首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mitosis is orchestrated by several protein kinases including Cdks, Plks and Aurora kinases. Despite considerable progress toward understanding the individual function of these protein kinases, how their activity is coordinated in space and time during mitosis is less well understood. In a recent article published in the Journal of Cell Biology, we show that CDK-1 regulates PLK-1 activity during mitosis in C. elegans embryos through multisite phosphorylation of the PLK-1 activator SPAT-1 (Aurora Borealis, Bora in human). SPAT-1 variants mutated on CDK-1 phosphorylation sites results in severe delays in mitotic entry, mimicking embryos lacking spat-1 or plk-1 function. We further show that SPAT-1 phosphorylation by CDK-1 promotes its binding to PLK-1 and stimulates PLK-1 phosphorylation on its activator T-loop by Aurora A kinase in vitro. Likewise, we find that phosphorylation of Bora by Cdk1 promotes phosphorylation of human Plk1 by Aurora A suggesting that this mechanism is conserved in humans. These results indicate that Cdk1 regulates Plk1 by boosting its kinase activity. Here we discuss these recent findings and open questions regarding the regulation of Plk1/PLK-1 by Cdk1/CDK-1 and Bora/SPAT-1.  相似文献   

2.
Polo-like kinase 1 (Plk1) is an important mitotic kinase that is crucial for entry into mitosis after recovery from DNA damage-induced cell cycle arrest. Plk1 activation is promoted by the conserved protein Bora (SPAT-1 in C. elegans), which stimulates the phosphorylation of a conserved residue in the activation loop by the Aurora A kinase. In a recent article published in Cell Reports, we show that the master mitotic kinase Cdk1 contributes to Plk1 activation through SPAT-1/Bora phosphorylation. We identified 3 conserved Sp/Tp residues that are located in the N-terminal, most conserved part, of SPAT-1/Bora. Phosphorylation of these sites by Cdk1 is essential for Plk1 function in mitotic entry in C. elegans embryos and during DNA damage checkpoint recovery in mammalian cells. Here, using an untargeted Förster Resonance Energy Transfer (FRET) biosensor to monitor Plk1 activation, we provide additional experimental evidence supporting the importance of these phosphorylation sites for Plk1 activation and subsequent mitotic entry after DNA damage. We also briefly discuss the mechanism of Plk1 activation and the potential role of Bora phosphorylation by Cdk1 in this process. As Plk1 is overexpressed in cancer cells and this correlates with poor prognosis, understanding how Bora contributes to Plk1 activation is paramount for the development of innovative therapeutical approaches.  相似文献   

3.
Cdk1 and Plk1/Plx1 activation leads to their inactivation through negative feedback loops. Cdk1 deactivates itself by activating the APC/C, consequently generating embryonic cell cycle oscillations. APC/C inhibition by the mitotic checkpoint in somatic cells and the cytostatic factor (CSF) in oocytes sustain the mitotic state. Plk1/Plx1 targets its co-activator Bora for degradation, but it remains unclear how embryonic oscillations in Plx1 activity are generated, and how Plk1/Plx1 activity is sustained during mitosis. We show that Plx1-mediated degradation of Bora in interphase generates oscillations in Plx1 activity and is essential for development. In CSF extracts, phosphorylation of Bora on the Cdk consensus site T52 blocks Bora degradation. Upon fertilization, Calcineurin dephosphorylates T52, triggering Plx1 oscillations. Similarly, we find that GFP-Bora is degraded when Plk1 activity spreads to somatic cell cytoplasm before mitosis. Interestingly, GFP–Bora degradation stops upon mitotic entry when Cdk1 activity is high. We hypothesize that Cdk1 controls Bora through an incoherent feedforward loop synchronizing the activities of mitotic kinases.  相似文献   

4.
In mammalian cells entry into and progression through mitosis are regulated by multiple mitotic kinases. How mitotic kinases interact with each other and coordinately regulate mitosis remains to be fully understood. Here we employed a chemical biology approach using selective small molecule kinase inhibitors to dissect the relationship between Cdk1 and Aurora A kinases during G2/M transition. We find that activation of Aurora A first occurs at centrosomes at late G2 and is required for centrosome separation independently of Cdk1 activity. Upon entry into mitosis, Aurora A then becomes fully activated downstream of Cdk1 activation. Inactivation of Aurora A or Plk1 individually during a synchronized cell cycle shows no significant effect on Cdk1 activation and entry into mitosis. However, simultaneous inactivation of both Aurora A and Plk1 markedly delays Cdk1 activation and entry into mitosis, suggesting that Aurora A and Plk1 have redundant functions in the feedback activation of Cdk1. Together, our data suggest that Cdk1, Aurora A, and Plk1 mitotic kinases participate in a feedback activation loop and that activation of Cdk1 initiates the feedback loop activity, leading to rapid and timely entry into mitosis in human cells. In addition, live cell imaging reveals that the nuclear cycle of cells becomes uncoupled from cytokinesis upon inactivation of both Aurora A and Aurora B kinases and continues to oscillate in a Cdk1-dependent manner in the absence of cytokinesis, resulting in multinucleated, polyploidy cells.  相似文献   

5.
Polo-like kinase 1 (Plk1) and Aurora A play key roles in centrosome maturation, spindle assembly, and chromosome segregation during cell division. Here we show that the functions of these kinases during early mitosis are coordinated through Bora, a partner of Aurora A first identified in Drosophila. Depletion of human Bora (hBora) results in spindle defects, accompanied by increased spindle recruitment of Aurora A and its partner TPX2. Conversely, hBora overexpression induces mislocalization of Aurora A and monopolar spindle formation, reminiscent of the phenotype seen in Plk1-depleted cells. Indeed, Plk1 regulates hBora. Following Cdk1-dependent recruitment, Plk1 triggers hBora destruction by phosphorylating a recognition site for [Formula: see text]. Plk1 depletion or inhibition results in a massive accumulation of hBora, concomitant with displacement of Aurora A from spindle poles and impaired centrosome maturation, but remarkably, co-depletion of hBora partially restores Aurora A localization and bipolar spindle formation. This suggests that Plk1 controls Aurora A localization and function by regulating cellular levels of hBora.  相似文献   

6.
Polo-like kinase 1 (Plk1) is essential for checkpoint recovery and the activation of key mitotic enzymes; however, its own activation mechanism has remained elusive. Recent findings show that Bora, a G(2)-M expressed protein, facilitates Plk1 activation by the oncogenic kinase Aurora A in G(2). During mitosis, Plk1-dependent Bora degradation promotes Aurora A localization to the centrosome and/or spindle. Bora-dependent regulation provides important new insights into interactions between key mitotic kinases.  相似文献   

7.
Depletion of stathmin, a microtubule (MT) destabilizer, delays mitotic entry by ∼4 h in HeLa cells. Stathmin depletion reduced the activity of CDC25 and its upstream activators, Aurora A and Plk1. Chemical inhibition of both Aurora A and Plk1 was sufficient to delay mitotic entry by 4 h, while inhibiting either kinase alone did not cause a delay. Aurora A and Plk1 are likely regulated downstream of stathmin, because the combination of stathmin knockdown and inhibition of Aurora A and Plk1 was not additive and again delayed mitotic entry by 4 h. Aurora A localization to the centrosome required MTs, while stathmin depletion spread its localization beyond that of γ-tubulin, indicating an MT-dependent regulation of Aurora A activation. Plk1 was inhibited by excess stathmin, detected in in vitro assays and cells overexpressing stathmin–cyan fluorescent protein. Recruitment of Plk1 to the centrosome was delayed in stathmin-depleted cells, independent of MTs. It has been shown that depolymerizing MTs with nocodazole abrogates the stathmin-depletion induced cell cycle delay; in this study, depolymerization with nocodazole restored Plk1 activity to near normal levels, demonstrating that MTs also contribute to Plk1 activation. These data demonstrate that stathmin regulates mitotic entry, partially via MTs, to control localization and activation of both Aurora A and Plk1.  相似文献   

8.
Mitotic kinases orchestrate cell cycle processes by phosphorylation of cell cycle regulators. DDA3, a spindle-associated phosphor-protein, is a substrate of mitotic kinases that control chromosome movement and spindle microtubule (MT) dynamics. Through a mass spectrometry analysis, we identified phosphorylation sites on the endogenous mitotic DDA3, which include Ser22, Ser65, Ser70, and Ser223. Phosphorylation of these residues converts interphase form of DDA3 to mitotic form by changing its biochemical activity, as unphosphorylated DDA3 processed both the MT polymerizing and bundling activities, whereas phosphor-mimic mutants lost both activities, only retaining the MT-binding activity. We found that mitotic kinases, such as Cdk1, Aurora A, and Plk1, phosphorylate DDA3 in vitro. Whereas Cdk1 and Aurora A negatively regulate MT-polymerizing and MT-bundling activities, Plk1 does not affect these activities. Interestingly, the phosphorylation of DDA3 by Aurora A and Plk1 inhibits the phosphorylation by other kinases, indicating that sequential phosphorylation is important for the regulation of DDA3 function. We conclude that kinases control the function of DDA3 in the cell cycle by regulating its MT-polymerizing/bundling activities through sequential phosphorylation.  相似文献   

9.
Progression through mitosis requires activation of cyclin B/Cdk1 and its downstream targets, including Polo-like kinase and the anaphase-promoting complex (APC), the ubiquitin ligase directing degradation of cyclins A and B. Recent evidence shows that APC activation requires destruction of the APC inhibitor Emi1. In prophase, phosphorylation of Emi1 generates a D-pS-G-X-X-pS degron to recruit the SCF(betaTrCP) ubiquitin ligase, causing Emi1 destruction and allowing progression beyond prometaphase, but the kinases directing this phosphorylation remain undefined. We show here that the polo-like kinase Plk1 is strictly required for Emi1 destruction and that overexpression of Plk1 is sufficient to trigger Emi1 destruction. Plk1 stimulates Emi1 phosphorylation, betaTrCP binding, and ubiquitination in vitro and cyclin B/Cdk1 enhances these effects. Plk1 binds to Emi1 in mitosis and the two proteins colocalize on the mitotic spindle poles, suggesting that Plk1 may spatially control Emi1 destruction. These data support the hypothesis that Plk1 activates the APC by directing the SCF-dependent destruction of Emi1 in prophase.  相似文献   

10.
BACKGROUND: The mitotic kinases, Cdk1, Aurora A/B, and Polo-like kinase 1 (Plk1) have been characterized extensively to further understanding of mitotic mechanisms and as potential targets for cancer therapy. Cdk1 and Aurora kinase studies have been facilitated by small-molecule inhibitors, but few if any potent Plk1 inhibitors have been identified. RESULTS: We describe the cellular effects of a novel compound, BI 2536, a potent and selective inhibitor of Plk1. The fact that BI 2536 blocks Plk1 activity fully and instantaneously enabled us to study controversial and unknown functions of Plk1. Cells treated with BI 2536 are delayed in prophase but eventually import Cdk1-cyclin B into the nucleus, enter prometaphase, and degrade cyclin A, although BI 2536 prevents degradation of the APC/C inhibitor Emi1. BI 2536-treated cells lack prophase microtubule asters and thus polymerize mitotic microtubules only after nuclear-envelope breakdown and form monopolar spindles that do not stably attach to kinetochores. Mad2 accumulates at kinetochores, and cells arrest with an activated spindle-assembly checkpoint. BI 2536 prevents Plk1's enrichment at kinetochores and centrosomes, and when added to metaphase cells, it induces detachment of microtubules from kinetochores and leads to spindle collapse. CONCLUSIONS: Our results suggest that Plk1's accumulation at centrosomes and kinetochores depends on its own activity and that this activity is required for maintaining centrosome and kinetochore function. Our data also show that Plk1 is not required for prophase entry, but delays transition to prometaphase, and that Emi1 destruction in prometaphase is not essential for APC/C-mediated cyclin A degradation.  相似文献   

11.
GRASP65, a structural protein of the Golgi apparatus, has been linked to the sensing of Golgi structure and the integration of this information with the control of mitotic entry in the form of a Golgi checkpoint. We show that Cdk1-cyclin B is the major kinase phosphorylating GRASP65 in mitosis, and that phosphorylated GRASP65 interacts with the polo box domain of the polo-like kinase Plk1. GRASP65 is phosphorylated in its C-terminal domain at four consensus sites by Cdk1-cyclin B, and mutation of these residues to alanine essentially abolishes both mitotic phosphorylation and Plk1 binding. Expression of the wild-type GRASP65 C-terminus but not the phosphorylation defective mutant in normal rat kidney cells causes a delay but not the block in mitotic entry expected if this were a true cell cycle checkpoint. These findings identify a Plk1-dependent signalling mechanism potentially linking Golgi structure and cell cycle control, but suggest that this may not be a cell cycle checkpoint in the classical sense.  相似文献   

12.

Background

Members of the Mps1 kinase family play an essential and evolutionarily conserved role in the spindle assembly checkpoint (SAC), a surveillance mechanism that ensures accurate chromosome segregation during mitosis. Human Mps1 (hMps1) is highly phosphorylated during mitosis and many phosphorylation sites have been identified. However, the upstream kinases responsible for these phosphorylations are not presently known.

Methodology/Principal Findings

Here, we identify 29 in vivo phosphorylation sites in hMps1. While in vivo analyses indicate that Aurora B and hMps1 activity are required for mitotic hyper-phosphorylation of hMps1, in vitro kinase assays show that Cdk1, MAPK, Plk1 and hMps1 itself can directly phosphorylate hMps1. Although Aurora B poorly phosphorylates hMps1 in vitro, it positively regulates the localization of Mps1 to kinetochores in vivo. Most importantly, quantitative mass spectrometry analysis demonstrates that at least 12 sites within hMps1 can be attributed to autophosphorylation. Remarkably, these hMps1 autophosphorylation sites closely resemble the consensus motif of Plk1, demonstrating that these two mitotic kinases share a similar substrate consensus.

Conclusions/Significance

hMps1 kinase is regulated by Aurora B kinase and its autophosphorylation. Analysis on hMps1 autophosphorylation sites demonstrates that hMps1 has a substrate preference similar to Plk1 kinase.  相似文献   

13.
Polo-like kinase 1 (Plk1) is required for the generation of the tension-sensing 3F3/2 kinetochore epitope and facilitates kinetochore localization of Mad2 and other spindle checkpoint proteins. Here, we investigate the mechanism by which Plk1 itself is recruited to kinetochores. We show that Plk1 binds to budding uninhibited by benzimidazole 1 (Bub1) in mitotic human cells. The Plk1-Bub1 interaction requires the polo-box domain (PBD) of Plk1 and is enhanced by cyclin-dependent kinase 1 (Cdk1)-mediated phosphorylation of Bub1 at T609. The PBD-dependent binding of Plk1 to Bub1 facilitates phosphorylation of Bub1 by Plk1 in vitro. Depletion of Bub1 in HeLa cells by RNA interference (RNAi) diminishes the kinetochore localization of Plk1. Ectopic expression of the wild-type Bub1, but not the Bub1-T609A mutant, in Bub1-RNAi cells restores the kinetochore localization of Plk1. Our results suggest that phosphorylation of Bub1 at T609 by Cdk1 creates a docking site for the PBD of Plk1 and facilitates the kinetochore recruitment of Plk1.  相似文献   

14.
The E3 ubiquitin-protein ligase Chfr is a mitotic stress checkpoint protein that delays mitotic entry in response to microtubule damage; however, the molecular mechanism by which Chfr accomplishes this remains elusive. Here, we show that Chfr levels are elevated in response to microtubule-damaging stress. Moreover, G2/M transition is associated with cell cycle-dependent turnover of Chfr accompanied by high autoubiquitylation activity, suggesting that regulation of Chfr levels and auto-ubiquitylation activity are functionally significant. To test this, we generated Chfr mutants Chfr-K2A and Chfr-K5A in which putative lysine target sites of auto-ubiquitylation were replaced with alanine. Chfr-K2A did not undergo cell cycle-dependent degradation, and its levels remained high during G2/M phase. The elevated levels of Chfr-K2A caused a significant reduction in phosphohistone H3 levels and cyclinB1/Cdk1 kinase activities, leading to mitotic entry delay. Notably, polo-like kinase 1 levels at G2 phase, but not at S phase, were ∼2–3-fold lower in cells expressing Chfr-K2A than in wild-type Chfr-expressing cells. Consistent with this, ubiquitylation of Plk1 at G2 phase was accelerated in Chfr-K2A-expressing cells. In contrast, Aurora A levels remained constant, indicating that Plk1 is a major target of Chfr in controlling the timing of mitotic entry. Indeed, overexpression of Plk1 in Chfr-K2A-expressing cells restored cyclin B1/Cdk1 kinase activity and promoted mitotic entry. Collectively, these data indicate that Chfr auto-ubiquitylation is required to allow Plk1 to accumulate to levels necessary for activation of cyclin B1/Cdk1 kinase and mitotic entry. Our results provide the first evidence that Chfr auto-ubiquitylation and degradation are important for the G2/M transition.  相似文献   

15.
Several kinases phosphorylate vimentin, the most common intermediate filament protein, in mitosis. Aurora-B and Rho-kinase regulate vimentin filament separation through the cleavage furrow-specific vimentin phosphorylation. Cdk1 also phosphorylates vimentin from prometaphase to metaphase, but its significance has remained unknown. Here we demonstrated a direct interaction between Plk1 and vimentin-Ser55 phosphorylated by Cdk1, an event that led to Plk1 activation and further vimentin phosphorylation. Plk1 phosphorylated vimentin at approximately 1 mol phosphate/mol substrate, which partly inhibited its filament forming ability, in vitro. Plk1 induced the phosphorylation of vimentin-Ser82, which was elevated from metaphase and maintained until the end of mitosis. This elevation followed the Cdk1-induced vimentin-Ser55 phosphorylation, and was impaired by Plk1 depletion. Mutational analyses revealed that Plk1-induced vimentin-Ser82 phosphorylation plays an important role in vimentin filaments segregation, coordinately with Rho-kinase and Aurora-B. Taken together, these results indicated a novel mechanism that Cdk1 regulated mitotic vimentin phosphorylation via not only a direct enzyme reaction but also Plk1 recruitment to vimentin.  相似文献   

16.
We previously reported that Aurora-A and the hNinein binding protein AIBp facilitate centrosomal structure maintenance and contribute to spindle formation. Here, we report that AIBp also interacts with Plk1, raising the possibility of functional similarity to Bora, which subsequently promotes Aurora-A–mediated Plk1 activation at Thr210 as well as Aurora-A activation at Thr288. In kinase assays, AIBp acts not only as a substrate but also as a positive regulator of both Aurora-A and Plk1. However, AIBp functions as a negative regulator to block phosphorylation of hNinein mediated by Aurora-A and Plk1. These findings suggest a novel AIBp-dependent regulatory machinery that controls mitotic entry. Additionally, knockdown of hNinein caused failure of AIBp to target the centrosome, whereas depletion of AIBp did not affect the localization of hNinein and microtubule nucleation. Notably, knockdown of AIBp in HeLa cells impaired both Aurora-A and Plk1 kinase, resulting in phenotypes with multiple spindle pole formation and chromosome misalignment. Our data show that depletion of AIBp results in the mis-localization of TACC3 and ch-TOG, but not CEP192 and CEP215, suggesting that loss of AIBp dominantly affects the Aurora-A substrate to cause mitotic aberrations. Collectively, our data demonstrate that AIBp contributes to mitotic entry and bipolar spindle assembly and may partially control localization, phosphorylation, and activation of both Aurora-A and Plk1 via hNinein during mitotic progression.  相似文献   

17.
Through a convergence of functional genomic and proteomic studies, we identify Bora as a previously unknown cell cycle protein that interacts with the Plk1 kinase and the SCF-beta-TrCP ubiquitin ligase. We show that the Bora protein peaks in G2 and is degraded by proteasomes in mitosis. Proteolysis of Bora requires the Plk1 kinase activity and is mediated by SCF-beta-TrCP. Plk1 phosphorylates a conserved DSGxxT degron in Bora and promotes its interaction with beta-TrCP. Mutations in this degron stabilize Bora. Expression of a nondegradable Bora variant prolongs the metaphase and delays anaphase onset, indicating a physiological requirement of Bora degradation. Interestingly, the activity of Bora is also required for normal mitotic progression, as knockdown of Bora activates the spindle checkpoint and delays sister chromatid segregation. Mechanistically, Bora regulates spindle stability and microtubule polymerization and promotes tension across sister kinetochores during mitosis. We conclude that tight regulation of the Bora protein by its synthesis and degradation is critical for cell cycle progression.  相似文献   

18.
The events of cell division are regulated by a complex interplay between kinases and phosphatases. Cyclin-dependent kinases (Cdks), polo-like kinases (Plks) and Aurora kinases play central roles in this process. Polo kinase (Plk1 in humans) regulates a wide range of events in mitosis and cytokinesis. To ensure the accuracy of these processes, polo activity itself is subject to complex regulation. Phosphorylation of polo in its T loop (or activation loop) increases its kinase activity several-fold. It has been shown that Aurora A kinase, with its co-factor Bora, activates Plk1 in G2, and that this is essential for recovery from cell cycle arrest induced by DNA damage. In a recent article published in PLoS Biology, we report that Drosophila polo is activated by Aurora B kinase at centromeres, and that this is crucial for polo function in regulating chromosome dynamics in prometaphase. Our results suggest that this regulatory pathway is conserved in humans. Here, we propose a model for the collaboration between Aurora B and polo in the regulation of kinetochore attachment to microtubules in early mitosis. Moreover, we suggest that Aurora B could also function to activate Polo/Plk1 in cytokinesis. Finally, we discuss recent findings and open questions regarding the activation of polo and polo-like kinases by different kinases in mitosis, cytokinesis and other processes.  相似文献   

19.
Coordination of the cell cycle with developmental events is crucial for generation of tissues during development and their maintenance in adults. Defects in that coordination can shift the balance of cell fates with devastating clinical effects. Yet our understanding of the molecular mechanisms integrating core cell cycle regulators with developmental regulators remains in its infancy. This work focuses on the interplay between cell cycle and developmental regulators in the Caenorhabditis elegans germline. Key developmental regulators control germline stem cells (GSCs) to self-renew or begin differentiation: FBF RNA-binding proteins promote self-renewal, while GLD RNA regulatory proteins promote meiotic entry. We first discovered that many but not all germ cells switch from the mitotic into the meiotic cell cycle after RNAi depletion of CYE-1 (C. elegans cyclin E) or CDK-2 (C. elegans Cdk2) in wild-type adults. Therefore, CYE-1/CDK-2 influences the mitosis/meiosis balance. We next found that GLD-1 is expressed ectopically in GSCs after CYE-1 or CDK-2 depletion and that GLD-1 removal can rescue cye-1/cdk-2 defects. Therefore, GLD-1 is crucial for the CYE-1/CDK-2 mitosis/meiosis control. Indeed, GLD-1 appears to be a direct substrate of CYE-1/CDK-2: GLD-1 is a phosphoprotein; CYE-1/CDK-2 regulates its phosphorylation in vivo; and human cyclin E/Cdk2 phosphorylates GLD-1 in vitro. Transgenic GLD-1(AAA) harbors alanine substitutions at three consensus CDK phosphorylation sites. GLD-1(AAA) is expressed ectopically in GSCs, and GLD-1(AAA) transgenic germlines have a smaller than normal mitotic zone. Together these findings forge a regulatory link between CYE-1/CDK-2 and GLD-1. Finally, we find that CYE-1/CDK-2 works with FBF-1 to maintain GSCs and prevent their meiotic entry, at least in part, by lowering GLD-1 abundance. Therefore, CYE-1/CDK-2 emerges as a critical regulator of stem cell maintenance. We suggest that cyclin E and Cdk-2 may be used broadly to control developmental regulators.  相似文献   

20.
The synthesis and degradation of hBora is important for the regulation of mitotic entry and exist. In G2 phase, hBora can complex with Aurora A to activate Plk1 and control mitotic entry. However, whether the post-translational modification of hBora is relevant to the mitotic entry still unclear. Here, we used the LC-MS/MS phosphopeptide mapping assay to identify 13 in vivo hBora phosphorylation sites and characterized that GSK3β can interact with hBora and phosphorylate hBora at Ser274 and Ser278. Pharmacological inhibitors of GSK3β reduced the retarded migrating band of hBora in cells and diminished the phosphorylation of hBora by in vitro kinase assay. Moreover, as well as in GSK3β activity-inhibited cells, specific knockdown of GSK3β by shRNA and S274A/S278 hBora mutant-expressing cells also exhibited the reduced Plk1 activation and a delay in mitotic entry. It suggests that GSK3β activity is required for hBora-mediated mitotic entry through Ser274 and Ser278 phosphorylation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号