首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Journal of molecular biology》2019,431(24):4882-4896
Multidrug-resistant gram-negative bacteria infection is particularly severe within the designated ESKAPE pathogens (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter species), which underscores the urgent need to explore alternative therapeutic strategies. The type III secretion system (T3SS) is considered to be a key virulence factor in many gram-negative bacteria, and T3SS is in turn regulated by SpuE in P. aeruginosa, which is a spermidine binding protein from an ATP-binding cassette transporter family and highly conserved within ESKAPE pathogens. Here, we identified a potent anti-SpuE antagonistic antibody that allosterically inhibits the expression of T3SS and attenuates virulence of P. aeruginosa. X-ray crystallography and molecular dynamics simulations revealed that binding of antibody to SpuE induces a change in the dynamics of SpuE, which in turn may reduce spermidine uptake by P. aeruginosa. The antibody could serve as a template for developing novel biologics to target a broad spectrum of gram-negative bacteria.  相似文献   

2.
Twelve strains of Pseudomonas fluorescens and P. putida were grown in a synthetic medium that contained l-lysine as the only source of carbon and nitrogen, and screened for l-lysine-2-monooxygenase production. Best production was by P. putida BKM B-1458 at 30 IU/g wet wt biomass when grown in a shake-flask but 25 IU/g in a 250-l fermenter.  相似文献   

3.
The electrophoretic patterns of outer membrane proteins of strains representing the biovars of Pseudomonas fluorescens and Pseudomonas putida were analyzed by gel electrophoresis. The outer membrane protein profiles were variable, and they were not useful for assigning strains to a specific biovar. However, three or four predominant outer membrane proteins migrating at 42 to 46 kDa, 33 to 38 kDa, and 20 to 22 kDa were conserved among the strains. They could be tentatively identified as OprE (44 kDa), OprF (38 kDa), OprH (21 kDa), and OprL (20.5 kDa), which are known proteins from Pseudomonas aeruginosa. A 37-kDa OprF-like protein was purified from P. fluorescens DF57 and used to raise a polyclonal antibody. In Western blot (immunoblot) analysis, this antibody reacted with OprF proteins from members of Pseudomonas rRNA homology group I but not with proteins from nonpseudomonads. The heterogeneity in M(infr) of OprF was greater among P. fluorescens strains than among P. putida strains. Immunofluorescence microscopy of intact cells demonstrated that the antibody recognized epitopes that were accessible only after unmasking by EDTA treatment. The antibody was used in a colony blotting assay to determine the percentage of rRNA homology group I pseudomonads among bacteria from the rhizosphere of barley. The bacteria were isolated on 10% tryptic soy agar, King's B agar, and the pseudomonad-specific medium Gould S1 agar. The estimate of OprF-containing CFU in rhizosphere soil obtained by colony blotting on 10% tryptic soy agar was about 2 and 14 times higher than the values obtained from King's agar and Gould S1 agar, respectively, indicating that not all fluorescent pseudomonads are scored on more specific media. The colonies reacting with the OprF antibody were verified as being rRNA homology group I pseudomonads by using the API 20NE system.  相似文献   

4.
After 20 years storage under the lyophylized condition 6 strains of Pseudomonas aeruginosa, P. fluorescens and P. putida retained all characters investigated. After storage under sterile vaseline oil for 10 years strains P. aeruginosa and P. putida lost one character, strains P. fluorescens lost 10-13 characters.  相似文献   

5.
Type III protein secretion systems play a key role in the virulence of many pathogenic proteobacteria, but they also occur in nonpathogenic, plant-associated bacteria. Certain type III protein secretion genes (e.g., hrcC) have been found in Pseudomonas sp. strain SBW25 (and other biocontrol pseudomonads), but other type III protein secretion genes, such as the ATPase-encoding gene hrcN, have not been found. Using both colony hybridization and a PCR approach, we show here that hrcN is nevertheless present in many biocontrol fluorescent pseudomonads. The phylogeny of biocontrol Pseudomonas strains based on partial hrcN sequences was largely congruent with the phylogenies derived from analyses of rrs (encoding 16S rRNA) and, to a lesser extent, biocontrol genes, such as phlD (for 2,4-diacetylphloroglucinol production) and hcnBC (for HCN production). Most biocontrol pseudomonads clustered separately from phytopathogenic proteobacteria, including pathogenic pseudomonads, in the hrcN tree. The exception was strain KD, which clustered with phytopathogenic pseudomonads, such as Pseudomonas syringae, suggesting that hrcN was acquired from the latter species. Indeed, strain KD (unlike strain SBW25) displayed the same organization of the hrpJ operon, which contains hrcN, as P. syringae. These results indicate that the occurrence of hrcN in most biocontrol pseudomonads is not the result of recent horizontal gene transfer from phytopathogenic bacteria, although such transfer might have occurred for a minority of biocontrol strains.  相似文献   

6.
《Cell host & microbe》2020,27(4):601-613.e7
  1. Download : Download high-res image (103KB)
  2. Download : Download full-size image
  相似文献   

7.
8.
Abstract Environmental isolates of fluorescent pseudomonads grown to early stationary phase in glucose-enriched Luria broth were treated with proteinase K in sodium dodecylsulphate (SDS) lysis buffer and subsequently analyzed by polyacrylamide gel electrophoresis (PAGE). Four silver-staining protein-fragment bands could be used for rapid identification at the species level. Pseudomonas aeruginosa isolates were easily recognized by a unique banding pattern. Isolates considered to be P. fluorescen from biochemical and physiological tests (classical biotypes I, II, III, IV and V) also had a characteristic banding pattern, which in turn was different from that of P. putida isolates (classical biotype A). A residual group representing intermediate isolates of P. fluorescens (new biotype VI of Barrett et al., J. Gen. Microbiol. 132, 1986) or P. putida (biotype B) had a banding pattern similar to that of classical P. fluorescens biotypes. On the other hand, a group representing other intermediate isolates of P. putida (new biotype C of Barrett et al., J. Gen. Microbiol. 132, 1986) had a unique banding pattern resembling that of classical P. putida biotype A. A small number of protein fragment bands appearing in SDS-PAGE analysis of whole-cell lysates seems adequate for a rapid identification at the species level of P. aeruginosa, P. fluorescens and P. putida isolated from natural environments.  相似文献   

9.
A numerical taxonomic analysis was performed to evaluate the appropriateness of a single biovar designation (biovar V) for all Pseudomonas fluorescens isolates negative for denitrification, levan production and phenazine pigmentation and to determine the relationship of biovar V strains to other taxa within the same Pseudomonas RNA homology group. Seventy-two strains assigned to P. fluorescens biovar V and four strains of P. fragi were characterized and the data subjected to a numerical taxonomic analysis along with comparable data for 17 previously characterized strains of this biovar and 89 P. putida strains. Seven distinct biovar V clusters containing three or more strains were revealed, and the carbon sources useful for their differentiation were identified. Cluster 1 (38 strains) closely resembled two atypical P. fluorescens I strains. It was also related to P. fluorescens biovar IV and to P. fragi. Cluster 2 (5 strains) was related to cluster 1. Cluster 3 (7 strains) was identical to a major group of meat spoilage psychrotrophic pseudomonads (P. lundensis). Cluster 4 (3 strains) was not related to any other group examined. Cluster 5 consisted of six isolates initially designated P. putida A along with four P. fluorescens biovar V strains all of which resembled P. putida more than they resembled the other P. fluorescens groups. Cluster 6 (16 strains) was distinct from the other biovar V clusters, but was closely related to P. fluorescens biovars I and II. Cluster 7 (3 strains) shared many characteristics with cluster 5. Separate P. fluorescens biovar designations are proposed for cluster 6 and for the combined clusters 1 and 2. A new P. putida biovar is proposed for the combined clusters 5 and 7.  相似文献   

10.
C H Liao 《Journal of bacteriology》1991,173(14):4386-4393
Pectate lyase (PL) depolymerizes pectin and other polygalacturonates (PGAs) and is thought to play a role in bacterial invasion of plants. Production of PL by the soft-rotting pathogen Pseudomonas fluorescens CY091 is regulated by Ca2+. In the presence of Ca2+, this bacterium constitutively synthesizes PL in media containing glucose, glycerol, or PGA and excretes over 87% of total PL into culture fluids. In the absence of Ca2+, the organism fails to use PGA as a carbon source and produces very low levels of PL in media containing glucose or glycerol. Of the small amount of PL produced by the bacterium in Ca(2+)-deficient media, over 78% was detected within the cells, indicating that Ca2+ is critical not only for the production but also for the secretion of PL. The pel gene, encoding an alkaline PL (pI 10.0, Mr 41,000) was cloned and located on the overlapping region of a 4.3-kb SalI and a 7.1-kb EcoRI fragment. The 7.1-kb EcoRI fragment appears to contain a promoter for pel gene expression. A 1.7-kb SalI-XhoI subfragment of the 4.3-kb SalI fragment was cloned into pUC18 to give pROTM2. Escherichia coli cells carrying pROTM2 produce 50 to 100 times more PL than do cells carrying other pectolytic constructs. Production of PL by E. coli (pROTM2) was not affected by carbon sources or by Ca2+. The pI and Mr of PL from E. coli corresponded to values for its counterpart from P. fluorescens. A 0.7-kb BglII-ClaI fragment encoding the pel structural sequence was used to detect pel homologs in various species of fluorescent pseudomonads. Homologous sequences were observed in 10 of 11 strains of P. fluorescens, P. viridiflava, and P. putida. The pel gene in fluorescent pseudomonads is well conserved and may exist and remain repressed in certain strains or species which exhibit nonpectolytic phenotypes under laboratory conditions.  相似文献   

11.
12.
The effect of phenotypic variation on attachment of Pseudomonas tolaasii and P. putida to Agaricus bisporus mycelium was investigated. Quantitative studies demonstrated the ability of each isolate to attach rapidly and firmly to A. bisporus mycelium and significant differences in attachment of wild-type and phenotypic variant strains were observed. This was most pronounced in P. tolaasii, where the percentage attachment of the wild-type form was always greater than that of the phenotypic variant. The medium upon which the bacteria were cultured, prior to conducting an attachment assay, had a significant effect on their ability to attach. Attachment of the wild-type form of P. putida was enhanced when the assay was performed in the presence of CaCl2, suggesting the involvement of electrostatic forces. No correlation was observed between bacterial hydrophobicity and ability to attach to A. bisporus mycelium. Scanning electron microscopy confirmed the results obtained from the quantitative studies and provided further evidence for marked differences in the ability of the pseudomonads to attach to mycelium. Fibrillar structures and amorphous material were frequently associated with attached cells and appeared to anchor bacteria to each other and to the hyphal surface. A time-course study of attachment using transmission electron microscopy revealed the presence of uneven fibrillar material on the surface of cells. This material stained positive for polysaccharide and may be involved in ensuring rapid, firm attachment of the cells.  相似文献   

13.
The type III secretion system is a widespread apparatus used by pathogenic bacteria to inject effectors directly into the cytoplasm of eukaryotic cells. A key component of this highly conserved system is the translocon, a pore formed in the host membrane that is essential for toxins to bypass this last physical barrier. In Pseudomonas aeruginosa the translocon is composed of PopB and PopD, both of which before secretion are stabilized within the bacterial cytoplasm by a common chaperone, PcrH. In this work we characterize PopB, the major translocator, in both membrane-associated and PcrH-bound forms. By combining sucrose gradient centrifugation experiments, limited proteolysis, one-dimensional NMR, and β-lactamase reporter assays on eukaryotic cells, we show that PopB is stably inserted into bilayers with its flexible N-terminal domain and C-terminal tail exposed to the outside. In addition, we also report the crystal structure of the complex between PcrH and an N-terminal region of PopB (residues 51–59), which reveals that PopB lies within the concave face of PcrH, employing mostly backbone residues for contact. PcrH is thus the first chaperone whose structure has been solved in complex with both type III secretion systems translocators, revealing that both molecules employ the same surface for binding and excluding the possibility of formation of a ternary complex. The characterization of the major type III secretion system translocon component in both membrane-bound and chaperone-bound forms is a key step for the eventual development of antibacterials that block translocon assembly.  相似文献   

14.
15.
16.
The chemotactic response of wild-type Pseudomonas putida and P. tolaasii, and a phenotypic variant of each species, to Agaricus bisporus mycelial exudate was examined. Both P. putida, the bacterium responsible for initiating basidiome development of A. bisporus, and P. tolaasii, the causal organism of bacterial blotch disease of the mushroom, displayed a positive chemotactic response to Casamino acids and to A. bisporus mycelial exudate. The response was both dose- and time-dependent and marked differences were observed between the response time of the wild-type strains and their phenotypic variants. Phenotypic variants responded rapidly to both attractants and reached a maximum response after 10-20 min, whereas the wild-types took 45-60 min. The differences are partly explained by the more rapid swimming speed of the phenotypic variants. Both variants responded maximally to similar concentrations of Casamino acids and mycelial exudates. Investigations into the nature of the attractants contained in the mycelial exudate indicated that they are predominantly small (Mr less than 2000) thermostable compounds. Sugars present in the exudate did not elicit a chemotactic response in any isolate, but a mixture of 14 amino acids detected in the exudate accounted for between 50 and 75% of the chemotactic response of the fungal exudate.  相似文献   

17.
No significant difference (p > 0.05) was observed in the specific aminopeptidase activity (SAA) developed by Pseudomonas fluorescens, P. putida and Flavobacterium odoratum either growing at pH 5.0–6.5 or at 7 and 12 °C. Nevertheless, a significant difference was found when comparing the SAA of these organisms. The SAA of F. odoratum was lower than those of pseudomonads. The 4-nitroaniline test is reliable to estimate the G load of fresh food products.  相似文献   

18.
A number of Gram-negative pathogens utilize type III secretion systems (T3SSs) to inject bacterial effector proteins into the host. An important component of T3SSs is a conserved ATPase that captures chaperone-effector complexes and energizes their dissociation to facilitate effector translocation. To date, there has been limited work characterizing the chaperone-T3SS ATPase interaction despite it being a fundamental aspect of T3SS function. In this study, we present the 2.1 Å resolution crystal structure of the Salmonella enterica SPI-2-encoded ATPase, SsaN. Our structure revealed a local and functionally important novel feature in helix 10 that we used to define the interaction domain relevant to chaperone binding. We modeled the interaction between the multicargo chaperone, SrcA, and SsaN and validated this model using mutagenesis to identify the residues on both the chaperone and ATPase that mediate the interaction. Finally, we quantified the benefit of this molecular interaction on bacterial fitness in vivo using chromosomal exchange of wild-type ssaN with mutants that retain ATPase activity but no longer capture the chaperone. Our findings provide insight into chaperone recognition by T3SS ATPases and demonstrate the importance of the chaperone-T3SS ATPase interaction for the pathogenesis of Salmonella.  相似文献   

19.
The plant-pathogenic bacterium Xanthomonas campestris pv. vesicatoria employs a type III secretion (T3S) system to translocate bacterial effector proteins into eukaryotic host cells. The membrane-spanning secretion apparatus consists of 11 core components and several associated proteins with yet unknown functions. In this study, we analyzed the role of HrpB1, which was previously shown to be essential for T3S and the formation of the extracellular T3S pilus. We provide experimental evidence that HrpB1 localizes to the bacterial periplasm and binds to peptidoglycan, which is in agreement with its predicted structural similarity to the putative peptidoglycan-binding domain of the lytic transglycosylase Slt70 from Escherichia coli. Interaction studies revealed that HrpB1 forms protein complexes and binds to T3S system components, including the inner membrane protein HrcD, the secretin HrcC, the pilus protein HrpE, and the putative inner rod protein HrpB2. The analysis of deletion and point mutant derivatives of HrpB1 led to the identification of amino acid residues that contribute to the interaction of HrpB1 with itself and HrcD and/or to protein function. The finding that HrpB1 and HrpB2 colocalize to the periplasm and both interact with HrcD suggests that they are part of a periplasmic substructure of the T3S system.  相似文献   

20.
The plant pathogen Pseudomonas syringae causes disease by secreting a potentially large set of virulence proteins called effectors directly into host cells, their environment, or both, using a type III secretion system (T3SS). Most P. syringae effectors have a common upstream element called the hrp box, and their N-terminal regions have amino acids biases, features that permit their bioinformatic prediction. One of the most prominent biases is a positive serine bias. We previously used the truncated AvrRpt2(81-255) effector containing a serine-rich stretch from amino acids 81 to 100 as a T3SS reporter. Region 81 to 100 of this reporter does not contribute to the secretion or translocation of AvrRpt2 or to putative effector protein chimeras. Rather, the serine-rich region from the N-terminus of AvrRpt2 is important for protein accumulation in bacteria. Most of the N-terminal region (amino acids 15 to 100) is not essential for secretion in culture or delivery to plants. However, portions of this sequence may increase the efficiency of AvrRpt2 secretion, delivery to plants, or both. Two effectors previously identified with the AvrRpt2(81-255) reporter were secreted in culture independently of AvrRpt2, validating the use of the C terminus of AvrRpt2 as a T3SS reporter. Finally, using the reduced AvrRpt2(101-255) reporter, we confirmed seven predicted effectors from P. syringae pv. tomato DC3000, four from P. syringae pv. syringae B728a, and two from P. fluorescens SBW25.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号