14 days. Adrenalectomy temporarily reduced food intake and body weight gain in lean mice, and improved glucose tolerance without a significant change in plasma insulin concentrations at both intervals studied. In obese mice adrenalectomy permanently reduced body weight gain and food intake to values comparable with lean mice. Glucose tolerance was improved in adrenalectomised obese mice at both intervals studied, resulting in plasma glucose concentrations similar to adrenalectomised lean mice. Plasma insulin concentrations during the tolerance tests were reduced in adrenalectomised obese mice, but remained higher than in lean mice. Adrenalectomy did not improve the poor insulin response to parenteral glucose in obese mice. The results indicate that adrenal hormones play an important role in the development of glucose intolerance and contribute to the hyperinsulinaemia in obese (ob/ob) mice, in part by promoting hyperphagia.  相似文献   

17.
The lipogenic rate of the obese rats was significantly higher than that of the lean rats in liver, white adipose tissue, skeletal muscle, heart and carcass. In the lean rats, a 24 h starvation period caused a significant decrease in the lipogenic rate of white adipose tissue and skeletal muscle while it increased that of heart, brain and brown adipose tissue. In the obese rats, starvation decreased the lipogenic rate in liver, skeletal muscle, white adipose tissue, brown adipose tissue and carcass. In spite of this, liver and skeletal muscle showed higher rates of lipid synthesis than the corresponding fed lean. It is concluded that starvation induces a qualitatively similar response in the obese versus the lean rat although the total lipogenic capacity of the animal is still higher.  相似文献   

18.
Obesity may result from altered fatty acid (FA) disposal. Altered FA distribution in obese individuals is poorly understood. Lean wild-type C57BL/6J and obese C57BL/6Job/ob mice received an oral dose of [1-14C]18:1n-9 (oleic acid), and the radioactivity in tissues was evaluated at various time points. The 14C concentration decreased rapidly in gastrointestinal tract but gradually increased and peaked at 96 h in adipose tissue, muscle and skin in lean mice. The 14C concentration was constant in adipose tissue and muscle of obese mice from 4h to 168h. 14C-label content in adipose tissue was significantly affected by genotype, whereas muscle 14C-label content was affected by genotype, time and the interaction between genotype and time. There was higher total 14C retention (47.7%) in obese mice than in lean mice (9.0%) at 168 h (P<0.05). The 14C concentrations in the soleus and gastrocnemius muscle were higher in obese mice than in lean mice (P<0.05). Perirenal adipose tissue contained the highest 14C content in lean mice, whereas subcutaneous adipose tissue (SAT) had the highest 14C content and accounted for the largest proportion of total radioactivity among fat depots in obese mice. More lipid radioactivity was recovered as TAG in SAT from obese mice than from lean mice (P<0.05). Gene expression suggested acyl CoA binding protein and fatty acid binding protein are important for FA distribution in adipose tissue and muscle. The FA distribution in major tissues was altered in ob/ob mice, perhaps contributing to obesity. Understanding the disparity in FA disposal between lean and obese mice may reveal novel targets for the treatment and prevention of obesity.  相似文献   

19.
Genetically obese (ob/ob) mice were employed for the study of the effect of metformin on activity and expression of nitric oxide synthase (NOS ) in vitro and in vivo. For in vitro analysis, mouse liver extracts were used. For the in vivo study, (ob/ob) and their control litter mates (ob/c) mice were injected with specified amounts of metformin and the expression of NOS in the adipose tissue and hypothalamus was measured by Western blotting. Results show that metformin exhibited a biphasic effect on NOS activity in vitro. Expression of metformin was differentially altered in the hypothalamus and adipose tissues of the normal and ob/ob animals that were treated with metformin. Further, a significant decrease in food intake occurred in the (ob/ob) mice that received metformin. This decrease in food intake was not accompanied by changes in serum glucose. At inhibitory concentrations, hypothalamic NOS expression changes differentially in normal and ob/ob mice. In normal mice, metformin stimulated NOS expression, while in ob/ob mice there was an inhibition. NOS expression increased in brown adipose tissue of metformin treated control mice, while no such increase was observed in ob/ob mice. No effect of metformin was observed in white adipose tissue of control or obese mice. Thus, metformin may produce anorectic effects through modulation of NOS.  相似文献   

20.
Lipogenesis was measured in 2 and 5 week gold-thioglucose (GTG) obese mice after a single meal of 0.5 g of standard chow. Compared to control mice the rate of lipogenesis in GTG obese mice, was 4-fold higher in liver and 10-fold higher in white adipose tissue (WAT). In brown adipose tissue (BAT) of GTG-injected mice the lipogenic rate was only 50% of that of controls. These results indicate that the increased lipid synthesis observed in GTG-injected mice is not due solely to hyperphagia and that some other stimuli, such as increased basal insulin levels and/or decreased thermogenesis and insulin resistance in BAT, contribute to the high rates of fat synthesis in this animal model of obesity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号