首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Objective

To down-regulate expression of mRNA for the platelet-derived growth factor receptor (PDGFR)-α, block the signalling pathway of PDGF and its receptor, and study their influence on fibroblast transdifferentiation to myofibroblasts in systemic sclerosis (SSc).

Methods

Fibroblasts from skin lesions of SSc patients and health adult controls were cultured in vitro, and α-smooth muscle actin (α-SMA) expression was determined by immunocytochemistry. Both groups of fibroblasts were stimulated with PDGF-AA, transforming growth factor β1 (TGF-β1), and costimulated with PDGF-AA and TGF-β1, then PDGFR-α and α-SMA mRNA and protein expression were detected with RT-PCR and WB respectively. Three pairs of siRNAs targeting different PDGFR-α mRNA sequences were synthesized for RNAi. SSc and control fibroblasts were transfected with PDGFR-α siRNA; stimulated with PDGF-AA; and assessed for PDGFR-α and α-SMA mRNA and protein expression.

Results

Although the fibroblasts from both groups had similar morphology, the SSc skin lesions had significantly more myofibroblasts than control skin lesions. PDGF-AA stimulation, TGF-β1 stimulation, and costimulation significantly up-regulated PDGFR-α and α-SMA mRNA and protein expression in SSc fibroblasts compared to control (P<0.05), and costimulation had the strongest effects (P<0.05). All three pairs of siRNAs suppressed PDGFR-α mRNA and protein expression (P<0.05), but siRNA1495 had the highest gene-silencing efficiency (P<0.05). PDGFR-α siRNA attenuated the effects of PDGF-AA through up-regulating PDGFR-α and α-SMA mRNA and protein expression and inhibiting fibroblast transdifferentiation to myofibroblasts in SSc (P<0.05).

Conclusions

PDGFR-α over-expression in SSc fibroblasts bound PDGF-AA more efficiently and promoted fibroblast transdifferentiation, which was enhanced by TGF-β1. PDGFR-α siRNA down-regulated PDGFR-α expression, blocked binding to PDGF-AA, and inhibited fibroblast transdifferentiation to myofibroblasts.  相似文献   

2.

Background

Myofibroblasts are the critical effector cells in the pathogenesis of pulmonary fibrosis which carries a high degree of morbidity and mortality. We have previously identified Type II TGFβ receptor interacting protein 1 (TRIP-1), through proteomic analysis, as a key regulator of collagen contraction in primary human lung fibroblasts—a functional characteristic of myofibroblasts, and the last, but critical step in the process of fibrosis. However, whether or not TRIP-1 modulates fibroblast trans-differentiation to myofibroblasts is not known.

Methods

TRIP-1 expression was altered in primary human lung fibroblasts by siRNA and plasmid transfection. Transfected fibroblasts were then analyzed for myofibroblast features and function such as α-SMA expression, collagen contraction ability, and resistance to apoptosis.

Results

The down-regulation of TRIP-1 expression in primary human lung fibroblasts induces α-SMA expression and enhances resistance to apoptosis and collagen contraction ability. In contrast, TRIP-1 over-expression inhibits α-SMA expression. Remarkably, the effects of the loss of TRIP-1 are not abrogated by blockage of TGFβ ligand activation of the Smad3 pathway or by Smad3 knockdown. Rather, a TRIP-1 mediated enhancement of AKT phosphorylation is the implicated pathway. In TRIP-1 knockdown fibroblasts, AKT inhibition prevents α-SMA induction, and transfection with a constitutively active AKT construct drives collagen contraction and decreases apoptosis.

Conclusions

TRIP-1 regulates fibroblast acquisition of phenotype and function associated with myofibroblasts. The importance of this finding is it suggests TRIP-1 expression could be a potential target in therapeutic strategy aimed against pathological fibrosis.  相似文献   

3.
Hyperthrophic scarring of the skin is caused by excessive activity of skin myofibroblasts after wound healing and often leads to functional and/or aesthetic disturbance with significant impairment of patient quality of life. MicroRNA (miRNA) gene therapies have recently been proposed for complex processes such as fibrosis and scarring. In this study, we focused on the role of miR-145 in skin scarring and its influence in myofibroblast function. Our data showed not only a threefold increase of miR-145 levels in skin hypertrophic scar tissue but also in transforming growth factor β1 (TGF-β1)-induced skin myofibroblasts compared with healthy skin or nontreated fibroblasts (p < 0.001). Consistent with the upregulation of miR-145 induced by TGF-β1 stimulation of fibroblasts, the expression of Kruppel-like factor 4 (KLF4) was decreased by 50% and α-smooth muscle actin (α-SMA) protein expression showed a threefold increase. Both could be reversed by miR-145 inhibition (p < 0.05). Restoration of KLF4 levels equally abrogated TGF-β1–induced α-SMA expression. These data demonstrate that TGF-β1 induces miR-145 expression in fibroblasts, which in turn inhibits KLF4, a known inhibitor of α-SMA, hence upregulating α-SMA expression. Furthermore, treatment of myofibroblasts with a miR-145 inhibitor strongly decreased their α-1 type I collagen expression, TGF-β1 secretion, contractile force generation and migration. These data demonstrate that upregulation of miR-145 plays an important role in the differentiation and function of skin myofibroblasts. Additionally, inhibition of miR-145 significantly reduces skin myofibroblast activity. Taken together, these results suggest that miR-145 is a promising therapeutic target to prevent or reduce hypertrophic scarring of the skin.  相似文献   

4.
IntroductionSystemic sclerosis (SSc) is a complex and not fully understood autoimmune disease associated with fibrosis of multiple organs. The main effector cells, the myofibroblasts, are collagen-producing cells derived from the activation of resting fibroblasts. This process is regulated by a complex repertoire of profibrotic cytokines, and among them transforming growth factor beta (TGF-β) and endothelin-1 (ET-1) play a major role. In this paper we show that TGF-β and ET-1 receptors co-operate in myofibroblast activation, and macitentan, an ET-1 receptor antagonist binding ET-1 receptors, might interfere with both TGF-β and ET-1 pathways, preventing myofibroblast differentiation.MethodsFibroblasts isolated from healthy controls and SSc patients were treated with TGF-β and ET-1 and successively analyzed for alpha smooth muscle actin (α-SMA) and collagen (Col1A1) expression and for the Sma and Mad Related (SMAD) phosphorylation. We further tested the ability of macitentan to interfere with these process. Furthermore, we silenced ET-1 and endothelin-1 receptor A expression and evaluated the formation of an ET-1/TGF-β receptor complex by immunoprecitation assay.ResultsWe showed myofibroblast activation in SSc fibroblasts assessing the expression of α-SMA and Col1A1, after stimulation with TGF-β and ET-1. Macitentan interfered with both ET-1- and TGF-β-induced fibroblast activation. To explain this unexpected inhibitory effect of macitentan on TGF-β activity, we silenced ET-1 expression on SSc fibroblasts and co-immunoprecipitated these two receptors, showing the formation of an ET-1/TGF-β receptor complex.ConclusionsDuring SSc, ET-1 produced by activated endothelia contributes to myofibroblast activation using TGF-β machinery via an ET-1/TGF-β receptor complex. Macitentan interferes with the profibrotic action of TGF-β, blocking the ET-1 receptor portion of the ET-1/TGF-β receptor complex.  相似文献   

5.
Myofibroblasts and extracellular matrix are important components in wound healing. Alpha-smooth muscle actin (α-SMA) is a marker of myofibroblasts. Fibrillin-1 is a major constituent of microfibrils and an extracellular-regulator of TGF-β1, an important cytokine in the transdifferentiation of resident fibroblasts into myofibroblasts. To study the correlation between changes in fibrillin-1 expression and myofibroblast differentiation, we examined alterations in fibrillin-1 and α-SMA expression in organotypic cultures of dental pulp in vitro. Extracted healthy human teeth were cut to 1-mm-thick slices and cultured for 7 days. In intact dental pulp, fibrillin-1 was broadly distributed, and α-SMA was observed in pericytes and vascular smooth muscle cells. After 7 days of culture, immunostaining for fibrillin-1 became faint concomitant with a downregulation in its mRNA levels. Furthermore, fibroblasts, odontoblasts and Schwann cells were immunoreactive for α-SMA with a significant increase in α-SMA mRNA expression. Double immunofluorescence staining was positive for pSmad2/3, central mediators of TGF-β signaling, and α-SMA. The administration of inhibitors for extracellular matrix proteases recovered fibrillin-1 immunostaining; moreover, fibroblasts lost their immunoreactivity for α-SMA along with a downregulation in α-SMA mRNA. These findings suggest that the expression of α-SMA is TGF-β1 dependent, and fibrillin-1 degradation and downregulation might be implicated in the differentiation of myofibroblasts in dental pulp wound healing.  相似文献   

6.
7.
Diabetic nephropathy is a common causative factor of chronic kidney disease (CKD). DPP-4 inhibitor has the ability to improve kidney function and renal microvasculature. In the present study, we investigate the deleterious effects of IS on proximal tubular cells and the protective role of DPP-4 inhibitor. Human kidney 2 (HK-2) cells were exposed to IS in the presence or absence of DPP-4 inhibitor. Effects of DPP-4 inhibitor on viability of HK-2 cells were determined by MTT assay. Reactive oxygen species (ROS) production was examined using fluorescent microscopy. Levels of cleaved caspase-3, transforming growth factor-beta (TGF-β), α-smooth muscle actin (α-SMA) and NF-kappaB p65 and phosphorylation of AKT and extracellular signal-regulated kinase (ERK) were detected by immunoblotting. Production of ROS and level of cleaved caspase-3 were increased by IS in a dose-dependent manner. The phosphorylation of AKT and ERK p65 were decreased alongside activation of NF-κB. Expression of TGF-β and α-SMA, were upregulated in IS-treated HK-2 cells. Treatment with DPP-4 inhibitor resulted in a significant increase in cell viability and a decrease of ROS production in IS-treated HK-2 cells. DPP-4 inhibitor restored IS-induced deactivations of AKT and ERK and inhibited activation of NF-κB in IS-treated HK-2 cells. Moreover, DPP-4 inhibitor could also attenuate IS-induced up-regulation of TGF-β and α-SMA expression. These findings suggest that DPP-4 inhibitor possesses anti-apoptotic activity to ameliorate the IS-induced renal damage, which may be partly attributed to regulating ROS/p38MAPK/ERK and PI3K-AKT pathways as well as downstream NF-κB signaling pathway.  相似文献   

8.
The transforming growth factor-beta (TGF-β) superfamily is one of the most diversified cell signaling pathways and regulates many physiological and pathological processes. Recently, neuropilin-1 (NRP-1) was reported to bind and activate the latent form of TGF-β1 (LAP-TGF-β1). We investigated the role of NRP-1 on Smad signaling in stromal fibroblasts upon TGF-β stimulation. Elimination of NRP-1 in stromal fibroblast cell lines increases Smad1/5 phosphorylation and downstream responses as evidenced by up-regulation of inhibitor of differentiation (Id-1). Conversely, NRP-1 loss decreases Smad2/3 phosphorylation and its responses as shown by down-regulation of α-smooth muscle actin (α-SMA) and also cells exhibit more quiescent phenotypes and growth arrest. Moreover, we also observed that NRP-1 expression is increased during the culture activation of hepatic stellate cells (HSCs), a liver resident fibroblast. Taken together, our data suggest that NRP-1 functions as a key determinant of the diverse responses downstream of TGF-β1 that are mediated by distinct Smad proteins and promotes myofibroblast phenotype.  相似文献   

9.
The soluble ectodomain of fibroblast growth factor receptor-IIIc (sFGFR2c) is able to bind to fibroblast growth factor (FGF) ligands and block the activation of the FGF-signaling pathway. In this study, sFGFR2c inhibited lung fibrosis dramatically in vitro and in vivo. The upregulation of α-smooth muscle actin (α-SMA) in fibroblasts by transforming growth factor-β1 (TGF-β1) is an important step in the process of lung fibrosis, in which FGF-2, released by TGF-β1, is involved. sFGFR2c inhibited α-SMA induction by TGF-β1 via both the extracellular signal-regulated kinase 1/2 (ERK1/2) and Smad3 pathways in primary mouse lung fibroblasts and the proliferation of mouse lung fibroblasts. In a mouse model of bleomycin (BLM)-induced lung fibrosis, mice were treated with sFGFR2c from d 3 or d 10 to 31 after BLM administration. Then we used hematoxylin and eosin staining, Masson staining and immunohistochemical staining to evaluate the inhibitory effects of sFGFR2c on lung fibrosis. The treatment with sFGFR2c resulted in significant attenuation of the lung fibrosis score and collagen deposition. The expression levels of α-SMA, p-FGFRs, p-ERK1/2 and p-Smad3 in the lungs of sFGFR2c-treated mice were markedly lower. sFGFR2c may have potential for the treatment of lung fibrosis as an FGF-2 antagonist.  相似文献   

10.
Activation of interstitial myofibroblasts and excessive production of extracellular matrix proteins are common pathways that contribute to chronic kidney disease. In a number of tissues, AMP-activated kinase (AMPK) activation has been shown to inhibit fibrosis. Here, we examined the inhibitory effect of the AMPK activator, 5-aminoimidazole-4-carboxyamide ribonucleoside (AICAR), on renal fibrosis in vivo and TGF-β1-induced renal fibroblasts activation in vitro. A unilateral ureteral obstruction (UUO) model was induced in male BALB/c mice. Mice with UUO were administered AICAR (500 mg/Kg/day) or saline intraperitoneally 1 day before UUO surgery and daily thereafter. Both kidneys were harvested 7 days after surgery for further analysis. For the in vitro studies, NRK-49F rat fibroblasts were pre-incubated with AICAR before TGF-β1 stimulation. The inhibitory effects of AICAR on signaling pathways down-stream of TGF-β1 were analyzed. In UUO model mice, administration of AICAR attenuated extracellular matrix protein deposition and the expression of α-smooth muscle actin (α-SMA), type I collagen and fibronectin. Pre-incubation of NRK-49F cells with AICAR inhibited TGF-β1-induced myofibroblast activation. Silencing of AMPKα1 by siRNA or by blocking AMPK activation with Compound C diminished the inhibitory effect of AICAR. Moreover, the inhibitory effects of AICAR on TGF-β1-mediated myofibroblast activation were associated with down-regulation of ERK 1/2 and STAT3. Our results suggest that AICAR reduces tubulointerstitial fibrosis in UUO mice and inhibits TGF-β1-induced kidney myofibroblast activation. AMPK activation by AICAR may have therapeutic potential for the treatment of renal tubulointerstitial fibrosis.  相似文献   

11.
A key event in chronic allergic asthma is the TGF-β-induced activation of fibroblasts into α-SMA-positive myofibroblasts which synthesize type-I collagen. In the present study we investigated the effect of the anti-fibrotic molecule BMP-7 in asthma. Balb/c mice were immunized i.p. with ovalbumin in alum and challenged every 2 days with ovalbumin aerosol (two or six challenges for acute and chronic protocols, respectively). The lung was evaluated for: α-SMA and type-I collagen by immunohistochemistry; BMP-7 and TGF- β1 gene expression by qRT-PCR; type-I collagen and Smads 2 and 3 by immunoblotting; mucus by PSA staining. Type-I collagen around bronchi, α-SMA, mucus secretion, TGF- β1 and BMP-7 gene expression were all increased in asthma. The TGF- β1/BMP-7 ratio was higher in the chronic group and correlated with higher levels of collagen. Fibroblasts isolated from asthmatic and healthy lungs produced type-I collagen upon stimulation with TGF- β1 via phosphorylation of Smad-2, Smad-3. Pre-treatment of the fibroblasts with BMP-7 reduced collagen production and Smads phosphorylation. Intranasal treatment of asthmatic mice with recombinant BMP-7 during the immunization protocol reduced lung inflammation and type I collagen deposition. These results suggest a protective role for BMP-7 in lung allergic inflammation, opposing the pro-fibrotic effects of TGF- β1.  相似文献   

12.
Lung matrix homeostasis partly depends on the fine regulation of proteolytic activities. We examined the expression of human cysteine cathepsins (Cats) and their relative contribution to TGF-β1-induced fibroblast differentiation into myofibroblasts. Assays were conducted using both primary fibroblasts obtained from patients with idiopathic pulmonary fibrosis and human lung CCD-19Lu fibroblasts. Pharmacological inhibition and genetic silencing of Cat B diminished α-smooth muscle actin expression, delayed fibroblast differentiation, and led to an accumulation of intracellular 50-kDa TGF-β1. Moreover, the addition of Cat B generated a 25-kDa mature form of TGF-β1 in Cat B siRNA-pretreated lysates. Inhibition of Cat B decreased Smad 2/3 phosphorylation but had no effect on p38 MAPK and JNK phosphorylation, indicating that Cat B mostly disturbs TGF-β1-driven canonical Smad signaling pathway. Although mRNA expression of cystatin C was stable, its secretion, which was inhibited by brefeldin A, increased during TGF-β1-induced differentiation of idiopathic pulmonary fibrosis and CCD-19Lu fibroblasts. In addition, cystatin C participated in the control of extracellular Cats, because its gene silencing restored their proteolytic activities. These data support the notion that Cat B participates in lung myofibrogenesis as suggested for stellate cells during liver fibrosis. Moreover, we propose that TGF-β1 promotes fibrosis by driving the effective cystatin C-dependent inhibition of extracellular matrix-degrading Cats.  相似文献   

13.

Objectivs

Cytokine-dependent activation of fibroblasts to myofibroblasts, a key event in fibrosis, is accompanied by phenotypic changes with increased secretory and contractile properties dependent on increased energy utilization, yet changes in the energetic profile of these cells are not fully described. We hypothesize that the TGF-β1-mediated transformation of myofibroblasts is associated with an increase in mitochondrial content and function when compared to naive fibroblasts.

Methods

Cultured NIH/3T3 mouse fibroblasts treated with TGF-β1, a profibrotic cytokine, or vehicle were assessed for transformation to myofibroblasts (appearance of α-smooth muscle actin [α-SMA] stress fibers) and associated changes in mitochondrial content and functions using laser confocal microscopy, Seahorse respirometry, multi-well plate reader and biochemical protocols. Expression of mitochondrial-specific proteins was determined using western blotting, and the mitochondrial DNA quantified using Mitochondrial DNA isolation kit.

Results

Treatment with TGF-β1 (5 ng/mL) induced transformation of naive fibroblasts into myofibroblasts with a threefold increase in the expression of α-SMA (6.85 ± 0.27 RU) compared to cells not treated with TGF-β1 (2.52 ± 0.11 RU). TGF-β1 exposure increased the number of mitochondria in the cells, as monitored by membrane potential sensitive dye tetramethylrhodamine, and expression of mitochondria-specific proteins; voltage-dependent anion channels (0.54 ± 0.05 vs. 0.23 ± 0.05 RU) and adenine nucleotide transporter (0.61 ± 0.11 vs. 0.22 ± 0.05 RU), as well as mitochondrial DNA content (530 ± 12 μg DNA/106 cells vs. 307 ± 9 μg DNA/106 cells in control). TGF-β1 treatment was associated with an increase in mitochondrial function with a twofold increase in baseline oxygen consumption rate (2.25 ± 0.03 vs. 1.13 ± 0.1 nmol O2/min/106 cells) and FCCP-induced mitochondrial respiration (2.87 ± 0.03 vs. 1.46 ± 0.15 nmol O2/min/106 cells).

Conclusions

TGF-β1 induced differentiation of fibroblasts is accompanied by energetic remodeling of myofibroblasts with an increase in mitochondrial respiration and mitochondrial content.  相似文献   

14.
15.
The mechanisms of hypertrophic scar formation are not fully understood. We previously screened the differentially expressed genes of human hypertrophic scar tissue and identified P311 gene as upregulated. As the activities of P311 in human fibroblast function are unknown, we examined the distribution of it and the effects of forced expression or silencing of expression of P311. P311 expression was detected in fibroblast-like cells from the hypertrophic scar of burn injury patients but not in peripheral blood mononuclear cells, bone marrow mesenchymal stem cells, epidermal cells or normal skin dermal cells. Transfection of fibroblasts with P311 gene stimulated the expression of alpha-smooth muscle actin (α-SMA), TGF-β1 and α1(I) collagen (COL1A1), and enhanced the contraction of fibroblast populated collagen lattices (FPCL). In contrast, interference of fibroblast P311 gene expression decreased the TGF-β1 mRNA expression and reduced the contraction of fibroblasts in FPCL. These results suggest that P311 may be involved in the pathogenesis of hypertrophic scar via induction of a myofibroblastic phenotype and of functions such as TGF-β1 expression. P311 could be a novel target for the control of hypertrophic scar development.  相似文献   

16.

Background

Idiopathic pulmonary fibrosis (IPF) is a progressive disease of insidious onset, and is responsible for up to 30,000 deaths per year in the U.S. Excessive production of extracellular matrix by myofibroblasts has been shown to be an important pathological feature in IPF. TGF-β1 is expressed in fibrotic lung and promotes fibroblast to myofibroblast differentiation (FMD) as well as matrix deposition.

Methods

To identify the mechanism of Arsenic trioxide’s (ATO)’s anti-fibrotic effect in vitro, normal human lung fibroblasts (NHLFs) were treated with ATO for 24 hours and were then exposed to TGF-β1 (1 ng/ml) before harvesting at multiple time points. To investigate whether ATO is able to alleviate lung fibrosis in vivo, C57BL/6 mice were administered bleomycin by oropharyngeal aspiration and ATO was injected intraperitoneally daily for 14 days. Quantitative real-time PCR, western blotting, and immunofluorescent staining were used to assess the expression of fibrotic markers such as α-smooth muscle actin (α-SMA) and α-1 type I collagen.

Results

Treatment of NHLFs with ATO at very low concentrations (10-20nM) inhibits TGF-β1-induced α-smooth muscle actin (α-SMA) and α-1 type I collagen mRNA and protein expression. ATO also diminishes the TGF-β1-mediated contractile response in NHLFs. ATO’s down-regulation of profibrotic molecules is associated with inhibition of Akt, as well as Smad2/Smad3 phosphorylation. TGF-β1-induced H2O2 and NOX-4 mRNA expression are also blocked by ATO. ATO-mediated reduction in Smad3 phosphorylation correlated with a reduction of promyelocytic leukemia (PML) nuclear bodies and PML protein expression. PML-/- mouse embryonic fibroblasts (MEFs) showed decreased fibronectin and PAI-1 expression in response to TGF-β1. Daily intraperitoneal injection of ATO (1 mg/kg) in C57BL/6 mice inhibits bleomycin induced lung α-1 type I collagen mRNA and protein expression.

Conclusions

In summary, these data indicate that low concentrations of ATO inhibit TGF-β1-induced fibroblast to myofibroblast differentiation and decreases bleomycin induced pulmonary fibrosis.  相似文献   

17.
Hepatic progenitor cells (HPCs) appear to play an important role in chronic liver injury. In this study, cirrhosis was induced in F-344 rats (n = 32) via subcutaneous injection of 50% carbon tetrachloride (CCl4) twice a week for 8 weeks. Then, 30% CCl4 was administered in conjunction with intragastric 2-acetylaminofluorine (2-AAF) for 4 weeks to induce activation of HPCs. WB-F344 cells were used to provide direct evidence for differentiation of HPCs to myofibroblasts. The results showed that after administration of 2-AAF, the hydroxyproline content and the expressions of α-SMA, Col I, Col IV, TGF-β1, CD68, TNF-α, CK19 and OV6 were significantly increased. OV6 and α-SMA were largely co-expressed in fibrous septum and the expressions of Wnt5b, frizzled2, frizzled3 and frizzled6 were markedly increased, while β-catenin expression was not statistically different among the different groups. Consistent with the above results, WB-F344 cells, treated with TGF-β1 in vitro, differentiated into myofibroblasts and α-SMA, Col I, Col IV, Wnt5b and frizzled2 expressions were significantly increased, while β-catenin expression was decreased. After blocking the non-canonical Wnt pathway via WIF-1, the Wnt5b level was down regulated, and α-SMA and F-actin expressions were significantly decreased in the WIF-1-treated cells. In conclusion, these results indicate that HPCs appear to differentiate into myofibroblasts and exhibit a profibrotic effect in progressive cirrhosis via activation of the non-canonical Wnt pathway. Blocking the non-canonical Wnt pathway can inhibit the differentiation of HPCs into myofibroblasts, suggesting that blocking this pathway and changing the fate of differentiated HPCs may be a potential treatment for cirrhosis.  相似文献   

18.
19.
Solid tumor growth triggers a wound healing response. Similar to wound healing, fibroblasts in the tumor stroma differentiate into myofibroblasts (also referred to as cancer-associated fibroblasts) primarily, but not exclusively, in response to transforming growth factor-β (TGF-β). Myofibroblasts in turn enhance tumor progression by remodeling the stroma. Among proteases implicated in stroma remodeling, matrix metalloproteinases (MMPs), including MMP-9, play a prominent role. Recent evidence indicates that MMP-9 recruitment to the tumor cell surface enhances tumor growth and invasion. In the present work, we addressed the potential relevance of MMP-9 recruitment to and activity at the surface of fibroblasts. We show that recruitment of MMP-9 to the fibroblast cell surface occurs through its fibronectin-like (FN) domain and that the molecule responsible for the recruitment is lysyl hydroxylase 3 (LH3). Functional assays suggest that both pro- and active MMP-9 trigger α-smooth muscle actin expression in cultured fibroblasts, reflecting myofibroblast differentiation, possibly as a result of TGF-β activation. Moreover, the recombinant FN domain inhibited both MMP-9-induced TGF-β activation and α-smooth muscle actin expression by displacing MMP-9 from the fibroblast cell surface. Together our results uncover LH3 as a new docking receptor of MMP-9 on the fibroblast cell surface and demonstrate that the MMP-9 FN domain is essential for the interaction. They also show that the recombinant FN domain inhibits MMP-9-induced TGF-β activation and fibroblast differentiation, providing a potentially attractive therapeutic reagent toward attenuating tumor progression where MMP-9 activity is strongly implicated.  相似文献   

20.
Hypertrophic scars (HTS), the excessive deposition of scar tissue by fibroblasts, is one of the most common skin disorders. Fibroblasts derived from surgical scar tissue produce high levels of α-smooth muscle actin (α-SMA) and transforming growth factor-β1 (TGF-β1). However, the molecular mechanisms for this phenomenon is poorly understood. Thus, the purpose of this study was to evaluate the molecular mechanisms of HTS and their potential therapeutic implications. Fibroblasts derived from skin HTS were cultured and characterized in vitro. The fibroblasts were synchronized and randomly assigned to two groups: cyclic stretch and cyclic stretch pre-treated with SB203580 (a p38MAPK inhibitor). Cyclic stretch at 10% strain was applied at a loading frequency of 10 cycles per minute (i.e. 5 seconds of tension and 5 seconds of relaxation) for 0 h, 6 h and 12 h. Cyclic stretch on HTS fibroblasts led to an increase in the expression of α-SMA and TGF-β1 mRNA and protein and the phosphorylation of p38MAPK. SB203580 reversed these effects and caused a decrease in matrix contraction. Furthermore, HTS fibroblast growth was partially blocked by p38MAPK inhibition. Therefore, the mechanism of cyclic stretch involves p38 MAPK, and its inhibition is suggested as a novel therapeutic strategy for HTS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号