首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Visual attentional biases towards other-race faces have been attributed to the perceived threat value of such faces. It is possible, however, that they reflect the relative visual novelty of other-race faces. Here we demonstrate an attentional bias to other-race faces in the absence of perceived threat. White participants rated female East Asian faces as no more threatening than female own-race faces. Nevertheless, using a new dot-probe paradigm that can distinguish attentional capture and hold effects, we found that these other-race faces selectively captured visual attention. Importantly, this demonstration challenges previous interpretations of attentional biases to other-race faces as threat responses. Future studies will need to determine whether perceived threat increases attentional biases to other-race faces, beyond the levels seen here.  相似文献   

2.
Optimal behavior relies on the combination of inputs from multiple senses through complex interactions within neocortical networks. The ontogeny of this multisensory interplay is still unknown. Here, we identify critical factors that control the development of visual-tactile processing by combining in vivo electrophysiology with anatomical/functional assessment of cortico-cortical communication and behavioral investigation of pigmented rats. We demonstrate that the transient reduction of unimodal (tactile) inputs during a short period of neonatal development prior to the first cross-modal experience affects feed-forward subcortico-cortical interactions by attenuating the cross-modal enhancement of evoked responses in the adult primary somatosensory cortex. Moreover, the neonatal manipulation alters cortico-cortical interactions by decreasing the cross-modal synchrony and directionality in line with the sparsification of direct projections between primary somatosensory and visual cortices. At the behavioral level, these functional and structural deficits resulted in lower cross-modal matching abilities. Thus, neonatal unimodal experience during defined developmental stages is necessary for setting up the neuronal networks of multisensory processing.  相似文献   

3.
Chimpanzees produce numerous species-atypical signals when raised in captivity. Here we report contextual elements of the use of two captivity-specific vocal signals, the "raspberry" and the extended grunt. Results demonstrate that these vocalizations are not elicited by the presence of food; rather the data suggest that these vocalizations function as attention-getting signals. These findings demonstrate a heretofore underappreciated category of animal signals: novel signals invented in novel environmental circumstances. The invention and use of species-atypical signals, considered in relation to group differences in signaling repertoires in apes in their natural habitats, may index a generative capacity in these hominoid species without obvious corollary in other primate species.  相似文献   

4.
5.
Abnormalities in motor skills have been regarded as part of the symptomatology characterizing autism spectrum disorder (ASD). It has been estimated that 80 % of subjects with autism display “motor dyspraxia” or clumsiness that are not readily identified in a routine neurological examination. In this study we used behavioral measures, event-related potentials (ERP), and lateralized readiness potential (LRP) to study cognitive and motor preparation deficits contributing to the dyspraxia of autism. A modified Posner cueing task was used to analyze motor preparation abnormalities in children with autism and in typically developing children (N = 30/per group). In this task, subjects engage in preparing motor response based on a visual cue, and then execute a motor movement based on the subsequent imperative stimulus. The experimental conditions, such as the validity of the cue and the spatial location of the target stimuli were manipulated to influence motor response selection, preparation, and execution. Reaction time and accuracy benefited from validly cued targets in both groups, while main effects of target spatial position were more obvious in the autism group. The main ERP findings were prolonged and more negative early frontal potentials in the ASD in incongruent trials in both types of spatial location. The LRP amplitude was larger in incongruent trials and had stronger effect in the children with ASD. These effects were better expressed at the earlier stages of LRP, specifically those related to response selection, and showed difficulties at the cognitive phase of stimulus processing rather that at the motor execution stage. The LRP measures at different stages reflect the chronology of cognitive aspects of movement preparation and are sensitive to manipulations of cue correctness, thus representing very useful biomarker in autism dyspraxia research. Future studies may use more advance and diverse manipulations of movement preparation demands in testing more refined specifics of dyspraxia symptoms to investigate functional connectivity abnormalities underlying motor skills deficits in autism.  相似文献   

6.
Cross-modal processing depends strongly on the compatibility between different sensory inputs, the relative timing of their arrival to brain processing components, and on how attention is allocated. In this behavioral study, we employed a cross-modal audio-visual Stroop task in which we manipulated the within-trial stimulus-onset-asynchronies (SOAs) of the stimulus-component inputs, the grouping of the SOAs (blocked vs. random), the attended modality (auditory or visual), and the congruency of the Stroop color-word stimuli (congruent, incongruent, neutral) to assess how these factors interact within a multisensory context. One main result was that visual distractors produced larger incongruency effects on auditory targets than vice versa. Moreover, as revealed by both overall shorter response times (RTs) and relative shifts in the psychometric incongruency-effect functions, visual-information processing was faster and produced stronger and longer-lasting incongruency effects than did auditory. When attending to either modality, stimulus incongruency from the other modality interacted with SOA, yielding larger effects when the irrelevant distractor occurred prior to the attended target, but no interaction with SOA grouping. Finally, relative to neutral-stimuli, and across the wide range of the SOAs employed, congruency led to substantially more behavioral facilitation than did incongruency to interference, in contrast to findings that within-modality stimulus-compatibility effects tend to be more evenly split between facilitation and interference. In sum, the present findings reveal several key characteristics of how we process the stimulus compatibility of cross-modal sensory inputs, reflecting stimulus processing patterns that are critical for successfully navigating our complex multisensory world.  相似文献   

7.
The Rapid Visual Information Processing (RVIP) task, a serial discrimination task where task performance believed to reflect sustained attention capabilities, is widely used in behavioural research and increasingly in neuroimaging studies. To date, functional neuroimaging research into the RVIP has been undertaken using block analyses, reflecting the sustained processing involved in the task, but not necessarily the transient processes associated with individual trial performance. Furthermore, this research has been limited to young cohorts. This study assessed the behavioural and functional magnetic resonance imaging (fMRI) outcomes of the RVIP task using both block and event-related analyses in a healthy middle aged cohort (mean age = 53.56 years, n = 16). The results show that the version of the RVIP used here is sensitive to changes in attentional demand processes with participants achieving a 43% accuracy hit rate in the experimental task compared with 96% accuracy in the control task. As shown by previous research, the block analysis revealed an increase in activation in a network of frontal, parietal, occipital and cerebellar regions. The event related analysis showed a similar network of activation, seemingly omitting regions involved in the processing of the task (as shown in the block analysis), such as occipital areas and the thalamus, providing an indication of a network of regions involved in correct trial performance. Frontal (superior and inferior frontal gryi), parietal (precuenus, inferior parietal lobe) and cerebellar regions were shown to be active in both the block and event-related analyses, suggesting their importance in sustained attention/vigilance. These networks and the differences between them are discussed in detail, as well as implications for future research in middle aged cohorts.  相似文献   

8.
Neurofibrillary pathology of abnormally hyperphosphorylated Tau is a key lesion of Alzheimer disease and other tauopathies, and its density in the brain directly correlates with dementia. The phosphorylation of Tau is regulated by protein phosphatase 2A, which in turn is regulated by inhibitor 2, I2PP2A. In acidic conditions such as generated by brain ischemia and hypoxia, especially in association with hyperglycemia as in diabetes, I2PP2A is cleaved by asparaginyl endopeptidase at Asn-175 into the N-terminal fragment (I2NTF) and the C-terminal fragment (I2CTF). Both I2NTF and I2CTF are known to bind to the catalytic subunit of protein phosphatase 2A and inhibit its activity. Here we show that the level of activated asparaginyl endopeptidase is significantly increased, and this enzyme and I2PP2A translocate, respectively, from neuronal lysosomes and nucleus to the cytoplasm where they interact and are associated with hyperphosphorylated Tau in Alzheimer disease brain. Asparaginyl endopeptidase from Alzheimer disease brain could cleave GST-I2PP2A, except when I2PP2A was mutated at the cleavage site Asn-175 to Gln. Finally, an induction of acidosis by treatment with kainic acid or pH 6.0 medium activated asparaginyl endopeptidase and consequently produced the cleavage of I2PP2A, inhibition of protein phosphatase 2A, and hyperphosphorylation of Tau, and the knockdown of asparaginyl endopeptidase with siRNA abolished this pathway in SH-SY5Y cells. These findings suggest the involvement of brain acidosis in the etiopathogenesis of Alzheimer disease, and asparaginyl endopeptidase-I2PP2A-protein phosphatase 2A-Tau hyperphosphorylation pathway as a therapeutic target.  相似文献   

9.
‘Sensory attenuation’, i.e., reduced neural responses to self-induced compared to externally generated stimuli, is a well-established phenomenon. However, very few studies directly compared sensory attenuation with attention effect, which leads to increased neural responses. In this study, we brought sensory attenuation and attention together in a behavioural auditory detection task, where both effects were quantitatively measured and compared. The classic auditory attention effect of facilitating detection performance was replicated. When attention and sensory attenuation were both present, attentional facilitation decreased but remained significant. The results are discussed in the light of current theories of sensory attenuation.  相似文献   

10.
Optogenetic techniques are used widely to perturb and interrogate neural circuits in behaving animals, but illumination can have additional effects, such as the activation of endogenous opsins in the retina. We found that illumination, delivered deep into the brain via an optical fiber, evoked a behavioral artifact in mice performing a visually guided discrimination task. Compared with blue (473 nm) and yellow (589 nm) illumination, red (640 nm) illumination evoked a greater behavioral artifact and more activity in the retina, the latter measured with electrical recordings. In the mouse, the sensitivity of retinal opsins declines steeply with wavelength across the visible spectrum, but propagation of light through brain tissue increases with wavelength. Our results suggest that poor retinal sensitivity to red light was overcome by relatively robust propagation of red light through brain tissue and stronger illumination of the retina by red than by blue or yellow light. Light adaptation of the retina, via an external source of illumination, suppressed retinal activation and the behavioral artifact without otherwise impacting behavioral performance. In summary, long wavelength optogenetic stimuli are particularly prone to evoke behavioral artifacts via activation of retinal opsins in the mouse, but light adaptation of the retina can provide a simple and effective mitigation of the artifact.  相似文献   

11.
Tinnitus is the perception of sound in the absence of external stimulus. Currently, the pathophysiology of tinnitus is not fully understood, but recent studies indicate that alterations in the brain involve non-auditory areas, including the prefrontal cortex. In experiment 1, we used a go/no-go paradigm to evaluate the target detection speed and the inhibitory control in tinnitus participants (TP) and control subjects (CS), both in unimodal and bimodal conditions in the auditory and visual modalities. We also tested whether the sound frequency used for target and distractors affected the performance. We observed that TP were slower and made more false alarms than CS in all unimodal auditory conditions. TP were also slower than CS in the bimodal conditions. In addition, when comparing the response times in bimodal and auditory unimodal conditions, the expected gain in bimodal conditions was present in CS, but not in TP when tinnitus-matched frequency sounds were used as targets. In experiment 2, we tested the sensitivity to cross-modal interference in TP during auditory and visual go/no-go tasks where each stimulus was preceded by an irrelevant pre-stimulus in the untested modality (e.g. high frequency auditory pre-stimulus in visual no/no-go condition). We observed that TP had longer response times than CS and made more false alarms in all conditions. In addition, the highest false alarm rate occurred in TP when tinnitus-matched/high frequency sounds were used as pre-stimulus. We conclude that the inhibitory control is altered in TP and that TP are abnormally sensitive to cross-modal interference, reflecting difficulties to ignore irrelevant stimuli. The fact that the strongest interference effect was caused by tinnitus-like auditory stimulation is consistent with the hypothesis according to which such stimulations generate emotional responses that affect cognitive processing in TP. We postulate that executive functions deficits play a key-role in the perception and maintenance of tinnitus.  相似文献   

12.
It remains unclear whether spontaneous eye movements during visual imagery reflect the mental generation of a visual image (i.e. the arrangement of the component parts of a mental representation). To address this specificity, we recorded eye movements in an imagery task and in a phonological fluency (non-imagery) task, both consisting in naming French towns from long-term memory. Only in the condition of visual imagery the spontaneous eye positions reflected the geographic position of the towns evoked by the subjects. This demonstrates that eye positions closely reflect the mapping of mental images. Advanced analysis of gaze positions using the bi-dimensional regression model confirmed the spatial correlation of gaze and towns’ locations in every single individual in the visual imagery task and in none of the individuals when no imagery accompanied memory retrieval. In addition, the evolution of the bi-dimensional regression’s coefficient of determination revealed, in each individual, a process of generating several iterative series of a limited number of towns mapped with the same spatial distortion, despite different individual order of towns’ evocation and different individual mappings. Such consistency across subjects revealed by gaze (the mind’s eye) gives empirical support to theories postulating that visual imagery, like visual sampling, is an iterative fragmented processing.  相似文献   

13.
14.
Individuals are not perfectly consistent, and interindividual variability is a common feature in all varieties of human behavior. Some individuals respond more variably than others, however, and this difference may be important to understanding how the brain works. In this paper, we explore genetic contributions to response time (RT) slope variability on a reflexive attention task. We are interested in such variability because we believe it is an important part of the overall picture of attention that, if understood, has the potential to improve intervention for those with attentional deficits. Genetic association studies are valuable in discovering biological pathways of variability and several studies have found such associations with a sustained attention task. Here, we expand our knowledge to include a reflexive attention task. We ask whether specific candidate genes are associated with interindividual variability on a childhood reflexive attention task in 9–16 year olds. The genetic makers considered are on 11 genes: APOE, BDNF, CHRNA4, COMT, DRD4, HTR4, IGF2, MAOA, SLC5A7, SLC6A3, and SNAP25. We find significant associations with variability with markers on nine and we discuss the results in terms of neurotransmitters associated with each gene and the characteristics of the associated measures from the reflexive attention task.  相似文献   

15.
Polo-like kinase 1 (Plk1), the best characterized member of the mammalian polo-like kinase family, is well regulated throughout the cell cycle, and is inhibited following DNA damage. Chk1 plays a key role in the response to DNA damage. We recently reported that Chk1 is required for mitotic progression through negative regulation of Plk1. Here, we report the phenotypes of cultured cells upon ectopic expression of various forms of Plk1. Epitopic expression of Plk1 led to mitotic arrest, whereas co-expression of Chk1 could release this mitotic block. Moreover, the Plk1 expression-induced mitotic block was also released by inactivation of the spindle-assembly checkpoint.  相似文献   

16.
17.
The visual evoked potentials (EPs) in response to lateralized and central visual symbols under the conditions of involuntary (passive viewing) and selective attention (when one of the symbols was a target and required a rapid and precise motor reaction) are considered. The evoked potentials in the occipital, parietal, and frontal derivations were recorded in 20 healthy subjects. It was shown that the EP during selective attention are most pronounced and more alike in the parietal derivations. A strong positive correlation was revealed between the EP amplitude ([N1–P3] component) and the EP stability (correlation between the repeated EP). The involuntary and voluntary forms of attention supplement each other: the more expressed the involuntary attention (assessed by the [N1–P3] component) the higher the EP to target stimuli during voluntary attention and the shorter the reaction time. It is suggested that the role of visual attention consists in the increase and stabilization of cortical activity (primarily, the parietal regions) engaged in solving a visual task.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号