首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Familial LCAT deficiency (FLD) is a rare genetic disorder of HDL metabolism, caused by loss-of-function mutations in the LCAT gene and characterized by a variety of symptoms including corneal opacities and kidney failure. Renal disease represents the leading cause of morbidity and mortality in FLD cases. However, the prognosis is not known and the rate of deterioration of kidney function is variable and unpredictable from patient to patient. In this article, we present data from a follow-up of the large Italian cohort of FLD patients, who have been followed for an average of 12 years. We show that renal failure occurs at the median age of 46 years, with a median time to a second recurrence of 10 years. Additionally, we identify high plasma unesterified cholesterol level as a predicting factor for rapid deterioration of kidney function. In conclusion, this study highlights the severe consequences of FLD, underlines the need of correct early diagnosis and referral of patients to specialized centers, and highlights the urgency for effective treatments to prevent or slow renal disease in patients with LCAT deficiency.  相似文献   

2.
卵磷脂:胆固醇酰基转移酶(lecithin:cholesterol acyltransferase,LCAT)参与胆固醇酯的合成并在高密度脂蛋白(high density lipoprotein,HDL)的代谢中起重要作用。遗传性LCAT缺陷症是一种以低HDL-胆固醇(HDL-C)为特点的罕见遗传疾病。近年来,LCAT在HDL-C代谢中以及在动脉粥样硬化发生和发展中的作用逐渐被本领域研究者所关注。本文就LCAT缺陷症的遗传学和生化学特点做一综述,重点阐述为何尽管HDL-C水平明显减低,LCAT突变携带者却并未发生早期动脉粥样硬化。  相似文献   

3.
LCAT is intimately involved in HDL maturation and is a key component of the reverse cholesterol transport (RCT) pathway which removes excess cholesterol molecules from the peripheral tissues to the liver for excretion. Patients with loss-of-function LCAT mutations exhibit low levels of HDL cholesterol and corneal opacity. Here we report the 2.65 Å crystal structure of the human LCAT protein. Crystallization required enzymatic removal of N-linked glycans and complex formation with a Fab fragment from a tool antibody. The crystal structure reveals that LCAT has an α/β hydrolase core with two additional subdomains that play important roles in LCAT function. Subdomain 1 contains the region of LCAT shown to be required for interfacial activation, while subdomain 2 contains the lid and amino acids that shape the substrate binding pocket. Mapping the naturally occurring mutations onto the structure provides insight into how they may affect LCAT enzymatic activity.  相似文献   

4.
5.
The relative contributions of ACAT2 and LCAT to the cholesteryl ester (CE) content of VLDL and LDL were measured. ACAT2 deficiency led to a significant decrease in the percentage of CE (37.2 +/- 2.1% vs. 3.9 +/- 0.8%) in plasma VLDL, with a concomitant increase in the percentage of triglyceride (33.0 +/- 3.2% vs. 66.7 +/- 2.5%). Interestingly, the absence of ACAT2 had no apparent effect on the percentage CE in LDL, whereas LCAT deficiency significantly decreased the CE percentage (38.6 +/- 4.0% vs. 54.6 +/- 1.9%) and significantly increased the phospholipid percentage (11.2 +/- 0.9% vs. 19.3 +/- 0.1%) of LDL. When both LCAT and ACAT2 were deficient, VLDL composition was similar to VLDL of the ACAT2-deficient mouse, whereas LDL was depleted in core lipids and enriched in surface lipids, appearing discoidal when observed by electron microscopy. We conclude that ACAT2 is important in the synthesis of VLDL CE, whereas LCAT is important in remodeling VLDL to LDL. Liver perfusions were performed, and perfusate apolipoprotein B accumulation rates in ACAT2-deficient mice were not significantly different from those of controls; perfusate VLDL CE decreased from 8.0 +/- 0.8% in controls to 0 +/- 0.7% in ACAT2-deficient mice. In conclusion, our data establish that ACAT2 provides core CE of newly secreted VLDL, whereas LCAT adds CE during LDL particle formation.  相似文献   

6.
A key step in plasma HDL maturation from discoidal to spherical particles is the esterification of cholesterol to cholesteryl ester, which is catalyzed by LCAT. HDL-like lipoproteins in cerebrospinal fluid (CSF) are also spherical, whereas nascent lipoprotein particles secreted from astrocytes are discoidal, suggesting that LCAT may play a similar role in the CNS. In plasma, apoA-I is the main LCAT activator, while in the CNS, it is believed to be apoE. apoE is directly involved in the pathological progression of Alzheimer’s disease, including facilitating β-amyloid (Aβ) clearance from the brain, a function that requires its lipidation by ABCA1. However, whether apoE particle maturation by LCAT is also required for Aβ clearance is unknown. Here we characterized the impact of LCAT deficiency on CNS lipoprotein metabolism and amyloid pathology. Deletion of LCAT from APP/PS1 mice resulted in a pronounced decrease of apoA-I in plasma that was paralleled by decreased apoA-I levels in CSF and brain tissue, whereas apoE levels were unaffected. Furthermore, LCAT deficiency did not increase Aβ or amyloid in APP/PS1 LCAT−/− mice. Finally, LCAT expression and plasma activity were unaffected by age or the onset of Alzheimer’s-like pathology in APP/PS1 mice. Taken together, these results suggest that apoE-containing discoidal HDLs do not require LCAT-dependent maturation to mediate efficient Aβ clearance.  相似文献   

7.
Reduction of plasma LCAT activity has been observed in several conditions in which the size of HDL particles is increased; however, the mechanism of this reduction remains elusive. We investigated the plasma activity, mass, and in vivo catabolism of LCAT and its association with HDL particles in human apolipoprotein A-I transgenic, scavenger receptor class B type I knockout (hA-ITg SR-BI-/-) mice. Compared with hA-ITg mice, hA-ITg SR-BI-/- mice had a 4-fold higher total plasma cholesterol concentration, which occurred predominantly in 13-18 nm diameter HDL particles, a significant reduction in plasma esterified cholesterol-total cholesterol (EC/TC) ratio, and significantly lower plasma LCAT activity, suggesting a decrease in LCAT protein. However, LCAT protein in plasma, hepatic mRNA for LCAT, and in vivo turnover of 35S-radiolabeled LCAT were similar in both genotypes of mice. HDL from hA-ITg SR-BI-/- mice was enriched in sphingomyelin (SM), relative to phosphatidylcholine, and had less associated [35S]LCAT radiolabel and endogenous LCAT activity compared with HDL from hA-ITg mice. We conclude that the decreased EC/TC ratio in the plasma of hA-ITg SR-BI-/- mice is attributed to a reduction in LCAT reactivity with SM-enriched HDL particles.  相似文献   

8.
LCAT is activated by apoA-I to form cholesteryl ester. We combined two structures, phospholipase A2 (PLA2) that hydrolyzes the ester bond at the sn-2 position of oxidized (short) acyl chains of phospholipid, and bacteriophage tubulin PhuZ, as C- and N-terminal templates, respectively, to create a novel homology model for human LCAT. The juxtaposition of multiple structural motifs matching experimental data is compelling evidence for the general correctness of many features of the model: i) The N-terminal 10 residues of the model, required for LCAT activity, extend the hydrophobic binding trough for the sn-2 chain 15–20 Å relative to PLA2. ii) The topography of the trough places the ester bond of the sn-2 chain less than 5 Å from the hydroxyl of the catalytic nucleophile, S181. iii) A β-hairpin resembling a lipase lid separates S181 from solvent. iv) S181 interacts with three functionally critical residues: E149, that regulates sn-2 chain specificity, and K128 and R147, whose mutations cause LCAT deficiency. Because the model provides a novel explanation for the complicated thermodynamic problem of the transfer of hydrophobic substrates from HDL to the catalytic triad of LCAT, it is an important step toward understanding the antiatherogenic role of HDL in reverse cholesterol transport.  相似文献   

9.
10.
In vitro studies have suggested that HDL and apoB-containing lipoproteins can provide cholesterol for synthesis of glucocorticoids. Here we assessed adrenal glucocorticoid function in LCAT knockout (KO) mice to determine the specific contribution of HDL-cholesteryl esters to adrenal glucocorticoid output in vivo. LCAT KO mice exhibit an 8-fold higher plasma free cholesterol-to-cholesteryl ester ratio (P < 0.001) and complete HDL-cholesteryl ester deficiency. ApoB-containing lipoprotein and associated triglyceride levels are increased in LCAT KO mice as compared with C57BL/6 control mice (44%; P < 0.05). Glucocorticoid-producing adrenocortical cells within the zona fasciculata in LCAT KO mice are devoid of neutral lipids. However, adrenal weights and basal corticosterone levels are not significantly changed in LCAT KO mice. In contrast, adrenals of LCAT KO mice show compensatory up-regulation of genes involved in cholesterol synthesis (HMG-CoA reductase; 516%; P < 0.001) and acquisition (LDL receptor; 385%; P < 0.001) and a marked 40–50% lower glucocorticoid response to adrenocorticotropic hormone exposure, endotoxemia, or fasting (P < 0.001 for all). In conclusion, our studies show that HDL-cholesteryl ester deficiency in LCAT KO mice is associated with a 40–50% lower adrenal glucocorticoid output. These findings further highlight the important novel role for HDL as cholesterol donor for the synthesis of glucocorticoids by the adrenals.  相似文献   

11.
Human plasma HDLs are classified on the basis of apolipoprotein composition into those that contain apolipoprotein A-I (apoA-I) without apoA-II [(A-I)HDL] and those containing apoA-I and apoA-II [(A-I/A-II)HDL]. ApoA-I enters the plasma as a component of discoidal particles, which are remodeled into spherical (A-I)HDL by LCAT. ApoA-II is secreted into the plasma either in the lipid-free form or as a component of discoidal high density lipoproteins containing apoA-II without apoA-I [(A-II)HDL]. As discoidal (A-II)HDL are poor substrates for LCAT, they are not converted into spherical (A-II)HDL. This study investigates the fate of apoA-II when it enters the plasma. Lipid-free apoA-II and apoA-II-containing discoidal reconstituted HDL [(A-II)rHDL] were injected intravenously into New Zealand White rabbits, a species that is deficient in apoA-II. In both cases, the apoA-II was rapidly and quantitatively incorporated into spherical (A-I)HDL to form spherical (A-I/A-II)HDL. These particles were comparable in size and composition to the (A-I/A-II)HDL in human plasma. Injection of lipid-free apoA-II and discoidal (A-II)rHDL was also accompanied by triglyceride enrichment of the endogenous (A-I)HDL and VLDL as well as the newly formed (A-I/A-II)HDL. We conclude that, irrespective of the form in which apoA-II enters the plasma, it is rapidly incorporated into spherical HDLs that also contain apoA-I to form (A-I/A-II)HDL.  相似文献   

12.
The objective of this study was to establish the role of apoA-IV, ABCA1, and LCAT in the biogenesis of apoA-IV-containing HDL (HDL-A-IV) using different mouse models. Adenovirus-mediated gene transfer of apoA-IV in apoA-I−/− mice did not change plasma lipid levels. ApoA-IV floated in the HDL2/HDL3 region, promoted the formation of spherical HDL particles as determined by electron microscopy, and generated mostly α- and a few pre-β-like HDL subpopulations. Gene transfer of apoA-IV in apoA-I−/− × apoE−/− mice increased plasma cholesterol and triglyceride levels, and 80% of the protein was distributed in the VLDL/IDL/LDL region. This treatment likewise generated α- and pre-β-like HDL subpopulations. Spherical and α-migrating HDL particles were not detectable following gene transfer of apoA-IV in ABCA1−/− or LCAT−/− mice. Coexpression of apoA-IV and LCAT in apoA-I−/− mice restored the formation of HDL-A-IV. Lipid-free apoA-IV and reconstituted HDL-A-IV promoted ABCA1 and scavenger receptor BI (SR-BI)-mediated cholesterol efflux, respectively, as efficiently as apoA-I and apoE. Our findings are consistent with a novel function of apoA-IV in the biogenesis of discrete HDL-A-IV particles with the participation of ABCA1 and LCAT, and may explain previously reported anti-inflammatory and atheroprotective properties of apoA-IV.  相似文献   

13.
Tangier disease (TD) is characterized by extremely low plasma levels of HDL, apoA-I and apoA-II due to very rapid catabolism. However, the risk of premature coronary heart disease (CHD) is not markedly increased in TD. In order to gain insight into reverse cholesterol transport in TD, we isolated LpA-I, LpA-I:A-II, LpA-II and LpA-IV particles from fasting plasma of 5 TD patients. LpA-I composition was similar to control LpA-I, but TD LpA-I had more LCAT and CETP activity (respectively, 0.35 ± 0.14 and 0.14 ± 0.04 μmol of cholesterol esterified/h/μg of protein, and 7 ± 2.5 and 1.4 ± 0.3 μmol of cholesteryl ester transferred/h/μg of protein). In contrast, TD LpA-I:A-II had abnormal composition, with a low molar ratio of apoA-I to apoA-II (0.2–1.33). In addition, LpA-I:A-II in TD contained a substantial amount of apoA-IV compared with control, making this particle an LpA-I:A-II:A-IV complex. LpA-I:A-II from normal plasma do not promote cholesterol efflux from adipocytes cells, whereas TD LpA-I:A-II:A-IV complexes promoted cholesterol efflux from these cells. Moreover LpA-I:A-II:A-IV complexes have more LCAT and CETP activity than control (respectively 1.2 ± 0.16 and 0.01 ± 0.01 μmol of cholesterol esterified/h/μg of protein and, 41 ± 3.7 and 1 ± 0.4 μmol of cholesteryl ester transferred /h/μg of protein). The LpA-II particle in TD represented in fact in LpA-II: A-IV complex (75% mol apoA-II and 22% mol apoA-IV). This particle did not promote cholesterol efflux, but LCAT and CETP activity were present. LpA-IV particles had the capacity to promote cholesterol efflux and had both LCAT and CETP activity. LpA-IV may contribute to maintain the reverse cholesterol transport in TD. Our results indicate the potential importance of apoA-IV in maintaining reverse cholesterol transport in TD. In spite of the low steady state HDL-cholesterol levels in TD, LpA-I, LpA-I: A-II: A-IV complex and LpA-IV appear to be active in reverse cholesterol transport and may help to prevent premature CHD in TD.  相似文献   

14.
Endothelial lipase (EL) plays an important physiological role in modulating HDL metabolism. Data suggest that plasma contains an inhibitor of EL, and previous studies have suggested that apolipoprotein A-II (apoA-II) inhibits the activity of several enzymes involved in HDL metabolism. Therefore, we hypothesized that apoA-II may reduce the ability of EL to influence HDL metabolism. To test this hypothesis, we determined the effect of EL expression on plasma phospholipase activity and HDL metabolism in human apoA-I and human apoA-I/A-II transgenic mice. Expression of EL in vivo resulted in lower plasma phospholipase activity and significantly less reduction of HDL-cholesterol, phospholipid, and apoA-I levels in apoA-I/A-II double transgenic mice compared with apoA-I single transgenic mice. We conclude that the presence of apoA-II on HDL particles inhibits the ability of EL to influence the metabolism of HDL in vivo.  相似文献   

15.
To evaluate functional and compositional properties of HDL in subjects from a kindred of genetic apoA-I deficiency, two homozygotes and six heterozygotes, with a nonsense mutation at APOA1 codon -2, Q[-2]X, were recruited together with age- and sex-matched healthy controls (n = 11). Homozygotes displayed undetectable plasma levels of apoA-I and reduced levels of HDL-cholesterol (HDL-C) and apoC-III (5.4% and 42.6% of controls, respectively). Heterozygotes displayed low HDL-C (21 ± 9 mg/dl), low apoA-I (79 ± 24 mg/dl), normal LDL-cholesterol (132 ± 25 mg/dl), and elevated TG (130 ± 45 mg/dl) levels. Cholesterol efflux capacity of ultracentrifugally isolated HDL subpopulations was reduced (up to −25%, P < 0.01, on a glycerophospholipid [GP] basis) in heterozygotes versus controls. Small, dense HDL3 and total HDL from heterozygotes exhibited diminished antioxidative activity (up to −48%, P < 0.001 on a total mass basis) versus controls. HDL subpopulations from both homozygotes and heterozygotes displayed altered chemical composition, with depletion in apoA-I, GP, and cholesteryl ester; enrichment in apoA-II, free cholesterol, and TG; and altered phosphosphingolipidome. The defective atheroprotective activities of HDL were correlated with altered lipid and apo composition. These data reveal that atheroprotective activities of HDL particles are impaired in homozygous and heterozygous apoA-I deficiency and are intimately related to marked alterations in protein and lipid composition.  相似文献   

16.
17.
LCAT, a plasma enzyme that esterifies cholesterol, has been proposed to play an antiatherogenic role, but animal and epidemiologic studies have yielded conflicting results. To gain insight into LCAT and the role of free cholesterol (FC) in atherosclerosis, we examined the effect of LCAT over- and underexpression in diet-induced atherosclerosis in scavenger receptor class B member I-deficient [Scarab(−/−)] mice, which have a secondary defect in cholesterol esterification. Scarab(−/−)×LCAT-null [Lcat(−/−)] mice had a decrease in HDL-cholesterol and a high plasma ratio of FC/total cholesterol (TC) (0.88 ± 0.033) and a marked increase in VLDL-cholesterol (VLDL-C) on a high-fat diet. Scarab(−/−)×LCAT-transgenic (Tg) mice had lower levels of VLDL-C and a normal plasma FC/TC ratio (0.28 ± 0.005). Plasma from Scarab(−/−)×LCAT-Tg mice also showed an increase in cholesterol esterification during in vitro cholesterol efflux, but increased esterification did not appear to affect the overall rate of cholesterol efflux or hepatic uptake of cholesterol. Scarab(−/−)×LCAT-Tg mice also displayed a 51% decrease in aortic sinus atherosclerosis compared with Scarab(−/−) mice (P < 0.05). In summary, we demonstrate that increased cholesterol esterification by LCAT is atheroprotective, most likely through its ability to increase HDL levels and decrease pro-atherogenic apoB-containing lipoprotein particles.  相似文献   

18.
The specifics of nascent HDL remodeling within the plasma compartment remain poorly understood. We developed an in vitro assay to monitor the lipid transfer between model nascent HDL (LpA-I) and plasma lipoproteins. Incubation of α-125I-LpA-I with plasma resulted in association of LpA-I with existing plasma HDL, whereas incubation with TD plasma or LDL resulted in conversion of α-125I-LpA-I to preβ-HDL. To further investigate the dynamics of lipid transfer, nascent LpA-I were labeled with cell-derived [3 H]cholesterol (UC) or [3H]phosphatidylcholine (PC) and incubated with plasma at 37°C. The majority of UC and PC were rapidly transferred to apolipoprotein B (apoB). Subsequently, UC was redistributed to HDL for esterification before being returned to apoB. The presence of a phospholipid transfer protein (PLTP) stimulator or purified PLTP promoted PC transfer to apoB. Conversely, PC transfer was abolished in plasma from PLTP−/− mice. Injection of 125I-LpA-I into rabbits resulted in a rapid size redistribution of 125I-LpA-I. The majority of [3H]UC from labeled r(HDL) was esterified in vivo within HDL, whereas a minority was found in LDL. These data suggest that apoB plays a major role in nascent HDL remodeling by accepting their lipids and donating UC to the LCAT reaction. The finding that nascent particles were depleted of their lipids and remodeled in the presence of plasma lipoproteins raises questions about their stability and subsequent interaction with LCAT.  相似文献   

19.
Apolipoprotein (apo) C-III is a marker protein of triacylglycerol (TG)-rich lipoproteins and high-density lipoproteins (HDL), and has been proposed as a risk factor of coronary heart disease. To compare the physiologic role of reconstituted HDL (rHDL) with or without apoC-III, we synthesized rHDL with molar ratios of apoA-I:apoC-III of 1:0, 1:0.5, 1:1, and 1:2. Increasing the apoC-III content in rHDL produced smaller rHDL particles with a lower number of apoA-I molecules. Furthermore, increasing the molar ratio of apoC-III in rHDL enhanced the surfactant-like properties and the ability to lyse dimyristoyl phosphatidylcholine. Furthermore, rHDL containing apoC-III was found to be more resistant to particle rearrangement in the presence of low-density lipoprotein (LDL) than rHDL that contained apoA-I alone. In addition, the lecithin:cholesterol acyltransferase (LCAT) activation ability was reduced as the apoC-III content of the rHDL increased; however, the CE transfer ability was not decreased by the increase of apoC-III. Finally, rHDL containing apoC-III aggravated the production of MDA in cell culture media, which led to increased cellular uptake of LDL. Thus, the addition of apoC-III to rHDL induced changes in the structural and functional properties of the rHDL, especially in particle size and rearrangement and LCAT activation. These alterations may lead to beneficial functions of HDL, which is involved in anti-atherogenic properties in the circulation.  相似文献   

20.
Rats were infused for 3.5 to 10 hrs with either red cells or plasma previously labelled in vivo by [3H]-cholesterol. Cholesterol specific radioactivities were measured in plasma, HDL, LDL and VLDL, and various tissues. Red cell infusions led to a higher labelling of free than of esterified cholesterol in the plasma of infused rats. The opposite situation was observed following plasma infusion. Comparison of free and esterified cholesterol specific radioactivities in each tissue showed that esterified cholesterol was transferred from plasma to all the tissues, except the adrenals. Study of the ratios of cholesterol specific radioactivities from one experimental group to the other in each tissue, made it possible to demonstrate clearly the occurence of hydrolysis within all the studied tissues except 5 of them where its existence remains uncertain (lung, heart, kidney, tendon, muscle) and of esterification in 3 tissues (adrenal, liver lung). In addition, ratios of cholesterol radioactivities (free/ester) were found to be identical in plasma and in 4 tissues, where neither hydrolysis nor esterification were detected (heart, muscle, kidney, tendon). This finding is an argument in favor of a simultaneous transport of free and esterified cholesterol from plasma into these 4 tissues and suggests that the entire lipoprotein particles can penetrate these tissues, with no specificity of one special class. In adrenal, unlike all other tissues: 1) the turnover of esterified cholesterol was achieved mostly by hydrolysis and esterification in situ; 2) a preferential lipoprotein class (LDL) was responsible for the transport of free cholesterol from the plasma.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号