首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The dextranase added in current commercial dextranase-containing mouthwashes is largely from fungi. However, fungal dextranase has shown much higher optimum temperature than bacterial dextranase and relatively low activity when used in human oral cavities. Bacterial dextranase has been considered to be more effective and suitable for dental caries prevention. In this study, a dextranase (Dex410) from marine Arthrobacter sp. was purified and characterized. Dex410 is a 64-kDa endoglycosidase. The specific activity of Dex410 was 11.9 U/mg at optimum pH 5.5 and 45 °C. The main end-product of Dex410 was isomaltotriose, isomaltoteraose, and isomaltopentaose by hydrolyzing dextran T2000. In vitro studies showed that Dex410 effectively inhibited the Streptococcus mutans biofilm growth in coverage, biomass, and water-soluble glucan (WSG) by more than 80, 90, and 95 %, respectively. The animal experiment revealed that for short-term use (1.5 months), both Dex410 and the commercial mouthwash Biotene (Laclede Professional Products, Gardena, CA, USA) had a significant inhibitory effect on caries (p = 0.0008 and 0.0001, respectively), while for long-term use (3 months), only Dex410 showed significant inhibitory effect on dental caries (p = 0.005). The dextranase Dex410 from a marine-derived Arthrobacter sp. strain possessed the enzyme properties suitable to human oral environment and applicable to oral hygiene products.  相似文献   

2.
Thermotolerant Paenibacillus strain Dex70-1B and unidentified strain Dex70-34 produce thermoactive dextran-degrading enzymes. Plasmid-based genomic DNA libraries constructed from mixed bacterial cultures containing Dex70-1B or Dex70-34 were screened for the ability to confer dextranolytic activity at 70°C onto Escherichia coli. One gene, designated dex1, was isolated from each strain. The Dex70-1B and Dex70-34 dex1 gene sequences were non-identical, and encoded proteins containing 597 (Mr 68.6 kDa) and 600 amino acids (Mr 69.2 kDa), respectively. The Dex1 amino acid sequences were most similar to one another, and formed a new clade among the family 66 glycosyl hydrolase sequences. Expression of the Dex1 proteins in E. coli produced dextranolytic activity that converted ethanol-insoluble blue dextran into an ethanol-soluble form, suggestive of endodextranases (EC 3.2.1.11). Both enzymes were most active at about 60°C and pH 5.5, and retained more than 70% maximal activity after incubation at 57°C for 9.5 h in the absence of substrate.  相似文献   

3.
A novel endodextranase from Paenibacillus sp. (Paenibacillus sp. dextranase; PsDex) was found to mainly produce isomaltotetraose and small amounts of cycloisomaltooligosaccharides (CIs) with a degree of polymerization of 7–14 from dextran. The 1,696-amino acid sequence belonging to the glycosyl hydrolase family 66 (GH-66) has a long insertion (632 residues; Thr451–Val1082), a portion of which shares identity (35% at Ala39–Ser1304 of PsDex) with Pro32–Ala755 of CI glucanotransferase (CITase), a GH-66 enzyme that catalyzes the formation of CIs from dextran. This homologous sequence (Val837–Met932 for PsDex and Tyr404–Tyr492 for CITase), similar to carbohydrate-binding module 35, was not found in other endodextranases (Dexs) devoid of CITase activity. These results support the classification of GH-66 enzymes into three types: (i) Dex showing only dextranolytic activity, (ii) Dex catalyzing hydrolysis with low cyclization activity, and (iii) CITase showing CI-forming activity with low dextranolytic activity. The fact that a C-terminal truncated enzyme (having Ala39–Ser1304) has 50% wild-type PsDex activity indicates that the C-terminal 392 residues are not involved in hydrolysis. GH-66 enzymes possess four conserved acidic residues (Asp189, Asp340, Glu412, and Asp1254 of PsDex) of catalytic candidates. Their amide mutants decreased activity (1/1, 500 to 1/40, 000 times), and D1254N had 36% activity. A chemical rescue approach was applied to D189A, D340G, and E412Q using α-isomaltotetraosyl fluoride with NaN3. D340G or E412Q formed a β- or α-isomaltotetraosyl azide, respectively, strongly indicating Asp340 and Glu412 as a nucleophile and acid/base catalyst, respectively. Interestingly, D189A synthesized small sized dextran from α-isomaltotetraosyl fluoride in the presence of NaN3.  相似文献   

4.
Previous studies have shown that heparin induces vascular relaxation via integrin-dependent nitric oxide (NO)-mediated activation of the muscarinic receptor. The aim of this study was to identify the structural features of heparin that are necessary for the induction of vasodilatation. To address this issue, we tested heparin from various sources for their vasodilatation activities in the rat aorta ring. Structural and chemical characteristics of heparin, such as its molecular weight and substitution pattern, did not show a direct correlation with the vasodilation activity. Principal component analysis (PCA) of circular dichroism (CD), (1)H-nuclear magnetic resonance (NMR) and vasodilation activity measurements confirmed that there is no direct relationship between the physico-chemical nature and vasodilation activity of the tested heparin samples. To further understand these observations, unfractionated heparin (UFH) from bovine intestinal mucosa, which showed the highest relaxation effect, was chemically modified. Interestingly, non-specific O- and N-desulfation of heparin reduced its anticoagulant, antithrombotic, and antihemostatic activities, but had no effect on its ability to induce vasodilation. On the other hand, chemical reduction of the carboxyl groups abolished heparin-induced vasodilation and reduced the affinity of heparin toward the extracellular matrix (ECM). In addition, dextran and dextran sulfate (linear non-sulfated and highly sulfated polysaccharides, respectively) did not induce significant relaxation, showing that the vasodilation activity of polysaccharides is neither charge-dependent nor backbone unspecific. Our results suggest that desulfated heparin molecules may be used as vasoactive agents due to their low side effects.  相似文献   

5.
Genes encoding dextranolytic enzymes were isolated from Paenibacillus strains Dex40-8 and Dex50-2. Single, similar but non-identical dex1 genes were isolated from each strain, and a more divergent dex2 gene was isolated from strain Dex50-2. The protein deduced from the Dex40-8 dex1 gene sequence had 716 amino acids, with a predicted Mr of 80.8 kDa. The proteins deduced from the Dex50-2 dex1 and dex2 gene sequences had 905 and 596 amino acids, with predicted Mr of 100.1 kDa and 68.3 kDa, respectively. The deduced amino acid sequences of all three dextranolytic proteins had similarity to family 66 glycosyl hydrolases and were predicted to possess cleavable N-terminal signal peptides. Homology searches suggest that the Dex40-8 and Dex50-2 Dex1 proteins have one and two copies, respectively, of a carbohydrate-binding module similar to CBM_4_9 (pfam02018.11). The Dex50-2 Dex2 deduced amino acid sequence had highest sequence similarity to thermotolerant dextranases from thermophilic Paenibacillus strains, while the Dex40-8 and Dex50-2 Dex1 deduced protein sequences formed a distinct sequence clade among the family 66 proteins. Examination of seven Paenibacillus strains, using a polymerase chain reaction-based assay, indicated that multiple family 66 genes are common within this genus. The three recombinant proteins expressed in Escherichia coli possessed dextranolytic activity and were able to convert ethanol-insoluble blue dextran into an ethanol-soluble product, indicating they are endodextranases (EC 3.2.1.11). The reaction catalysed by each enzyme had a distinct temperature and pH dependence.  相似文献   

6.

Background

Low Molecular Weight Heparins (LMWH) are at least as effective antithrombotic drugs as Unfractionated Heparin (UFH). However, it is still unclear whether the safety profiles of LMWH and UFH differ. We performed a systematic review to compare the bleeding risk of fixed dose subcutaneous LMWH and adjusted dose UFH for treatment of venous thromboembolism (VTE) or acute coronary syndromes (ACS). Major bleeding was the primary end point.

Methods

Electronic databases (MEDLINE, EMBASE, and the Cochrane Library) were searched up to May 2010 with no language restrictions. Randomized controlled trials in which subcutaneous LMWH were compared to intravenous UFH for the treatment of acute thrombotic events were selected. Two reviewers independently screened studies and extracted data on study design, study quality, incidence of major bleeding, patients’ characteristics, type, dose and number of daily administrations of LMWH, co-treatments, study end points and efficacy outcome. Pooled odds ratios (OR) and 95% confidence intervals (CI) were calculated using the random effects model.

Results

Twenty-seven studies were included. A total of 14,002 patients received UFH and 14,635 patients LMWH. Overall, no difference in major bleeding was observed between LMWH patients and UFH (OR = 0.79, 95% CI 0.60–1.04). In patients with VTE LMWH appeared safer than UFH, (OR = 0.68, 95% CI 0.47–1.00).

Conclusion

The results of our systematic review suggest that the use of LMWH in the treatment of VTE might be associated with a reduction in major bleeding compared with UFH. The choice of which heparin to use to minimize bleeding risk must be based on the single patient, taking into account the bleeding profile of different heparins in different settings.  相似文献   

7.
The Limulus test has been considered specific for the presence of bacterial endotoxins. To synthesize a simple model of endotoxin, palmitoyldextran phosphate was prepared by modification of dextran by palmitoylation and phosphorylation. The present studies indicated that a variety of polysaccharide derivatives, such as palmitoyldextran phosphate, palmitoyldextran, and dextran phosphate, give a positive Limulus test and show pyrogenic activity, except for low molecular dextran derivatives. On the other hand, polysaccharides, such as dextran, starch (soluble), chitosan, xylan, and lentinan, were negative in these assays. The gelation reaction of Limulus lysate by modified dextran derivatives may depend on the molecular weight or modification of polysaccharides by palmitoylation and/or phosphorylation to a great extent.  相似文献   

8.
《Carbohydrate research》1986,148(1):101-107
A novel method has been developed for the coupling of modified polysaccharides to proteins or other amines. Chloroacetaldehyde dimethyl acetal has been used for the introduction of O-(2,2-dimethoxyethyl) groups into amylose, dextran, and a linear (1→3)-β-d-glucan. In amylose and the (1→3)-β-d-glucan, these groups were attached preponderantly at O-6 and in dextran at O-2. Mild treatment with acid then gave polysaccharide derivatives substituted with aldehyde groups which were coupled in good yields to proteins and other amines by reductive amination with sodium cyanoborohydride in aqueous solution at pH 7. An aminated (1→3)-β-d-glucan derivative that induced antitumor activity in mouse macrophages in vitro is reported.  相似文献   

9.
An isopullulanase (IPU) from Aspergillus niger ATCC9642 hydrolyzes α-1,4-glucosidic linkages of pullulan to produce isopanose. Although IPU does not hydrolyze dextran, it is classified into glycoside hydrolase family 49 (GH49), major members of which are dextran-hydrolyzing enzymes. IPU is highly glycosylated, making it difficult to obtain its crystal. We used endoglycosidase Hf to cleave the N-linked oligosaccharides of IPU, and we here determined the unliganded and isopanose-complexed forms of IPU, both solved at 1.7-Å resolution. IPU is composed of domains N and C joined by a short linker, with electron density maps for 11 or 12 N-acetylglucosamine residues per molecule. Domain N consists of 13 β-strands and forms a β-sandwich. Domain C, where the active site is located, forms a right-handed β-helix, and the lengths of the pitches of each coil of the β-helix are similar to those of GH49 dextranase and GH28 polygalacturonase. The entire structure of IPU resembles that of a GH49 enzyme, Penicillium minioluteum dextranase (Dex49A), despite a difference in substrate specificity. Compared with the active sites of IPU and Dex49A, the amino acid residues participating in subsites + 2 and + 3 are not conserved, and the glucose residues of isopanose bound to IPU completely differ in orientation from the corresponding glucose residues of isomaltose bound to Dex49A. The shape of the catalytic cleft characterized by the seventh coil of the β-helix and a loop from domain N appears to be critical in determining the specificity of IPU for pullulan.  相似文献   

10.

Background

Isomaltosyloligosaccharides (IMO) and dextran (Dex) are hardly digestible in the small intestine and thus influence the luminal environment and affect the maintenance of health. There is wide variation in the degree of polymerization (DP) in Dex and IMO (short-sized IMO, S-IMO; long-sized IMO, L-IMO), and the physiological influence of these compounds may be dependent on their DP.

Methodology/Principal Findings

Five-week-old male Wistar rats were given a semi-purified diet with or without 30 g/kg diet of the S-IMO (DP = 3.3), L-IMO (DP = 8.4), or Dex (DP = 1230) for two weeks. Dextran sulfate sodium (DSS) was administered to the rats for one week to induce experimental colitis. We evaluated the clinical symptoms during the DSS treatment period by scoring the body weight loss, stool consistency, and rectal bleeding. The development of colitis induced by DSS was delayed in the rats fed S-IMO and Dex diets. The DSS treatment promoted an accumulation of neutrophils in the colonic mucosa in the rats fed the control, S-IMO, and L-IMO diets, as assessed by a measurement of myeloperoxidase (MPO) activity. In contrast, no increase in MPO activity was observed in the Dex-diet-fed rats even with DSS treatment. Immune cell populations in peripheral blood were also modified by the DP of ingested saccharides. Dietary S-IMO increased the concentration of n-butyric acid in the cecal contents and the levels of glucagon-like peptide-2 in the colonic mucosa.

Conclusion/Significance

Our study provided evidence that the physiological effects of α-glucosaccharides on colitis depend on their DP, linkage type, and digestibility.  相似文献   

11.
Bacillus circulans T-3040 produces cycloisomaltooligosaccharide glucanotransferase (CITase) and cycloisomaltooligosaccharides (cyclodextrans, CIs) when it is grown in media containing dextran as the carbon source. To investigate the effects of carbon sources on CITase activity, B. circulans T-3040 was cultured with glucose; sucrose; a mixture of isomaltose, isomaltotriose, and panose (IMOs); a mixture of maltohexaose and maltoheptaose (G67); dextrin (average degree of polymerization?=?36); dextran 40; and soluble starch. In addition to dextran 40, CIs were produced when the T-3040 strain was grown in media containing soluble starch as the sole carbon source. CITase production was induced by dextran 40, IMOs, and soluble starch but not by G67 or dextrin, which suggests that α-1,6 glucosidic linkages are required for CITase induction. Although CITase was induced by IMOs, no CIs were produced in the culture. CI-producing activity in the presence of soluble starch as the substrate (SS-CITase activity) was observed only in cultures containing dextran 40 or soluble starch. The production of CITase was significantly unaffected by glucose addition, but SS-CITase activity almost completely disappeared after glucose addition. A 135-kDa protein was found to contribute to CI formation from starch in the presence of CITase. This protein had a disproportionation activity with maltooligosaccharides, and its induction and inhibition system may be different from those of CITase.  相似文献   

12.
Galactomannan from seeds of Cyamopsis tetragonoloba (L.) Taub. (guar) was depolymerized using immobilized enzymatic preparation celloviridin. A set of fragments whose molecular weights varied from 12.6 to 245.6 kDa was obtained. Sulfated derivatives of components of all fractions were synthesized, in which the content of HSO 3 ? -groups was 48.05 ± 2.31%. All preparations exhibited anticoagulant activity, which was recorded in vitro in two tests—aIIa and aXa. The antithrombin activity (aIIa) was high (up to 65–87 U/mg) and did not depend on the molecular weight of a sulfated derivative; in the second test (aXa), the effect of molecular weight was observed. Biospecific electrophoresis allowed us to detect the ability of galactomannan sulfates to form complexes with protamine sulfate, a classic antidote to heparin.  相似文献   

13.
The dispersibility of three neutral polysaccharides, oat β-glucan, detarium xyloglucan and dextran in a dilute water–cadoxen mixture was studied by viscosity measurement. It was found that intrinsic viscosity measurement, with water–cadoxen mixtures as solvents, is a useful tool to distinguish polymer degradation from disruption of supramolecular aggregates. This approach, in conjunction with size exclusion chromatography, was used to study the effects of heat and pressure treatment on the dispersibility and stability of three polysaccharides in aqueous solutions. Autoclaving treatment at 121°C for 15 min may reduce the degree of aggregation. Following autoclaving in aqueous solution, the Huggins constants decreased from 0.66 to 0.42 for oat β-glucan and from 0.63 to 0.56 for detarium xyloglucan. It remains the same for dextran, indicating good solubility of this polymer in water. The current treatment did not cause evident changes in molecular weight and structures to detarium xyloglucan and dextran. However, degradation occurred with oat β-glucan. The Burchard–Stockmayer–Fixman approach was applied to estimate the unperturbed dimension of oat β-glucan and detarium xyloglucan on samples after autoclaving. The characteristic ratio C was found to be 7.3 for detarium xyloglucan and 4.7 for oat β-glucan, corresponding to the Kratky–Porod persistence lengths of 2.0 and 1.2 nm, respectively.  相似文献   

14.
Glomerular podocytes are highly differentiated epithelial cells that are key components of the kidney filtration units. Podocyte damage or loss is the hallmark of nephritic diseases characterized by severe proteinuria. Recent studies implicate that hormones including glucocorticoids (ligand for glucocorticoid receptor) and vitamin D3 (ligand for vitamin D receptor) protect or promote repair of podocytes from injury. In order to elucidate the mechanisms underlying hormone-mediated podocyte-protecting activity from injury, we carried out microarray gene expression studies to identify the target genes and corresponding pathways in response to these hormones during podocyte differentiation. We used immortalized human cultured podocytes (HPCs) as a model system and carried out in vitro differentiation assays followed by dexamethasone (Dex) or vitamin D3 (VD3) treatment. Upon the induction of differentiation, multiple functional categories including cell cycle, organelle dynamics, mitochondrion, apoptosis and cytoskeleton organization were among the most significantly affected. Interestingly, while Dex and VD3 are capable of protecting podocytes from injury, they only share limited target genes and affected pathways. Compared to VD3 treatment, Dex had a broader and greater impact on gene expression profiles. In-depth analyses of Dex altered genes indicate that Dex crosstalks with a broad spectrum of signaling pathways, of which inflammatory responses, cell migration, angiogenesis, NF-κB and TGFβ pathways are predominantly altered. Together, our study provides new information and identifies several new avenues for future investigation of hormone signaling in podocytes.  相似文献   

15.
A genomic bank was constructed in Escherichia coli HB101, consisting of DNA fragments from Bacteroides thetaiotaomicron strain 489 inserted within the vector pBR322. By screening on complex medium containing blue dextran, 10 stable dextranase-positive (Dex+) clones were isolated. Seven groups of Dex+ inserts were identified on the basis of their restriction maps and hybridization responses. Dextanase activity of the recombinant clones was weak, and was revealed on the selection medium after 15 days. Subcloning of a Sau3AI partially digested 3.2-kb insert in the expression vector pDR720 greatly enhanced dextranse activity on blue dextran plates in one clone, but the delay remained unaltered. This suggested that the enzyme was released by cell lysis. Expression of this 0.7-kb subcloned insert was dependent on the promoter region of tryptophan operon carried by pDR720.  相似文献   

16.
Using chemical analysis and 13C-nuclear magnetic resonance (NMR) spectroscopy, capsular polysaccharide purified from culture supernatants of a strain of Pasteurella haemolytica serotype A2 was shown to consist of a (2 → 8)-α-linked polymer of N-acetylneuraminic acid. This is identical to the capsular polysaccharides of Neisseria meningitidis group B and Escherichia coli K1, and is known as colominic acid. Polymer isolated from a second strain was contaminated with α-1,4-linked dextran. The known poor immunogenicity of these two polymers explains the failure by others to produce effective extract vaccines for this important ovine pathogen.  相似文献   

17.
A novel approach to the quantification of extracellular polysaccharides in miniaturized biofilms presenting a wide variety of extracellular matrices was developed. The assay used the periodic acid–Schiff reagent and was first calibrated on dextran and alginate solutions. Then it was implemented on 24-h and 48-h biofilms from three strains known to produce different exopolymeric substances (Pseudomonas aeruginosa, Bacillus licheniformis, Weissella confusa). The assay allowed quantification of the total exopolysaccharides, taking into account possible interferences due to cells or other main expolymers of the matrix (eDNA, proteins).  相似文献   

18.
Myosin heavy chain-IIB (MyHC-IIB; encoded by MYH4 or Myh4) expression is often associated with muscle hypertrophic growth. Unlike other large mammals, domestic pig breeds express MyHC-IIB at both the mRNA and protein level.AimTo utilise a fluorescence-based promoter-reporter system to test the influence of anabolic and catabolic agents on increasing porcine MYH4-promoter activity and determine whether cell hypertrophy was subsequently induced.MethodsC2C12 myoblasts were co-transfected with porcine MYH4-promoter-driven ZsGreen and CMV-driven DsRed expression plasmids. At the onset of differentiation, treatments (dibutyryl cyclic-AMP (dbcAMP), Des(1–3) Insulin-Like Growth Factor-1 (IGF-I), triiodo-l-thyronine (T3) and dexamethasone (Dex)) or appropriate vehicle controls were added and cells maintained for up to four days. At day 4 of differentiation, measurements were collected for total fluorescence and average myotube diameter, as indicators of MYH4-promoter activity and cell hypertrophy respectively.ResultsPorcine MYH4-promoter activity increased during C2C12 myogenic differentiation, with a marked increase between days 3 and 4. MYH4-promoter activity was further increased following four days of dbcAMP treatment and average myotube diameter was significantly increased by dbcAMP. Porcine MYH4-promoter activity also tended to be increased by T3 treatment, but there were no effects of Des(1–3) IGF-I or Dex treatment, whereas average myotube diameter was increased by Des(1–3) IGF-I, but not T3 or Dex.ConclusionPorcine MYH4-promoter activity responded to dbcAMP, Des(1–3) IGF-I and T3 treatment in vitro as observed previously in reported in vivo studies. However, we report that increased MYH4-promoter activity was not always associated with muscle cell hypertrophy. The fluorescence-based reporter system offers a useful tool to study muscle cell hypertrophic growth.  相似文献   

19.
20.
Galactomannan from seeds of Cyamopsis tetragonoloba (L.) Taub. (guar) was depolymerized using immobilized enzymatic preparation celloviridin. A set of fragments whose molecular weights varied from 12.6 to 245.6 kDa was obtained. Sulfated derivatives of components of all fractions were synthesized, in which the content of HSO 3 ? groups was 48.05 ± 2.31%. All preparations exhibited anticoagulant activity, which was recorded in vitro in two tests—alla and aXa. The antithrombin activity (aIIa) was high (up to 65–87 U/mg) and did not depend on the molecular weight of a sulfated derivative; in the second test (aXa), the effect of molecular weight was observed. Biospecific electrophoresis allowed us to detect the ability of galactomannan sulfates to form complexes with protamine sulfate, a classic antidote to heparin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号