首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Exosomes and other extracellular vesicles (EVs) participate in cell–cell communication. Herein, we isolated EVs from human plasma and demonstrated that these EVs activate cell signaling and promote neurite outgrowth in PC-12 cells. Analysis of human plasma EVs purified by sequential ultracentrifugation using tandem mass spectrometry indicated the presence of multiple plasma proteins, including α2-macroglobulin, which is reported to regulate PC-12 cell physiology. We therefore further purified EVs by molecular exclusion or phosphatidylserine affinity chromatography, which reduced plasma protein contamination. EVs subjected to these additional purification methods exhibited unchanged activity in PC-12 cells, even though α2-macroglobulin was reduced to undetectable levels. Nonpathogenic cellular prion protein (PrPC) was carried by human plasma EVs and essential for the effects of EVs on PC-12 cells, as EV-induced cell signaling and neurite outgrowth were blocked by the PrPC-specific antibody, POM2. In addition, inhibitors of the N-methyl-d-aspartate (NMDA) receptor (NMDA-R) and low-density lipoprotein receptor–related protein-1 (LRP1) blocked the effects of plasma EVs on PC-12 cells, as did silencing of Lrp1 or the gene encoding the GluN1 NMDA-R subunit (Grin1). These results implicate the NMDA-R–LRP1 complex as the receptor system responsible for mediating the effects of EV-associated PrPC. Finally, EVs harvested from rat astrocytes carried PrPC and replicated the effects of human plasma EVs on PC-12 cell signaling. We conclude that interaction of EV-associated PrPC with the NMDA-R–LRP1 complex in target cells represents a novel mechanism by which EVs may participate in intercellular communication in the nervous system.  相似文献   

2.
The transient receptor potential (TRPC) family of Ca2 + permeable, non-selective cation channels is abundantly expressed in the brain, and can function as store-operated (SOC) and store-independent channels depending on their interaction with the ER Ca2 + sensor STIM1. TRPC1 and TRPC5 have critical roles in neurite outgrowth, however which of their functions regulate neurite outgrowth is unknown. In this study, we investigated the effects of TRPC channels and their STIM1-induced SOC activity on neurite outgrowth of PC12 cells. We report that PC12 cell differentiation down-regulates TRPC5 expression, whereas TRPC1 expression is retained. TRPC1 and TRPC5 interact with STIM1 through the STIM1 ERM domain. Transfection of TRPC1 and TRPC5 increased the receptor-activated Ca2 + influx that was markedly augmented by the co-expression of STIM1. Topical expression of TRPC1 in PC12 cells markedly increased neurite outgrowth while that of TRPC5 suppressed neurite outgrowth. Suppression of neurite outgrowth by TRPC5 requires the channel function of TRPC5. However, strikingly, multiple lines of evidence show that the TRPC1-induced neurite outgrowth was independent of TRPC1-mediated Ca2 + influx. Thus, a) TRPC1 and TRPC5 similarly increased Ca2 + influx but only TRPC1 induced neurite outgrowth, b) the constitutively STIM1D76A mutant that activates Ca2 + influx by TRPC and Orai channels did not increase neurite outgrowth, c) co-expression of TRPC5 with TRPC1 suppressed the effect of TRPC1 on neurite outgrowth, d) and most notable, channel-dead pore mutant of TRPC1 increased neurite outgrowth to the same extent as TRPC1WT. Suppression of TRPC1-induced neurite outgrowth by TRPC5 was due to a marked reduction in the surface expression of TRPC1. We conclude that the regulation of neurite outgrowth by TRPC1 is independent of Ca2 + influx and TRPC1-promoted neurite outgrowth depends on the surface expression of TRPC1. It is likely that TRPC1 acts as a scaffold at the cell surface to assemble a signaling complex to stimulate neurite outgrowth.  相似文献   

3.
Previously we reported that Wnt3a-dependent neurite outgrowth in Ewing sarcoma family tumor cell lines was mediated by Frizzled3, Dishevelled (Dvl), and c-Jun N-terminal kinase (Endo, Y., Beauchamp, E., Woods, D., Taylor, W. G., Toretsky, J. A., Uren, A., and Rubin, J. S. (2008) Mol. Cell. Biol. 28, 2368–2379). Subsequently, we observed that Dvl2/3 phosphorylation correlated with neurite outgrowth and that casein kinase 1δ, one of the enzymes that mediate Wnt3a-dependent Dvl phosphorylation, was required for neurite extension (Greer, Y. E., and Rubin, J. S. (2011) J. Cell Biol. 192, 993–1004). However, the functional relevance of Dvl phosphorylation in neurite outgrowth was not established. Dvl1 has been shown by others to be important for axon specification in hippocampal neurons via an interaction with atypical PKCζ, but the role of Dvl phosphorylation was not evaluated. Here we report that Ewing sarcoma family tumor cells express PKCι but not PKCζ. Wnt3a stimulated PKCι activation and caused a punctate distribution of pPKCι in the neurites and cytoplasm, with a particularly intense signal at the centrosome. Knockdown of PKCι expression with siRNA reagents blocked neurite formation in response to Wnt3a. Aurothiomalate, a specific inhibitor of PKCι/Par6 binding, also suppressed neurite extension. Wnt3a enhanced the co-immunoprecipitation of endogenous PKCι and Dvl2. Although FLAG-tagged wild-type Dvl2 immunoprecipitated with PKCι, a phosphorylation-deficient Dvl2 derivative did not. This derivative also was unable to rescue neurite outgrowth when endogenous Dvl2/3 was suppressed by siRNA (González-Sancho, J. M., Greer, Y. E., Abrahams, C. L., Takigawa, Y., Baljinnyam, B., Lee, K. H., Lee, K. S., Rubin, J. S., and Brown, A. M. (2013) J. Biol. Chem. 288, 9428–9437). Taken together, these results suggest that site-specific Dvl2 phosphorylation is required for Dvl2 association with PKCι. This interaction is likely to be one of the mechanisms essential for Wnt3a-dependent neurite outgrowth.  相似文献   

4.
CHL1 plays a dual role by either promoting or inhibiting neuritogenesis. We report here that neuritogenesis-promoting ligand-dependent cell surface clustering of CHL1 induces palmitoylation and lipid raft-dependent endocytosis of CHL1. We identify βII spectrin as a binding partner of CHL1, and we show that partial disruption of the complex between CHL1 and βII spectrin accompanies CHL1 endocytosis. Inhibition of the association of CHL1 with lipid rafts by pharmacological disruption of lipid rafts or by mutation of cysteine 1102 within the intracellular domain of CHL1 reduces endocytosis of CHL1. Endocytosis of CHL1 is also reduced by nifedipine, an inhibitor of the L-type voltage-dependent Ca2+ channels. CHL1-dependent neurite outgrowth is reduced by inhibitors of lipid raft assembly, inhibitors of voltage-dependent Ca2+ channels, and overexpression of CHL1 with mutated cysteine Cys-1102. Our results suggest that ligand-induced and lipid raft-dependent regulation of CHL1 adhesion via Ca2+-dependent remodeling of the CHL1-βII spectrin complex and CHL1 endocytosis are required for CHL1-dependent neurite outgrowth.  相似文献   

5.
Pih1 is an unstable protein and a subunit of the R2TP complex that, in yeast Saccharomyces cerevisiae, also contains the helicases Rvb1, Rvb2, and the Hsp90 cofactor Tah1. Pih1 and the R2TP complex are required for the box C/D small nucleolar ribonucleoprotein (snoRNP) assembly and ribosomal RNA processing. Purified Pih1 tends to aggregate in vitro. Molecular chaperone Hsp90 and its cochaperone Tah1 are required for the stability of Pih1 in vivo. We had shown earlier that the C terminus of Pih1 destabilizes the protein and that the C terminus of Tah1 binds to the Pih1 C terminus to form a stable complex. Here, we analyzed the secondary structure of the Pih1 C terminus and identified two intrinsically disordered regions and five hydrophobic clusters. Site-directed mutagenesis indicated that one predicted intrinsically disordered region IDR2 is involved in Tah1 binding, and that the C terminus of Pih1 contains multiple destabilization or degron elements. Additionally, the Pih1 N-terminal domain, Pih11–230, was found to be able to complement the physiological role of full-length Pih1 at 37 °C. Pih11–230 as well as a shorter Pih1 N-terminal fragment Pih11–195 is able to bind Rvb1/Rvb2 heterocomplex. However, the sequence between the two disordered regions in Pih1 significantly enhances the Pih1 N-terminal domain binding to Rvb1/Rvb2. Based on these data, a model of protein-protein interactions within the R2TP complex is proposed.  相似文献   

6.
The small GTP-binding protein Rho has been implicated in the control of neuronal morphology. In N1E-115 neuronal cells, the Rho-inactivating C3 toxin stimulates neurite outgrowth and prevents actomyosin-based neurite retraction and cell rounding induced by lysophosphatidic acid (LPA), sphingosine-1-phosphate, or thrombin acting on their cognate G protein–coupled receptors. We have identified a novel putative GDP/GTP exchange factor, RhoGEF (190 kD), that interacts with both wild-type and activated RhoA, but not with Rac or Cdc42. RhoGEF, like activated RhoA, mimics receptor stimulation in inducing cell rounding and in preventing neurite outgrowth. Furthermore, we have identified a 116-kD protein, p116Rip, that interacts with both the GDP- and GTP-bound forms of RhoA in N1E-115 cells. Overexpression of p116Rip stimulates cell flattening and neurite outgrowth in a similar way to dominant-negative RhoA and C3 toxin. Cells overexpressing p116Rip fail to change their shape in response to LPA, as is observed after Rho inactivation. Our results indicate that (a) RhoGEF may link G protein–coupled receptors to RhoA activation and ensuing neurite retraction and cell rounding; and (b) p116Rip inhibits RhoA-stimulated contractility and promotes neurite outgrowth.  相似文献   

7.
Disrupted-In-Schizophrenia-1 (DISC1), originally identified at the breakpoint of a chromosomal translocation that is linked to a rare familial schizophrenia, has been genetically implicated in schizophrenia in other populations. Schizophrenia involves subtle cytoarchitectural abnormalities that arise during neurodevelopment, but the underlying molecular mechanisms are unclear. Here, we demonstrate that DISC1 is a component of the microtubule-associated dynein motor complex and is essential for maintaining the complex at the centrosome, hence contributing to normal microtubular dynamics. Carboxy-terminal-truncated mutant DISC1 (mutDISC1), which results from a chromosomal translocation, functions in a dominant-negative manner by redistributing wild-type DISC1 through self-association and by dissociating the DISC1-dynein complex from the centrosome. Consequently, either depletion of endogenous DISC1 or expression of mutDISC1 impairs neurite outgrowth in vitro and proper development of the cerebral cortex in vivo. These results indicate that DISC1 is involved in cerebral cortex development, and suggest that loss of DISC1 function may underlie neurodevelopmental dysfunction in schizophrenia.  相似文献   

8.
Receptor protein tyrosine phosphatase α (RPTPα) phosphatase activity is required for intracellular signaling cascades that are activated in motile cells and growing neurites. Little is known, however, about mechanisms that coordinate RPTPα activity with cell behavior. We show that clustering of neural cell adhesion molecule (NCAM) at the cell surface is coupled to an increase in serine phosphorylation and phosphatase activity of RPTPα. NCAM associates with T- and L-type voltage-dependent Ca2+ channels, and NCAM clustering at the cell surface results in Ca2+ influx via these channels and activation of NCAM-associated calmodulin-dependent protein kinase IIα (CaMKIIα). Clustering of NCAM promotes its redistribution to lipid rafts and the formation of a NCAM–RPTPα–CaMKIIα complex, resulting in serine phosphorylation of RPTPα by CaMKIIα. Overexpression of RPTPα with mutated Ser180 and Ser204 interferes with NCAM-induced neurite outgrowth, which indicates that neurite extension depends on NCAM-induced up-regulation of RPTPα activity. Thus, we reveal a novel function for a cell adhesion molecule in coordination of cell behavior with intracellular phosphatase activity.  相似文献   

9.
10.
LAMTOR2 (p14), a part of the larger LAMTOR/Ragulator complex, plays a crucial role in EGF-dependent activation of p42/44 mitogen-activated protein kinases (MAPK, ERK1/2). In this study, we investigated the role of LAMTOR2 in nerve growth factor (NGF)-mediated neuronal differentiation. Stimulation of PC12 (rat adrenal pheochromocytoma) cells with NGF is known to activate the MAPK. Pharmacological inhibition of MEK1 as well as siRNA–mediated knockdown of both p42 and p44 MAPK resulted in inhibition of neurite outgrowth. Contrary to expectations, siRNA–mediated knockdown of LAMTOR2 effectively augmented neurite formation and neurite length of PC12 cells. Ectopic expression of a siRNA-resistant LAMTOR2 ortholog reversed this phenotype back to wildtype levels, ruling out nonspecific off-target effects of this LAMTOR2 siRNA approach. Mechanistically, LAMTOR2 siRNA treatment significantly enhanced NGF-dependent MAPK activity, and this effect again was reversed upon expression of the siRNA-resistant LAMTOR2 ortholog. Studies of intracellular trafficking of the NGF receptor TrkA revealed a rapid colocalization with early endosomes, which was modulated by LAMTOR2 siRNA. Inhibition of LAMTOR2 and concomitant destabilization of the remaining members of the LAMTOR complex apparently leads to a faster release of the TrkA/MAPK signaling module and nuclear increase of activated MAPK. These results suggest a modulatory role of the MEK1 adapter protein LAMTOR2 in NGF-mediated MAPK activation required for induction of neurite outgrowth in PC12 cells.  相似文献   

11.
Neural cell adhesion molecules composed of immunoglobulin and fibronectin type III-like domains have been implicated in cell adhesion, neurite outgrowth, and fasciculation. Axonin-1 and Ng cell adhesion molecule (NgCAM), two molecules with predominantly axonal expression exhibit homophilic interactions across the extracellular space (axonin- 1/axonin-1 and NgCAM/NgCAM) and a heterophilic interaction (axonin-1–NgCAM) that occurs exclusively in the plane of the same membrane (cis-interaction). Using domain deletion mutants we localized the NgCAM homophilic binding in the Ig domains 1-4 whereas heterophilic binding to axonin-1 was localized in the Ig domains 2-4 and the third FnIII domain. The NgCAM–NgCAM interaction could be established simultaneously with the axonin-1–NgCAM interaction. In contrast, the axonin-1–NgCAM interaction excluded axonin-1/axonin-1 binding. These results and the examination of the coclustering of axonin-1 and NgCAM at cell contacts, suggest that intercellular contact is mediated by a symmetric axonin-12/NgCAM2 tetramer, in which homophilic NgCAM binding across the extracellular space occurs simultaneously with a cis-heterophilic interaction of axonin-1 and NgCAM. The enhanced neurite fasciculation after overexpression of NgCAM by adenoviral vectors indicates that NgCAM is the limiting component for the formation of the axonin-12/NgCAM2 complexes and, thus, neurite fasciculation in DRG neurons.  相似文献   

12.
Dishevelled (Dvl) proteins are intracellular effectors of Wnt signaling that have essential roles in both canonical and noncanonical Wnt pathways. It has long been known that Wnts stimulate Dvl phosphorylation, but relatively little is known about its functional significance. We have previously reported that both Wnt3a and Wnt5a induce Dvl2 phosphorylation that is associated with an electrophoretic mobility shift and loss of recognition by monoclonal antibody 10B5. In the present study, we mapped the 10B5 epitope to a 16-amino acid segment of human Dvl2 (residues 594–609) that contains four Ser/Thr residues. Alanine substitution of these residues (P4m) eliminated the mobility shift induced by either Wnt3a or Wnt5a. The Dvl2 P4m mutant showed a modest increase in canonical Wnt/β-catenin signaling activity relative to wild type. Consistent with this finding, Dvl2 4Pm preferentially localized to cytoplasmic puncta. In contrast to wild-type Dvl2, however, the P4m mutant was unable to rescue Wnt3a-dependent neurite outgrowth in TC-32 cells following suppression of endogenous Dvl2/3. Earlier work has implicated casein kinase 1δ/ϵ as responsible for the Dvl mobility shift, and a CK1δ in vitro kinase assay confirmed that Ser594, Thr595, and Ser597 of Dvl2 are CK1 targets. Alanine substitution of these three residues was sufficient to abrogate the Wnt-dependent mobility shift. Thus, we have identified a cluster of Ser/Thr residues in the C-terminal domain of Dvl2 that are Wnt-induced phosphorylation (WIP) sites. Our results indicate that phosphorylation at the WIP sites reduces Dvl accumulation in puncta and attenuates β-catenin signaling, whereas it enables noncanonical signaling that is required for neurite outgrowth.  相似文献   

13.
Protein aggregation is seen as a general hallmark of chronic, degenerative brain conditions like, for example, in the neurodegenerative diseases Alzheimer''s disease (Aβ, tau), Parkinson''s Disease (α-synuclein), Huntington''s disease (polyglutamine, huntingtin), and others. Protein aggregation is thought to occur due to disturbed proteostasis, i.e. the imbalance between the arising and degradation of misfolded proteins. Of note, the same proteins are found aggregated in sporadic forms of these diseases that are mutant in rare variants of familial forms.Schizophrenia is a chronic progressive brain condition that in many cases goes along with a permanent and irreversible cognitive deficit. In a candidate gene approach, we investigated whether Disrupted-in-schizophrenia 1 (DISC1), a gene cloned in a Scottish family with linkage to chronic mental disease1, 2, could be found as insoluble aggregates in the brain of sporadic cases of schizophrenia3. Using the SMRI CC, we identified in approximately 20 % of cases with CMD but not normal controls or patients with neurodegenerative diseases sarkosyl-insoluble DISC1 immunoreactivity after biochemical fractionation. Subsequent studies in vitro revealed that the aggregation propensity of DISC1 was influenced by disease-associated polymorphism S704C4, and that DISC1 aggresomes generated in vitro were cell-invasive5, similar to what had been shown for Aβ6, tau7-9, α-synuclein10, polyglutamine11, or SOD1 aggregates12. These findings prompted us to propose that at least a subset of cases with CMD, those with aggregated DISC1 might be protein conformational disorders. Here we describe how we generate DISC1 aggresomes in mammalian cells, purify them on a sucrose gradient and use them for cell-invasiveness studies. Similarly, we describe how we generate an exclusively multimeric C-terminal DISC1 fragment, label and purify it for cell invasiveness studies. Using the recombinant multimers of DISC1 we achieve similar cell invasiveness as for a similarly labeled synthetic α-synuclein fragment. We also show that this fragment is taken up in vivo when stereotactically injected into the brain of recipient animals.  相似文献   

14.
The Skp1–Cul1–F-box protein (SCF) complex is one of the most well characterized types of ubiquitin ligase (E3), with the E3 activity of the complex being regulated in part at the level of complex formation. Fbxl3 is an F-box protein that is responsible for the ubiquitylation and consequent degradation of cryptochromes (Crys) and thus regulates oscillation of the circadian clock. Here we show that formation of the SCFFbxl3 complex is regulated by substrate binding in vivo. Fbxl3 did not associate with Skp1 and Cul1 to a substantial extent in transfected mammalian cells. Unexpectedly, however, formation of the SCFFbxl3 complex was markedly promoted by forced expression of its substrate Cry1 in these cells. A mutant form of Fbxl3 that does not bind to Cry1 was unable to form an SCF complex, suggesting that interaction of Cry1 with Fbxl3 is essential for formation of SCFFbxl3. In contrast, recombinant Fbxl3 associated with recombinant Skp1 and Cul1 in vitro even in the absence of recombinant Cry1. Domain-swap analysis revealed that the COOH-terminal leucine-rich repeat domain of Fbxl3 attenuates the interaction of Skp1, suggesting that a yet unknown protein associated with the COOH-terminal domain of Fbxl3 and inhibited SCF complex formation. Our results thus provide important insight into the regulation of both SCF ubiquitin ligase activity and circadian rhythmicity.  相似文献   

15.
VP1 is the major coat protein of murine polyomavirus and forms virus-like particles (VLPs) in vitro. VLPs consist of 72 pentameric VP1 subunits held together by a terminal clamp structure that is further stabilized by disulfide bonds and chelation of calcium ions. Yeast-derived VLPs (yVLPs) assemble intracellularly in vivo during recombinant protein production. These in vivo assembled yVLPs differ in several properties from VLPs assembled in vitro from bacterially produced pentamers. We found several intermolecular disulfide linkages in yVLPs involving 5 of the 6 cysteines of VP1 (Cys115–Cys20, Cys12–Cys20, Cys16–Cys16, Cys12/ Cys16–Cys115, and Cys274–Cys274), indicating a highly coordinated disulfide network within the in vivo assembled particles involving the N-terminal region of VP1. Cryoelectron microscopy revealed structured termini not resolved in the published crystal structure of the bacterially expressed VLP that appear to clamp the pentameric subunits together. These structural features are probably the reason for the observed higher stability of in vivo assembled yVLPs compared with in vitro assembled bacterially expressed VLPs as monitored by increased thermal stability, higher resistance to trypsin cleavage, and a higher activation enthalpy of the disassembly reaction. This high stability is decreased following disassembly of yVLPs and subsequent in vitro reassembly, suggesting a role for cellular components in optimal assembly.  相似文献   

16.
Microtubule affinity-regulating kinase 2 (MARK2)/PAR-1b and protein kinase A (PKA) are both involved in the regulation of microtubule stability and neurite outgrowth, but whether a direct cross-talk exists between them remains unclear. Here, we found the disruption of microtubule and neurite outgrowth induced by MARK2 overexpression was blocked by active PKA. The interaction between PKA and MARK2 was confirmed by coimmunoprecipitation and immunocytochemistry both in vitro and in vivo. PKA was found to inhibit MARK2 kinase activity by phosphorylating a novel site, serine 409. PKA could not reverse the microtubule disruption effect induced by a serine 409 to alanine (Ala) mutant of MARK2 (MARK2 S409A). In contrast, mutation of MARK2 serine 409 to glutamic acid (Glu) (MARK2 S409E) did not affect microtubule stability and neurite outgrowth. We propose that PKA functions as an upstream inhibitor of MARK2 in regulating microtubule stability and neurite outgrowth by directly interacting and phosphorylating MARK2.  相似文献   

17.
The extracellular pigment epithelium-derived factor (PEDF) displays retina survival activity by interacting with receptor proteins on cell surfaces. We have previously reported that PEDF binds and stimulates PEDF receptor (PEDF-R), a transmembrane phospholipase. However, the PEDF binding site of PEDF-R and its involvement in survival activity have not been identified. The purpose of this work is to identify a biologically relevant ligand-binding site on PEDF-R. PEDF bound the PEDF-R ectodomain L4 (Leu159–Met325) with affinity similar to the full-length PEDF-R (Met1–Leu504). Binding assays using synthetic peptides spanning L4 showed that PEDF selectively bound E5b (Ile193–Leu232) and P1 (Thr210–Leu249) peptides. Recombinant C-terminal truncated PEDF-R4 (Met1–Leu232) and internally truncated PEDF-R and PEDF-R4 (ΔHis203–Leu232) retained phospholipase activity of the full-length PEDF-R. However, PEDF-R polypeptides without the His203–Leu232 region lost the PEDF affinity that stimulated their enzymatic activity. Cell surface labeling showed that PEDF-R is present in the plasma membranes of retina cells. Using siRNA to selectively knock down PEDF-R in retina cells, we demonstrated that PEDF-R is essential for PEDF-mediated cell survival and antiapoptotic activities. Furthermore, preincubation of PEDF with P1 and E5b peptides blocked the PEDF·PEDF-R-mediated retina cell survival activity, implying that peptide binding to PEDF excluded ligand-receptor interactions on the cell surface. Our findings establish that PEDF-R is required for the survival and antiapoptotic effects of PEDF on retina cells and has determinants for PEDF binding within its L4 ectodomain that are critical for enzymatic stimulation.  相似文献   

18.
TROY can functionally substitute p75 to comprise the Nogo receptor complex, which transduces the inhibitory signal of myelin-associated inhibitory factors on axon regeneration following CNS injury. The inhibition of neurite extension relies on TROY-dependent RhoA activation, but how TROY activates RhoA remains unclear. Here, we firstly identified Rho guanine nucleotide dissociation inhibitor α (RhoGDIα) as a binding partner of TROY using GST pull-down combined with two-dimensional gel electrophoresis and mass spectra analysis. The interaction was further confirmed by coimmunoprecipitation in vitro and in vivo. Deletion mutagenesis revealed that two regions of the TROY intracellular domain (amino acids 234–256 and 321–350) were essential for the interaction with RhoGDIα. Secondly, TROY and RhoGDIα were coexpressed in postnatal dorsal root ganglion neurons, cortex neurons, and cerebellar granule neurons (CGNs). Thirdly, TROY/RhoGDIα association was potentiated by Nogo-66 and was independent of p75/RhoGDIα interaction. Fourthly, TROY/RhoGDIα interaction was still able to activate RhoA when p75 was deficient. Furthermore, RhoA activation was decreased dramatically when TROY was knocked down in p75-deficient CGNs cells. Finally, RhoGDIα overexpression abolished RhoA activation and following neurite outgrowth inhibition by Nogo-66 in both wild-type and p75-deficient CGNs. These results showed that the association of RhoGDIα with TROY contributed to TROY-dependent RhoA activation and neurite outgrowth inhibition after Nogo-66 stimulation.  相似文献   

19.
20.
The cell adhesion molecule L1 is a potent inducer of neurite outgrowth and it has been implicated in X-linked hydrocephalus and related neurological disorders. To investigate the mechanisms of neurite outgrowth stimulated by L1, attempts were made to identify the neuritogenic sites in L1. Fusion proteins containing different segments of the extracellular region of L1 were prepared and different neuronal cells were assayed on substrate-coated fusion proteins. Interestingly, both immunoglobulin (Ig)-like domains 2 and 6 (Ig2, Ig6) promoted neurite outgrowth from dorsal root ganglion cells, whereas neural retinal cells responded only to Ig2. L1 Ig2 contains a previously identified homophilic binding site, whereas L1 Ig6 contains an Arg-Gly-Asp (RGD) sequence. The neuritogenic activity of Ig6 was abrogated by mutations in the RGD site. The addition of RGD-containing peptides also inhibited the promotion of neurite outgrowth from dorsal root ganglion cells by glutathione S-transferase-Ig6, implicating the involvement of an integrin. The monoclonal antibody LM609 against αvβ3 integrin, but not an anti-β1 antibody, inhibited the neuritogenic effects of Ig6. These data thus provide the first evidence that the RGD motif in L1 Ig6 is capable of promoting neurite outgrowth via interaction with the αvβ3 integrin on neuronal cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号