首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Environmental cues are transmitted to the interior of the cell via a complex network of signaling hubs. Receptor tyrosine kinases (RTKs) and trimeric G proteins are 2 such major signaling hubs in eukaryotes. Canonical signal transduction via trimeric G proteins is spatially and temporally restricted, i.e., triggered exclusively at the plasma membrane (PM) by agonist activation of G-protein-coupled receptors (GPCRs) via a process that completes within a few hundred milliseconds. Recently, a rapidly emerging paradigm has revealed a non-canonical pathway for activation of trimeric G proteins by the non-receptor GEF, GIV/Girdin, that has distinctive temporal and spatial features. Such activation can be triggered by multiple growth factor RTKs, can occur at the PM and on internal membranes discontinuous with the PM, and can continue for prolonged periods of time. The molecular mechanisms that govern such non-canonical G protein activation and the relevance of this new paradigm in health and disease is discussed.  相似文献   

2.
The canonical process of activation of heterotrimeric G proteins by G protein coupled receptors (GPCRs) is well studied. Recently, a rapidly emerging paradigm has revealed the existence of a new, non-canonical set of cytosolic G protein modulators, guanine exchange modulators (GEMs). Among G proteins regulators, GEMs are uniquely capable of initiating pleiotropic signals: these bifunctional modulators can activate cAMP inhibitory (Gi) proteins and inhibit cAMP-stimulatory (Gs) proteins through a single short evolutionarily conserved module. A prototypical member of the GEM family, GIV/Girdin, integrates signals downstream of a myriad of cell surface receptors, e.g., growth factor RTKs, integrins, cytokine, GPCRs, etc., and translates these signals into G protein activation or inhibition. By their pleiotropic action, GIV and other GEMs modulate several key pathways within downstream signaling network. Unlike canonical G protein signaling that is finite and is triggered directly and exclusively by GPCRs, the temporal and spatial features of non-canonical activation of G protein via GIV-family of cytosolic GEMs are unusually relaxed. GIV uses this relaxed circuitry to integrate, reinforce and compartmentalize signals downstream of both growth factors and G proteins in a way that enables it to orchestrate cellular phenotypes in a sustained manner. Mounting evidence suggests the importance of GIV and other GEMs as disease modulators and their potential to serve as therapeutic targets; however, a lot remains unknown within the layers of the proverbial onion that must be systematically peeled. This perspective summarizes the key concepts of the GEM-dependent G protein signaling paradigm and discusses the multidisciplinary approaches that are likely to revolutionize our understanding of this paradigm from the atomic level to systems biology.  相似文献   

3.
GIV/Girdin is a multidomain signaling molecule that enhances PI3K-Akt signals downstream of both G protein-coupled and growth factor receptors. We previously reported that GIV triggers cell migration via its C-terminal guanine-nucleotide exchange factor (GEF) motif that activates Gαi. Recently we discovered that GIV's C-terminus directly interacts with the epidermal growth factor receptor (EGFR), and when its GEF function is intact, a Gαi-GIV-EGFR signaling complex assembles. By coupling G proteins to growth factor receptors, GIV is uniquely poised to intercept the incoming receptor-initiated signals and modulate them via G protein intermediates. Subsequent work has revealed that expression of the highly specialized C-terminus of GIV undergoes a bipartite dysregulation during oncogenesis-full length GIV with an intact C-terminus is expressed at levels ~20–50-fold above normal in highly invasive cancer cells and metastatic tumors, but its C-terminus is truncated by alternative splicing in poorly invasive cancer cells and non-invasive tumors. The consequences of such dysregulation on graded signal transduction and cellular phenotypes in the normal epithelium and its implication during tumor progression are discussed herein. Based on the fact that GIV grades incoming signals initiated by ligand-activated receptors by linking them to cyclical activation of G proteins, we propose that GIV is a molecular rheostat for signal transduction.  相似文献   

4.
GIV/Girdin is a multidomain signaling molecule that enhances PI3K-Akt signals downstream of both G protein-coupled and growth factor receptors. We previously reported that GIV triggers cell migration via its C-terminal guanine nucleotide exchange factor (GEF) motif that activates Gαi. Recently we discovered that GIV''s C-terminus directly interacts with the epidermal growth factor receptor (EGFR) and when its GEF function is intact, a Gαi-GIV-EGFR signaling complex assembles. By coupling G proteins to growth factor receptors, GIV is uniquely poised to intercept the incoming receptor-initiated signals and modulate them via G protein intermediates. Subsequent work has revealed that expression of the highly specialized C-terminus of GIV undergoes a bipartite dysregulation during oncogenesis—full-length GIV with an intact C-terminus is expressed at levels ∼20–50-fold above normal in highly invasive cancer cells and metastatic tumors, but its C-terminus is truncated by alternative splicing in poorly invasive cancer cells and non-invasive tumors. The consequences of such dysregulation on graded signal transduction and cellular phenotypes in the normal epithelium and its implication during tumor progression are discussed herein. Based on the fact that GIV grades incoming signals initiated by ligand-activated receptors by linking them to cyclical activation of G proteins, we propose that GIV is a molecular rheostat for signal transduction.Key words: G proteins, girdin, guanine nucleotide exchange factor, epidermal growth factor-receptor, G protein coupled receptors, metastasis, migration-proliferation dichotomy, growth factors, alternative splicing, PI3-kinase, Akt, rheostat, actin cytoskeleton  相似文献   

5.
A long-standing issue in the field of signal transduction is to understand the cross-talk between receptor tyrosine kinases (RTKs) and heterotrimeric G proteins, two major and distinct signaling hubs that control eukaryotic cell behavior. Although stimulation of many RTKs leads to activation of trimeric G proteins, the molecular mechanisms behind this phenomenon remain elusive. We discovered a unifying mechanism that allows GIV/Girdin, a bona fide metastasis-related protein and a guanine-nucleotide exchange factor (GEF) for Gαi, to serve as a direct platform for multiple RTKs to activate Gαi proteins. Using a combination of homology modeling, protein–protein interaction, and kinase assays, we demonstrate that a stretch of ∼110 amino acids within GIV C-terminus displays structural plasticity that allows folding into a SH2-like domain in the presence of phosphotyrosine ligands. Using protein–protein interaction assays, we demonstrated that both SH2 and GEF domains of GIV are required for the formation of a ligand-activated ternary complex between GIV, Gαi, and growth factor receptors and for activation of Gαi after growth factor stimulation. Expression of a SH2-deficient GIV mutant (Arg 1745→Leu) that cannot bind RTKs impaired all previously demonstrated functions of GIV—Akt enhancement, actin remodeling, and cell migration. The mechanistic and structural insights gained here shed light on the long-standing questions surrounding RTK/G protein cross-talk, set a novel paradigm, and characterize a unique pharmacological target for uncoupling GIV-dependent signaling downstream of multiple oncogenic RTKs.  相似文献   

6.
Autophagy is the major catabolic process responsible for the removal of aggregated proteins and damaged organelles. Autophagy is regulated by both G proteins and growth factors, but the underlying mechanism of how they are coordinated during initiation and reversal of autophagy is unknown. Using protein-protein interaction assays, G protein enzymology, and morphological analysis, we demonstrate here that Gα-interacting, vesicle-associated protein (GIV, a. k. a. Girdin), a nonreceptor guanine nucleotide exchange factor for Gα(i3), plays a key role in regulating autophagy and that dynamic interplay between Gα(i3), activator of G-protein signaling 3 (AGS3, its guanine nucleotide dissociation inhibitor), and GIV determines whether autophagy is promoted or inhibited. We found that AGS3 directly binds light chain 3 (LC3), recruits Gα(i3) to LC3-positive membranes upon starvation, and promotes autophagy by inhibiting the G protein. Upon growth factor stimulation, GIV disrupts the Gα(i3)-AGS3 complex, releases Gα(i3) from LC3-positive membranes, enhances anti-autophagic signaling pathways, and inhibits autophagy by activating the G protein. These results provide mechanistic insights into how reversible modulation of Gα(i3) activity by AGS3 and GIV maintains the delicate equilibrium between promotion and inhibition of autophagy.  相似文献   

7.
This thematic series is on the topic of cell signaling from a cell biology perspective, with a particular focus on G proteins. G protein-coupled receptors (GPCRs, also known as seven-transmembrane receptors) are typically found at the cell surface. Upon agonist binding, these receptors will activate a GTP-binding G protein at the cytoplasmic face of the plasma membrane. Additionally, there is growing evidence that G proteins can also be activated by non-receptor binding partners, and they can signal from non-plasma membrane compartments. The production of second messengers at multiple, spatially distinct locations represents a type of signal encoding that has been largely neglected. The first minireview in the series describes biosensors that are being used to monitor G protein signaling events in live cells. The second describes the implementation of antibody-based biosensors to dissect endosome signaling by G proteins and their receptors. The third describes the function of a non-receptor, cytoplasmic activator of G protein signaling, called GIV (Girdin). Collectively, the advances described in these articles provide a deeper understanding and emerging opportunities for new pharmacology.  相似文献   

8.
Signal transduction via integrins and G protein–coupled receptors is critical to control cell behavior. These two receptor classes have been traditionally believed to trigger distinct and independent signaling cascades in response to extracellular cues. Here, we report a novel mechanism of integrin signaling that requires activation of the trimeric G protein Gαi by the nonreceptor guanine nucleotide exchange factor (GEF) GIV (also known as Girdin), a metastasis-associated protein. We demonstrate that GIV enhances integrin-dependent cell responses upon extracellular matrix stimulation and makes tumor cells more invasive. These responses include remodeling of the actin cytoskeleton and PI3K-dependent signaling, resulting in enhanced haptotaxis and invasion. We show that both GIV and its substrate Gαi3 are recruited to active integrin complexes and that tumor cells engineered to express GEF-deficient GIV fail to transduce integrin signals into proinvasive responses via a Gβγ-PI3K axis. Our discoveries delineate a novel mechanism by which integrin signaling is rewired during metastasis to result in increased tumor invasiveness.  相似文献   

9.
Paramyxovirus fusion (F) proteins promote membrane fusion between the viral envelope and host cell membranes, a critical early step in viral infection. Although mutational analyses have indicated that transmembrane (TM) domain residues can affect folding or function of viral fusion proteins, direct analysis of TM-TM interactions has proved challenging. To directly assess TM interactions, the oligomeric state of purified chimeric proteins containing the Staphylococcal nuclease (SN) protein linked to the TM segments from three paramyxovirus F proteins was analyzed by sedimentation equilibrium analysis in detergent and buffer conditions that allowed density matching. A monomer-trimer equilibrium best fit was found for all three SN-TM constructs tested, and similar fits were obtained with peptides corresponding to just the TM region of two different paramyxovirus F proteins. These findings demonstrate for the first time that class I viral fusion protein TM domains can self-associate as trimeric complexes in the absence of the rest of the protein. Glycine residues have been implicated in TM helix interactions, so the effect of mutations at Hendra F Gly-508 was assessed in the context of the whole F protein. Mutations G508I or G508L resulted in decreased cell surface expression of the fusogenic form, consistent with decreased stability of the prefusion form of the protein. Sedimentation equilibrium analysis of TM domains containing these mutations gave higher relative association constants, suggesting altered TM-TM interactions. Overall, these results suggest that trimeric TM interactions are important driving forces for protein folding, stability and membrane fusion promotion.  相似文献   

10.
The R7 family of regulators of G protein signaling (RGS) proteins, comprising RGS6, RGS7, RGS9, and RGS11, regulate neuronal G protein signaling pathways. All members of the R7 RGS form trimeric complexes with the atypical G protein β subunit, Gβ5, and membrane anchor R7BP or R9AP. Association with Gβ5 and membrane anchors has been shown to be critical for maintaining proteolytic stability of the R7 RGS proteins. However, despite its functional importance, the mechanism of how R7 RGS forms complexes with Gβ5 and membrane anchors remains poorly understood. Here, we used protein-protein interaction, co-localization, and protein stability assays to show that association of RGS9 with membrane anchors requires Gβ5. We further establish that the recruitment of R7BP to the complex requires an intact interface between the N-terminal lobe of RGS9 and protein interaction surface of Gβ5. Site-directed mutational analysis reveals that distinct molecular determinants in the interface between Gβ5 and N-terminal Dishevelled, EGL-10, Pleckstrin/DEP Helical Extension (DEP/DHEY) domains are differentially involved in R7BP binding and proteolytic stabilization. On the basis of these findings, we conclude that Gβ5 contributes to the formation of the binding site to the membrane anchors and thus is playing a central role in the assembly of the proteolytically stable trimeric complex and its correct localization in the cell.  相似文献   

11.
GIV (Gα-interacting vesicle-associated protein, also known as Girdin) is a bona fide enhancer of PI3K-Akt signals during a diverse set of biological processes, e.g. wound healing, macrophage chemotaxis, tumor angiogenesis, and cancer invasion/metastasis. We recently demonstrated that tyrosine phosphorylation of GIV by receptor and non-receptor-tyrosine kinases is a key step that is required for GIV to directly bind and enhance PI3K activity. Here we report the discovery that Src homology 2-containing phosphatase-1 (SHP-1) is the major protein-tyrosine phosphatase that targets two critical phosphotyrosines within GIV and antagonizes phospho-GIV-dependent PI3K enhancement in mammalian cells. Using phosphorylation-dephosphorylation assays, we demonstrate that SHP-1 is the major and specific protein-tyrosine phosphatase that catalyzes the dephosphorylation of tyrosine-phosphorylated GIV in vitro and inhibits ligand-dependent tyrosine phosphorylation of GIV downstream of both growth factor receptors and GPCRs in cells. In vitro binding and co-immunoprecipitation assays demonstrate that SHP-1 and GIV interact directly and constitutively and that this interaction occurs between the SH2 domain of SHP-1 and the C terminus of GIV. Overexpression of SHP-1 inhibits tyrosine phosphorylation of GIV and formation of phospho-GIV-PI3K complexes, and specifically suppresses GIV-dependent activation of Akt. Consistently, depletion of SHP-1 enhances peak tyrosine phosphorylation of GIV, which coincides with an increase in peak Akt activity. We conclude that SHP-1 antagonizes the action of receptor and non-receptor-tyrosine kinases on GIV and down-regulates the phospho-GIV-PI3K-Akt axis of signaling.  相似文献   

12.
Heterotrimeric G proteins are molecular switches modulated by families of structurally and functionally related regulators. GIV (Gα-interacting vesicle-associated protein) is the first non-receptor guanine nucleotide exchange factor (GEF) that activates Gα(i) subunits via a defined, evolutionarily conserved motif. Here we found that Calnuc and NUCB2, two highly homologous calcium-binding proteins, share a common motif with GIV for Gα(i) binding and activation. Bioinformatics searches and structural analysis revealed that Calnuc and NUCB2 possess an evolutionarily conserved motif with sequence and structural similarity to the GEF sequence of GIV. Using in vitro pulldown and competition assays, we demonstrate that this motif binds preferentially to the inactive conformation of Gα(i1) and Gα(i3) over other Gα subunits and, like GIV, docks onto the α3/switch II cleft. Calnuc binding was impaired when Lys-248 in the α3 helix of Gα(i3) was replaced with M, the corresponding residue in Gα(o), which does not bind to Calnuc. Moreover, mutation of hydrophobic residues in the conserved motif predicted to dock on the α3/switch II cleft of Gα(i3) impaired the ability of Calnuc and NUCB2 to bind and activate Gα(i3) in vitro. We also provide evidence that calcium binding to Calnuc and NUCB2 abolishes their interaction with Gα(i3) in vitro and in cells, probably by inducing a conformational change that renders the Gα(i)-binding residues inaccessible. Taken together, our results identify a new type of Gα(i)-regulatory motif named the GBA motif (for Gα-binding and -activating motif), which is conserved across different proteins throughout evolution. These findings provide the structural basis for the properties of Calnuc and NUCB2 binding to Gα subunits and its regulation by calcium ions.  相似文献   

13.
Insulin resistance (IR) is a metabolic disorder characterized by impaired insulin signaling and cellular glucose uptake. The current paradigm for insulin signaling centers upon the insulin receptor (InsR) and its substrate IRS1; the latter is believed to be the sole conduit for postreceptor signaling. Here we challenge that paradigm and show that GIV/Girdin, a guanidine exchange factor (GEF) for the trimeric G protein Gαi, is another major hierarchical conduit for the metabolic insulin response. By virtue of its ability to directly bind InsR, IRS1, and phosphoinositide 3-kinase, GIV serves as a key hub in the immediate postreceptor level, which coordinately enhances the metabolic insulin response and glucose uptake in myotubes via its GEF function. Site-directed mutagenesis or phosphoinhibition of GIV-GEF by the fatty acid/protein kinase C-theta pathway triggers IR. Insulin sensitizers reverse phosphoinhibition of GIV and reinstate insulin sensitivity. We also provide evidence for such reversible regulation of GIV-GEF in skeletal muscles from patients with IR. Thus GIV is an essential upstream component that couples InsR to G-protein signaling to enhance the metabolic insulin response, and impairment of such coupling triggers IR. We also provide evidence that GIV-GEF serves as therapeutic target for exogenous manipulation of physiological insulin response and reversal of IR in skeletal muscles.  相似文献   

14.
Trimeric G protein-dependent frizzled signaling in Drosophila   总被引:4,自引:0,他引:4  
Frizzled (Fz) proteins are serpentine receptors that transduce critical cellular signals during development. Serpentine receptors usually signal to downstream effectors through an associated trimeric G protein complex. However, clear evidence for the role of trimeric G protein complexes for the Fz family of receptors has hitherto been lacking. Here, we show roles for the Galpha(o) subunit (Go) in mediating the two distinct pathways transduced by Fz receptors in Drosophila: the Wnt and planar polarity pathways. Go is required for transduction of both pathways, and epistasis experiments suggest that it is an immediate transducer of Fz. While overexpression effects of the wild-type form are receptor dependent, the activated form (Go-GTP) can signal when the receptor is removed. Thus, Go is likely part of a trimeric G protein complex that directly transduces Fz signals from the membrane to downstream components.  相似文献   

15.
16.
In their active hypophosphorylated state, members of the retinoblastoma family of pocket proteins negatively regulate cell cycle progression at least in part by repressing expression of E2F-dependent genes. Mitogen-dependent activation of G1 and G1/S Cyclin Dependent Kinases (CDKs) results in coordinated hyperphosphorylation and inactivation of these proteins, which no longer bind and repress E2Fs. S and G2/M CDKs maintain pocket protein hyperphosphorylated through the end of mitosis. The inactivating action of inducible CDKs is opposed by the Ser/Thr protein phosphatases PP2A and PP1. Various trimeric PP2A holoenzymes have been implicated in dephosphorylation of pocket proteins in response to specific cellular signals and stresses or as part of an equilibrium with CDKs throughout the cell cycle. PP1 has specifically been implicated in dephosphorylation of pRB in late mitosis and early G1. This review is particularly focused on the emerging role of PP2A as a major hub for integration of growth suppressor signals that require rapid inactivation of pocket proteins. Of note, activation of particular PP2A holoenzymes triggers differential activation of pocket proteins in the presence of active CDKs.  相似文献   

17.
In their active hypophosphorylated state, members of the retinoblastoma family of pocket proteins negatively regulate cell cycle progression at least in part by repressing expression of E2F-dependent genes. Mitogen-dependent activation of G1 and G1/S Cyclin Dependent Kinases (CDKs) results in coordinated hyperphosphorylation and inactivation of these proteins, which no longer bind and repress E2Fs. S and G2/M CDKs maintain pocket protein hyperphosphorylated through the end of mitosis. The inactivating action of inducible CDKs is opposed by the Ser/Thr protein phosphatases PP2A and PP1. Various trimeric PP2A holoenzymes have been implicated in dephosphorylation of pocket proteins in response to specific cellular signals and stresses or as part of an equilibrium with CDKs throughout the cell cycle. PP1 has specifically been implicated in dephosphorylation of pRB in late mitosis and early G1. This review is particularly focused on the emerging role of PP2A as a major hub for integration of growth suppressor signals that require rapid inactivation of pocket proteins. Of note, activation of particular PP2A holoenzymes triggers differential activation of pocket proteins in the presence of active CDKs.  相似文献   

18.
Regulator of G protein signaling (RGS) proteins play essential roles in the regulation of signaling via G protein-coupled receptors (GPCRs). With hundreds of GPCRs and dozens of G proteins, it is important to understand how RGS regulates selective GPCR-G protein signaling. In neurons of the striatum, two RGS proteins, RGS7 and RGS9-2, regulate signaling by μ-opioid receptor (MOR) and dopamine D2 receptor (D2R) and are implicated in drug addiction, movement disorders, and nociception. Both proteins form trimeric complexes with the atypical G protein β subunit Gβ5 and a membrane anchor, R7BP. In this study, we examined GTPase-accelerating protein (GAP) activity as well as Gα and GPCR selectivity of RGS7 and RGS9-2 complexes in live cells using a bioluminescence resonance energy transfer-based assay that monitors dissociation of G protein subunits. We showed that RGS9-2/Gβ5 regulated both Gi and Go with a bias toward Go, but RGS7/Gβ5 could serve as a GAP only for Go. Interestingly, R7BP enhanced GAP activity of RGS7 and RGS9-2 toward Go and Gi and enabled RGS7 to regulate Gi signaling. Neither RGS7 nor RGS9-2 had any activity toward Gz, Gs, or Gq in the absence or presence of R7BP. We also observed no effect of GPCRs (MOR and D2R) on the G protein bias of R7 RGS proteins. However, the GAP activity of RGS9-2 showed a strong receptor preference for D2R over MOR. Finally, RGS7 displayed an four times greater GAP activity relative to RGS9-2. These findings illustrate the principles involved in establishing G protein and GPCR selectivity of striatal RGS proteins.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号