首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
5.
6.
7.
MicroRNAs (miRNA) have been implicated in a variety of pathological conditions including infectious diseases. Knowledge of the miRNAs affected by poly(I:C), a synthetic analog of viral double‐stranded RNA, in porcine airway epithelial cells (PAECs) contributes to understanding the mechanisms of swine viral respiratory diseases, which bring enormous economic loss worldwide every year. In this study, we used high throughput sequencing to profile miRNA expression in PAECs treated with poly(I:C) as compared to the untreated control. This approach revealed 23 differentially expressed miRNAs (DEMs), five of which have not been implicated in viral infection before. Nineteen of the 23 miRNAs were down‐regulated including members of the miR‐17‐92 cluster, a well‐known polycistronic oncomir and extensively involved in viral infection in humans. Target genes of DEMs, predicted using bioinformatic methods and validated by luciferase reporter analysis on two representative DEMs, were significantly enriched in several pathways including transforming growth factor‐β signaling. A large quantity of sequence variations (isomiRs) were found including a substitution at position 5, which was verified to redirect miRNAs to a new spectrum of targets by luciferase reporter assay together with bioinformatics analysis. Twelve novel porcine miRNAs conserved in other species were identified by homology analysis together with cloning verification. Furthermore, the expression analysis revealed the potential importance of three novel miRNAs in porcine immune response to viruses. Overall, our data contribute to clarifying the mechanisms underlying the host immune response against respiratory viruses in pigs, and enriches the repertoire of porcine miRNAs.  相似文献   

8.
9.
10.
MicroRNA (miRNA) is small non-coding RNA with approximate 22 nt in length. Recent studies indicate that miRNAs play significant roles in pathogen-host interactions. Brucella organisms are Gram-negative facultative intracellular bacteria that cause Brucellosis. Brucella strains infect macrophages and establish chronic infection by altering host life activities including apoptosis and autophagy. Here, we report a comprehensive analysis of miRNA expression profiles in mock- and Brucella-infected RAW264.7 cells using high-throughput sequencing approach. In total, 344 unique miRNAs were co-expressed in the two libraries, in which 57 miRNAs were differentially expressed. Eight differentially expressed miRNAs with high abundance were subjected to further analysis. The GO enrichment analysis suggests that the putative target genes of these differentially expressed miRNAs are involved in apoptosis, autophagy and immune response. In particular, a total of 25 target genes are involved in regulating apoptosis and autophagy, indicating that these miRNAs may play important regulatory roles in the Brucella-host interactions. Furthermore, the interactions of miR-1981 and its target genes, Bcl-2 and Bid, were validated by luciferase assay. The results show that miR-1981 mimic up-regulated the luciferase activity of psiCHECK-2 Bcl-2 3' UTR, but the luciferase activity of psiCHECK-2 Bid 3' UTR was not changed significantly. Taken together, these data provide valuable framework on Brucella induced miRNA expression in RAW264.7 cells, and suggest that Brucella may establish chronic infection by regulating miRNA expression profile.  相似文献   

11.
ABSTRACT: BACKGROUND: Avian influenza virus (AIV) outbreaks are worldwide threats to both poultry and humans. Our previous study suggested microRNAs (miRNAs) play significant roles in the regulation of host response to AIV infection in layer chickens. The objective of this study was to test the hypothesis if genetic background play essential role in the miRNA regulation of AIV infection in chickens and if miRNAs that were differentially expressed in layer with AIV infection would be modulated the same way in broiler chickens. Furthermore, by integrating with parallel mRNA expression profiling, potential molecular mechanisms of host response to AIV infection can be further exploited. RESULTS: Total RNA isolated from the lungs of non-infected and low pathogenic H5N3 infected broilers at four days post-infection were used for both miRNA deep sequencing and mRNA microarray analyses. A total of 2.6M and 3.3M filtered high quality reads were obtained from infected and non-infected chickens by Solexa GA-I Sequencer, respectively. A total of 271 miRNAs in miRBase 16.0 were identified and one potential novel miRNA was discovered. There were 121 miRNAs differentially expressed at the 5% false discovery rate by Fisher's exact test. More miRNAs were highly expressed in infected lungs (108) than in non-infected lungs (13), which was opposite to the findings in layer chickens. This result suggested that a different regulatory mechanism of host response to AIV infection mediated by miRNAs might exist in broiler chickens. Analysis using the chicken 44K Agilent microarray indicated that 508 mRNAs (347 down-regulated) were differentially expressed following AIV infection. CONCLUSION: A comprehensive analysis combining both miRNA and targeted mRNA gene expression suggests that gga-miR-34a, 122-1, 122-2, 146a, 155, 206, 1719, 1594, 1599 and 451, and MX1, IL-8, IRF-7, TNFRS19 are strong candidate miRNAs or genes involved in regulating the host response to AIV infection in the lungs of broiler chickens. Further miRNA or gene specific knock-down assay is warranted to elucidate underlying mechanism of AIV infection regulation in the chicken.  相似文献   

12.
MicroRNAs (miRNAs) are small regulatory RNAs that play a significant role in eukaryotes by targeting mRNAs for cleavage or translational repression. Recent studies have also shown them to be associated with cellular changes following viral infection. Mink enteritis virus (MEV) is one of the most important viral pathogens in the mink industry. To study the involvement of miRNAs in the MEV infection process, we used Illumina's ultrahigh throughput approach to sequencing miRNA libraries from the feline kidney (F81) cell line before and after infection with MEV. Using this bioinformatics approach we identified 196 known mammalian miRNA orthologs belonging to 152 miRNA families in F81 cells. Additionally, 97 miRNA*s of these miRNAs were detected. As well as known miRNAs, 384 and 398 novel miRNA precursor candidates were identified in uninfected and MEV-infected F81 cells respectively that have not been reported in other mammals. In MEV-infected cells 3 miRNAs were significantly down-regulated and 4 up-regulated including 3 significantly. The majority (12 of 16) of randomly selected miRNA expression profiles by qRT-PCR were consistent with those identified by deep sequencing. A total of 88 miRNAs were predicted to target interferon-associated genes; 6 appear to target the 3′UTR of MEV-specific receptor transferring receptor mRNAs; and 8 to target the MEV mRNA coding region. No miRNAs coded by MEV itself were detected.  相似文献   

13.
Chen L  Ren Y  Zhang Y  Xu J  Zhang Z  Wang Y 《Planta》2012,235(5):873-883
MicroRNAs (miRNAs) are small RNAs, generally of 20–23 nt, that down-regulate target gene expression during development, differentiation, growth, and metabolism. In Populus, extensive studies of miRNAs involved in cold, heat, dehydration, salinity, and mechanical stresses have been performed; however, there are few reports profiling the miRNA expression patterns during pathogen stress. We obtained almost 38 million raw reads through Solexa sequencing of two libraries from Populus inoculated and uninoculated with canker disease pathogen. Sequence analyses identified 74 conserved miRNA sequences belonging to 37 miRNA families from 154 loci in the Populus genome and 27 novel miRNA sequences from 35 loci, including their complementary miRNA* strands. Intriguingly, the miRNA* of three conserved miRNAs were more abundant than their corresponding miRNAs. The overall expression levels of conserved miRNAs increased when subjected to pathogen stress, and expression levels of 33 miRNA sequences markedly changed. The expression trends determined by sequencing and by qRT-PCR were similar. Finally, nine target genes for three conserved miRNAs and 63 target genes for novel miRNAs were predicted using computational analysis, and their functions were annotated. Deep sequencing provides an opportunity to identify pathogen-regulated miRNAs in trees, which will help in understanding the regulatory mechanisms of plant defense responses during pathogen infection.  相似文献   

14.
15.
16.
17.
18.
MicroRNAs (miRNAs) are a class of noncoding RNA molecules that function as negative regulators of gene expression and play important roles in a wide spectrum of biological processes, including in immune response. However, the physiological regulation function of Pinctada fucata miRNAs, specially their immunomodulation has not been explored yet. Here, two small RNA libraries from hemocytes of P. fucata with or without Vibrio alginolyticus infection were constructed and sequenced using the high-throughput Illumina deep sequencing technology. In total, 11,939,992 and 11,083,327 raw reads, corresponding to 10,993,546 and 9,988,179 clean reads, were respectively obtained in the control and infected libraries. A total of 276 miRNAs, including 225 known miRNAs and 51 putative novel miRNAs, were identified by bioinformatic analysis. By using pairwise comparison between two libraries, 93 miRNAs were found to be significantly differentially expressed, with 42 and 51 miRNAs exhibiting up-regulation and down-regulation, respectively. Thereinto, some known miRNAs were considered to be immune-related. Real-time PCR were implemented for 6 miRNAs co-expressed in the control and infected samples, and agreement was confirmed between the high-throughput sequencing and real-time PCR data. After miRNA targets were predicted, GO and KEGG pathway enrichment analysis were performed, and the results indicated that ten of the differentially expressed miRNAs were involved in immune-related pathways, and might participate in the host immune response to V. alginolyticus. These results of identification and comparative analysis of miRNAs might deepen our understanding of host-pathogen interactions and immune defense mechanisms in P. fucata.  相似文献   

19.
20.
ABSTRACT: BACKGROUND: Transmissible gastroenteritis (TGE) is a highly contagious viral disease of swine, characterized by severe vomiting, diarrhea, and high mortality. Currently, the vaccines for it are only partially effective and no specific drug is available for treatment of TGE virus (TGEV) infection. RNA interference has been confirmed as a new approach for controlling viral infections. In this study, the inhibitory effect of short hairpin RNAs (shRNAs) targeting the ORF 7 gene of TGEV on virus replication was examined. RESULTS: Four theoretically effective sequences of TGEV ORF 7 gene were designed and selected for construction of shRNA expression plasmids. In the reporter assays, three of four shRNA expression plasmids were able to inhibit significantly the expression of ORF 7 gene and replication of TGEV, as shown by real-time quantitative RT-PCR analysis of viral ORF 7 and N genes and detection of virus titers (TCID50/ml). Stable swine testicular (ST) cells expressing the shRNAs were established. Observation of the cytopathic effect and apoptosis, as well as a cell proliferation assay demonstrated that the three shRNAs were capable of protecting ST cells against TGEV destruction, with high specificity and efficiency. CONCLUSIONS: Our results indicated that plasmid-transcribed shRNAs targeting the ORF 7 gene in the TGEV genome effectively inhibited expression of the viral target gene and viral replication in vitro. These findings provide evidence that the shRNAs have potential therapeutic application for treatment of TGE.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号