首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 95 毫秒
1.
Glypicans are cell-surface heparan sulfate proteoglycans that regulate developmental signaling pathways by binding growth factors to their heparan sulfate chains. The primary structures of glypican core proteins contain potential N-glycosylation sites, but the importance of N-glycosylation in glypicans has never been investigated in detail. Here, we studied the role of the possible N-glycosylation sites at Asn-79 and Asn-116 in recombinant anchorless glypican-1 expressed in eukaryotic cells. Mutagenesis and enzymatic cleavage indicated that the potential N-glycosylation sites are invariably occupied. Experiments using the drug tunicamycin to inhibit the N-linked glycosylation of glypican-1 showed that secretion of anchorless glypican-1 was reduced and that the protein did not accumulate inside the cells. Heparan sulfate substitution of N-glycosylation mutant N116Q was similar to wild-type glypican-1 while the N79Q mutant and also the double mutant N79Q,N116Q were mostly secreted as high-molecular-weight heparan sulfate proteoglycan. N-Glycosylation mutants and N-deglycosylated glypican-1 had far-UV circular dichroism and fluorescence emission spectra that were highly similar to those of N-glycosylated glypican-1. A single unfolding transition at high concentrations of urea was found for both N-deglycosylated glypican-1 and glypican-1 in which the N-glycosylation sites had been removed by mutagenesis when chemical denaturation was monitored by circular dichroism and fluorescence emission spectroscopy. In summary, we have found that the potential N-glycosylation sites in glypican-1 are invariably occupied and that the N-linked glycans on glypican-1 affect protein expression and heparan sulfate substitution but that correct folding can be obtained in the absence of N-linked glycans.  相似文献   

2.
Endoplasmic reticulum (ER) stress responses comprising the unfolded protein response (UPR) are activated by conditions that disrupt folding and assembly of proteins inside the ER lumenal compartment. Conditions known to be proximal triggers of the UPR include saturation of chaperones with misfolded protein, redox imbalance, disruption of Ca2+ levels, interference with N-linked glycosylation, and failure to dispose of terminally misfolded proteins. Potentially, ER stress responses can reprogram cells to correct all of these problems and thereby restore ER function to normal. This article will review literature on stimulation of N-linked glycosylation by ER stress responses, focusing on metazoan systems. The mechanisms involved will be contrasted with those mediating stimulation of N-linked glycosylation by cytoplasmic stress responses. This information will interest readers who study the biological roles of stress responses, the functions of N-linked glycans, and potential strategies for treatment of genetic disorders of N-linked glycosylation.  相似文献   

3.
N-glycosylation inhibitors have antiviral effect against bovine viral diarrhea virus. This effect is associated with inhibition of the productive folding pathway of E1 and E2 envelope glycoproteins. E(rns) is the third pestivirus envelope protein, essential for virus infectivity. The protein is heavily glycosylated, its N-linked glycans counting for half of the apparent molecular weight. In this report we address the importance of N-glycan trimming in the biosynthesis, folding, and intracellular trafficking of E(rns). We show that E(rns) folding is not assisted by calnexin and calreticulin; however, the protein strongly interacts with BiP. Consistently, the N-glycan trimming is not a prerequisite for either the acquirement of the E(rns) native conformation, as it retains the RNase enzymatic activity in the presence of alpha-glucosidase inhibitors, or for dimerization. However, E(rns) secretion into the medium is severely impaired suggesting a role for N-glycosylation in the transport of the glycoprotein through the secretory pathway.  相似文献   

4.
N-glycosylation, a common cotranslational modification, is thought to be critical for plasma membrane expression of glycoproteins by enhancing protein folding, trafficking, and stability through targeting them to the ER folding cycles via lectin-like chaperones. In this study, we show that N-glycans, specifically core glycans, enhance the productive folding and conformational stability of a polytopic membrane protein, the cystic fibrosis transmembrane conductance regulator (CFTR), independently of lectin-like chaperones. Defective N-glycosylation reduces cell surface expression by impairing both early secretory and endocytic traffic of CFTR. Conformational destabilization of the glycan-deficient CFTR induces ubiquitination, leading to rapid elimination from the cell surface. Ubiquitinated CFTR is directed to lysosomal degradation instead of endocytic recycling in early endosomes mediated by ubiquitin-binding endosomal sorting complex required for transport (ESCRT) adaptors Hrs (hepatocyte growth factor–regulated tyrosine kinase substrate) and TSG101. These results suggest that cotranslational N-glycosylation can exert a chaperone-independent profolding change in the energetic of CFTR in vivo as well as outline a paradigm for the peripheral trafficking defect of membrane proteins with impaired glycosylation.  相似文献   

5.
N-linked glycosylation has a profound effect on the proper folding, oligomerization and stability of glycoproteins. These glycans impart many properties to proteins that may be important for their proper functioning, besides having a tendency to exert a chaperone-like effect on them. Certain glycosylation sites in a protein however, are more important than other sites for their function and stability. It has been observed that some N-glycosylation sites are conserved over families of glycoproteins over evolution, one such being the tyrosinase related protein family. The role of these conserved N-glycosylation sites in their trafficking, sorting, stability and activity has been examined here. By scrutinizing the different glycosylation sites on this family of glycoproteins it was inferred that different sites in the same family of polypeptides can perform distinct functions and conserved sites across the paralogues may perform diverse functions.  相似文献   

6.
The endoplasmic reticulum (ER) contains a stringent quality control system that ensures the correct folding of newly synthesized proteins to be exported via the secretory pathway. In this system UDP-Glc:glycoprotein glucosyltransferase (GT) serves as a glycoprotein specific folding sensor by specifically glucosylating N-linked glycans in misfolded glycoproteins thus retaining them in the calnexin/calreticulin chaperone cycle. To investigate how GT senses the folding status of glycoproteins, we generated RNase B heterodimers consisting of a folded and a misfolded domain. Only glycans linked to the misfolded domain were found to be glucosylated, indicating that the enzyme recognizes folding defects at the level of individual domains and only reglucosylates glycans directly attached to a misfolded domain. The result was confirmed with complexes of soybean agglutinin and misfolded thyroglobulin.  相似文献   

7.
8.
Suspension-cultured cells of sycamore (Acer pseudoplatanus L.) secrete a number of acid hydrolases and other proteins that have both highmannose and complex asparagine-linked glycans. We used affinity chromatography with concanavalin A and an antiserum specific for complex glycans in conjunction with in vivo-labeling studies to show that all of the secreted proteins carry glycans. The presence of complex glycans on secretory proteins indicates that they are passing through the Golgi complex on the way to the extracellular compartment. The sodium ionophore, monensin, did not block the transport of proteins to the extracellular medium, even though monensin efficiently inhibited the Golgi-mediated processing of complex glycans. The inhibition of N-glycosylation by tunicamycin reduced by 76% to 84% the accumulation of newly synthesized (i.e. radioactively labeled) protein that was secreted by the sycamore cells, while cytoplasmic protein biosynthesis was not affected by this antibiotic. However, in the presence of glycoprotein-processing inhibitors, such as castanospermine and deoxymannojirimycin, the formation of complex glycans was prevented but glycoprotein secretion was unchanged. These results support the conclusion that N-linked glycan processing is not necessary for sorting, but glycosylation is required for accumulation of secreted proteins in the extracellular compartment.  相似文献   

9.
Anthrax toxin, which is released from the Gram-positive bacterium Bacillus anthracis, is composed of three proteins: protective antigen (PA), lethal factor (LF), and edema factor (EF). PA binds a receptor on the surface of the target cell and further assembles into a homo-heptameric pore through which EF and LF translocate into the cytosol. Two distinct cellular receptors for anthrax toxin, TEM8/ANTXR1 and CMG2/ANTXR2, have been identified, and it is known that their extracellular domains bind PA with low and high affinities, respectively. Here, we report the crystal structure of the TEM8 extracellular vWA domain at 1.7 Å resolution. The overall structure has a typical integrin fold and is similar to that of the previously published CMG2 structure. In addition, using structure-based mutagenesis, we demonstrate that the putative interface region of TEM8 with PA (consisting of residues 56, 57, and 154–160) is responsible for the PA-binding affinity differences between the two receptors. In particular, Leu56 was shown to be a key factor for the lower affinity of TEM8 towards PA compared with CMG2. Because of its high affinity for PA and low expression in normal tissues, an isolated extracellular vWA domain of the L56A TEM8 variant may serve as a potent antitoxin and a potential therapeutic treatment for anthrax infection. Moreover, as TEM8 is often over-expressed in tumor cells, our TEM8 crystal structure may provide new insights into how to design PA mutants that preferentially target tumor cells.  相似文献   

10.
11.
Glycosylation is a widespread post-translational modification found in glycoproteins. Glycans play key roles in protein folding, quality control in the endoplasmic reticulum (ER) and protein trafficking within cells. However, it remains unclear whether all positions of protein glycosylation are involved in glycan functions, or if specific positions have individual roles. Here we demonstrate the integral involvement of a specific N-glycan from amongst the three glycans present on inducible costimulator (ICOS), a T-cell costimulatory molecule, in proper protein folding and intracellular trafficking to the cell surface membrane. We found that glycosylation-defective mutant proteins lacking N-glycan at amino-acid position 89 (N89), but not proteins lacking either N23 or N110, were retained within the cell and were not detected on the cell surface membrane. Additional evidence suggested that N89 glycosylation was indirectly involved in ICOS ligand binding. These data suggest that amongst the three putative ICOS glycosylation sites, N89 is required for proper ICOS protein folding in the ER, intracellular trafficking and ligand binding activity. This study represents a substantial contribution to the current mechanistic understanding of the necessity and potential functions of a specific N-glycan among the multiple glycans of glycoproteins.  相似文献   

12.
The yeast Pichia pastoris is used extensively as the host cell for large-scale production of secreted recombinant proteins. Many proteins of pharmaceutical importance are N-glycosylated, and therefore require an expression host that yields N-linked oligosaccharides that are structurally and functionally identical to the human counterpart. The recent report by Choi et al. describes the use of combinatorial genetic libraries to alter the N-glycosylation pathway in P. pastoris to yield N-linked oligosaccharides with hybrid structures that are the same as the intermediates of mammalian-protein N-glycosylation. In view of recent progress in this area, the production of complex human glycans in yeasts is anticipated.  相似文献   

13.
The extracellular domain of the human leptin receptor (Ob-R) contains 20 potential N-glycosylation sites whose role in leptin binding remains to be elucidated. We found that a mammalian cell-expressed sOb-R (soluble Ob-R) fragment (residues 22-839 of the extracellular domain) bound leptin with a dissociation constant of 1.8 nM. This binding was inhibited by Con A (concanavalin A) or wheatgerm agglutinin. Treatment of sOb-R with peptide N-glycosidase F reduced leptin binding by approximately 80% concurrently with N-linked glycan removal. The human megakaryoblastic cell line, MEG-01, expresses two forms of the Ob-R, of approx. 170 and 130 kDa molecular mass. Endo H (endoglycosidase H) treatment and cell culture with alpha-glucosidase inhibitors demonstrated that N-linked glycans are of the complex mature type in the 170 kDa form and of the high-mannose type in the 130 kDa form. Both isoforms bound leptin, but not after peptide N-glycosidase F treatment. An insect-cell-expressed sOb-R fragment, consisting of the Ig (immunoglobulin), CRH2 (second cytokine receptor homology) and FNIII (fibronectin type III) domains, bound leptin with affinity similar to that of the entire extracellular domain, but this function was abolished after N-linked glycan removal. The same treatment had no effect on the leptin-binding activity of the isolated CRH2 domain. Our findings show that N-linked glycans within Ig and/or FNIII domains regulate Ob-R function, but are not involved in essential interactions with the ligand.  相似文献   

14.
A third of the human genome encodes N-glycosylated proteins. These are co-translationally translocated into the lumen/membrane of the endoplasmic reticulum (ER) where they fold and assemble before they are transported to their final destination. Here, we show that calnexin, a major ER chaperone involved in glycoprotein folding is palmitoylated and that this modification is mediated by the ER palmitoyltransferase DHHC6. This modification leads to the preferential localization of calnexin to the perinuclear rough ER, at the expense of ER tubules. Moreover, palmitoylation mediates the association of calnexin with the ribosome-translocon complex (RTC) leading to the formation of a supercomplex that recruits the actin cytoskeleton, leading to further stabilization of the assembly. When formation of the calnexin-RTC supercomplex was affected by DHHC6 silencing, mutation of calnexin palmitoylation sites or actin depolymerization, folding of glycoproteins was impaired. Our findings thus show that calnexin is a stable component of the RTC in a manner that is exquisitely dependent on its palmitoylation status. This association is essential for the chaperone to capture its client proteins as they emerge from the translocon, acquire their N-linked glycans and initiate folding.  相似文献   

15.

SUMMARY

N-glycosylation of proteins is one of the most prevalent posttranslational modifications in nature. Accordingly, a pathway with shared commonalities is found in all three domains of life. While excellent model systems have been developed for studying N-glycosylation in both Eukarya and Bacteria, an understanding of this process in Archaea was hampered until recently by a lack of effective molecular tools. However, within the last decade, impressive advances in the study of the archaeal version of this important pathway have been made for halophiles, methanogens, and thermoacidophiles, combining glycan structural information obtained by mass spectrometry with bioinformatic, genetic, biochemical, and enzymatic data. These studies reveal both features shared with the eukaryal and bacterial domains and novel archaeon-specific aspects. Unique features of N-glycosylation in Archaea include the presence of unusual dolichol lipid carriers, the use of a variety of linking sugars that connect the glycan to proteins, the presence of novel sugars as glycan constituents, the presence of two very different N-linked glycans attached to the same protein, and the ability to vary the N-glycan composition under different growth conditions. These advances are the focus of this review, with an emphasis on N-glycosylation pathways in Haloferax, Methanococcus, and Sulfolobus.  相似文献   

16.
Hepatitis C virus (HCV) envelope glycoproteins are highly glycosylated, with up to 5 and 11 N-linked glycans on E1 and E2, respectively. Most of the glycosylation sites on HCV envelope glycoproteins are conserved, and some of the glycans associated with these proteins have been shown to play an essential role in protein folding and HCV entry. Such a high level of glycosylation suggests that these glycans can limit the immunogenicity of HCV envelope proteins and restrict the binding of some antibodies to their epitopes. Here, we investigated whether these glycans can modulate the neutralizing activity of anti-HCV antibodies. HCV pseudoparticles (HCVpp) bearing wild-type glycoproteins or mutants at individual glycosylation sites were evaluated for their sensitivity to neutralization by antibodies from the sera of infected patients and anti-E2 monoclonal antibodies. While we did not find any evidence that N-linked glycans of E1 contribute to the masking of neutralizing epitopes, our data demonstrate that at least three glycans on E2 (denoted E2N1, E2N6, and E2N11) reduce the sensitivity of HCVpp to antibody neutralization. Importantly, these three glycans also reduced the access of CD81 to its E2 binding site, as shown by using a soluble form of the extracellular loop of CD81 in inhibition of entry. These data suggest that glycans E2N1, E2N6, and E2N11 are close to the binding site of CD81 and modulate both CD81 and neutralizing antibody binding to E2. In conclusion, this work indicates that HCV glycans contribute to the evasion of HCV from the humoral immune response.  相似文献   

17.
The crystal structures of the glycosylated N-terminal two domains of ICAM-1 and ICAM-2 provided a framework for understanding the role of glycosylation in the structure and function of intercellular adhesion molecules (ICAMs). The most conserved glycans were less flexible in the structures, interacting with protein residues and contributing to receptor folding and expression. The first N-linked glycan in ICAM-2 contacts an exposed tryptophan residue, defining a conserved glycan-W motif critical for the conformation of the integrin binding domain. The absence of this motif in human ICAM-1 exposes regions used in receptor dimerization and rhinovirus recognition. Experiments with soluble molecules having the N-terminal two domains of human ICAMs identified glycans of the high mannose type N-linked to the second domain of the dendritic cell-specific ICAM-grabbing nonintegrin lectin-ligands ICAM-2 and ICAM-3. About 40% of those receptor molecules bear endoglycosidase H sensitive glycans responsible of the lectin binding activity. High mannose glycans were absent in ICAM-1, which did not bind to the lectin, but they appeared in ICAM-1 mutants with additional N-linked glycosylation and lectin binding activity. N-Linked glycosylation regulate both conformation and immune related functions of ICAM receptors.  相似文献   

18.
目的 研究膀胱癌FFPE组织切片的N-连接糖链,发现膀胱癌FFPE肿瘤组织的异常N-连接糖链修饰情况。方法 发展基于FFPE组织切片原位提取N-连接糖链的实验流程。通过PNGase F酶切FFPE组织解释放N-连接糖链。对N-连接糖链自由端进行全甲基化修饰。通过MALDI-TOF/TOF-MS检测N-连接糖链的相对含量。进行数据库匹配,确定N-连接糖链的可能糖型。ROC分析用于预测显著差异N-连接糖链作为预测膀胱癌生物标志物的准确度。结果 MALDI-TOF/TOF-MS检测泛甲基化修饰N-连接糖链的数据显示,在16例膀胱癌患者的肿瘤和癌旁组织的3次重复实验中,肿瘤组织中蛋白质高甘露糖型N2H6、N2H7、N2H8、N2H9和复杂型N5H6F1糖链修饰水平显著上升,同时高甘露糖型N2H5、杂合型N3H5以及复杂型N3H4、N4H4、N5H6F1S2糖链修饰水平显著下降。ROC分析显示,双天线型N-连接糖链N3H4(AUC=0.90)和N4H4(AUC=0.91)在单独或者共同区分膀胱癌患者肿瘤组织和癌旁组织中都具有很好的可靠性,可能成为膀胱癌的潜在生物标志物。结论 膀胱癌FFPE肿瘤组织中存在蛋白质异常N-糖基化修饰,N-连接糖链N3H4和N4H4或可成为膀胱癌的潜在生物标志物。  相似文献   

19.
An endoplasmic reticulum (ER) quality control system assists in efficient folding and disposal of misfolded proteins. N-linked glycans are critical in these events because their composition dictates interactions with molecular chaperones. UDP-glucose:glycoprotein glucosyltransferase 1 (UGT1) is a key quality control factor of the ER. It adds glucoses to N-linked glycans of nonglucosylated substrates that fail a quality control test, supporting additional rounds of chaperone binding and ER retention. How UGT1 functions in its native environment is poorly understood. The role of UGT1 in the maturation of glycoproteins at basal expression levels was analyzed. Prosaposin was identified as a prominent endogenous UGT1 substrate. A dramatic decrease in the secretion of prosaposin was observed in ugt1−/− cells with prosaposin localized to large juxtanuclear aggresome-like inclusions, which is indicative of its misfolding and the essential role that UGT1 plays in its proper maturation. A model is proposed that explains how UGT1 may aid in the folding of sequential domain–containing proteins such as prosaposin.  相似文献   

20.
The high affinity IgE receptor (FcepsilonRI) is a multisubunit complex comprised of either alphagamma(2) or alphabetagamma(2) chains. The cotranslational assembly of the IgE-binding alpha-chain with a dimer of gamma-chains occurs in a highly controlled manner and is proposed to involve masking of a dilysine motif present at the cytoplasmic C terminus of the FcepsilonRI alpha-chain that targets localization of this subunit to the endoplasmic reticulum (ER). Here, we show that ER quality control modulates export from the ER of newly synthesized alphagamma(2) and alphabetagamma(2) receptors. We demonstrate that the presence of untrimmed N-linked core glycans (Glc(3)Man(9)GlcNAc(2)) on the FcepsilonRI alpha-chain activates the ER quality control mechanism to retain this subunit in the ER, despite the presence of gamma-chains. At the same time, the untrimmed, ER-localized alpha-chain exhibits IgE-binding activity, suggesting that FcepsilonRI alpha-chain folding occurs before constitutive glucose trimming. In additional experiments, we demonstrate that cell surface expression of an alpha-chain C-terminal truncation mutant is also dependent on glucose trimming, but not on gamma-chain coexpression. We suggest that glucosidase trimming of terminal glucose residues is a critical control step in the export of FcepsilonRIalpha from the ER. Finally, we show that the constitutive ER FcepsilonRI alpha-chain, expressed in the absence of the other FcepsilonRI subunits, associates with the ER lectin-like chaperone calnexin, but not the structurally similar ER chaperone calreticulin, presumably through interaction with monoglucosylated alpha-chain ER glycoforms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号