首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Modern pollen spectra can improve the interpretation of fossil pollen records used to reconstruct past vegetation, climate and human impacts. It is important, therefore, to carefully examine the relationships between modern pollen spectra, vegetation, climate and human activity. Here, we present the results of an analysis of the pollen spectra of 143 surface pollen samples from farmland, wasteland, desert, steppe/meadow, forest and river valley along a transect from Lanzhou to Urumqi, in northwestern China. The modern pollen assemblages are mainly composed of Amaranthaceae, Artemisia, Poaceae, Asteraceae, Ephedra and Nitraria. The results indicate that in general the surface pollen assemblages of different vegetation types reliably represent the modern vegetation in terms of the composition of the main taxa and the dominant types. Farmland is dominated by cereal-type (≥?15%) and Amaranthaceae (≥?20%), while the pollen assemblages of wasteland (i.e. the vegetation immediately surrounding farmland) are mainly composed of Amaranthaceae (≥?25%), Artemisia (≥?20%), Poaceae (≥?10%), Asteraceae (≥?5%) and Cyperaceae (≥?5%). Amaranthaceae (≥?45%) and Ephedra (≥?10%) are the most important taxa in desert, and Cyperaceae (≥?35%) and Thalictrum (≥?2%) are the dominant pollen types in steppe/meadow. Forest and river valley samples are characterized by high frequencies of Picea (≥?10%) and Cyperaceae (≥?20%). Both constrained and partial canonical ordination techniques (RDA and partial RDA) of the main pollen types and environmental variables show that the modern pollen spectra are primarily controlled by mean annual precipitation (MAP). Cyperaceae, Thalictrum and Brassicaceae are positively correlated with MAP and negatively correlated with mean July temperature (TJuly), while the representation of certain other types, such as Amaranthaceae, Ephedra and Nitraria, is negatively correlated with MAP and positively correlated with TJuly. The Human Influence Index (HII) is significantly correlated with cereal-type pollen, and it can also differentiate human-influenced and natural vegetation. Our results provide a basis for improving the interpretation of fossil pollen records from arid northwestern China and similar regions.  相似文献   

2.
We use a data set of 35 surface pollen samples from lake sediments, moss polsters and top soils on the north-eastern Tibetan Plateau to explore the relationship between modern pollen assemblages and contemporary vegetation patterns. The surface pollen transect spanned four vegetation zones––alpine meadow, steppe, steppe desert and desert––under different climatic/elevational conditions. Relative representation (R rel) values and Principal Components Analysis (PCA) were used to determine the relationships between modern pollen and vegetation and regional climate gradients. The results show that the main vegetation zones along the regional and elevational transects can be distinguished by their modern pollen spectra. Relative to Poaceae, a high representation of Artemisia, Nitraria and Chenopodiaceae was found, while Cyperaceae and Gentiana showed values in the middle range, and Ranunculaceae, Asteraceae, Ephedra and Fabaceae had low relative representation values. PCA results indicate a high correlation between the biogeoclimatic zones and annual precipitation and annual temperature and July temperature. The Artemisia/Chenopodiaceae ratio and the Artemisia/Cyperaceae ratio are useful tools for qualitative and semi-quantitative palaeoenvironmental reconstruction on the north-eastern Tibetan Plateau. Surface lake sediments are found to have different palynomorph spectra from moss cushion and soil samples, reflecting the larger pollen source area in the contemporary vegetation for lakes.  相似文献   

3.
Aim This modern pollen‐rain study documents the spatial and quantitative relationships between modern pollen and vegetation in Mongolia, and explores the potential for using this relationship in palaeoclimatic reconstructions. Location East‐central Mongolia. Methods We collected 104 pollen surface samples along a south–north transect across five vegetation zones in Mongolia. Discriminant analysis was used to classify the modern pollen spectra into five pollen assemblages corresponding to the five vegetation zones. Hierarchical cluster analysis was used to divide the main pollen taxa into two major groups and seven subgroups representing the dry and moist vegetation types and the main vegetation communities within them. Results Each vegetation zone along the transect can be characterized by a distinctive modern pollen assemblage as follows: (1) desert zone: Chenopodiaceae–Zygophyllaceae–Nitraria–Poaceae pollen assemblage; (2) desert‐steppe zone: Poaceae–Chenopodiaceae pollen assemblage; (3) steppe zone: ArtemisiaAster‐type–Poaceae–Pinus Haploxylon‐type pollen assemblage; (4) forest‐steppe zone: Pinus Haploxylon‐type–PiceaArtemisiaBetula, montane forb/shrub and pteridophyte pollen assemblage; and (5) mountain taiga zone: Pinus Haploxylon‐type–Picea–Poaceae–Cyperaceae, montane forb/shrub and Pteridophyte pollen assemblage. Main conclusions Based on the ratio between the major pollen taxon groups and subgroups, we propose two pollen–climate indices that represent the precipitation and temperature conditions in the study region. When plotted along our south–north transect, the moisture indices (M) and temperature indices (T) mimic the regional gradients of precipitation and temperature across Mongolia very closely. These pollen–climate indices can be used for palaeoclimatic reconstruction based on fossil pollen data.  相似文献   

4.
Modern pollen samples from alpine vegetation on the Tibetan Plateau   总被引:6,自引:0,他引:6  
  • 1 A set of 316 modern surface pollen samples, sampling all the alpine vegetation types that occur on the Tibetan Plateau, has been compiled and analysed. Between 82 and 92% of the pollen present in these samples is derived from only 28 major taxa. These 28 taxa include examples of both tree (AP) and herb (NAP) pollen types.
  • 2 Most of the modern surface pollen samples accurately reflect the composition of the modern vegetation in the sampling region. However, airborne dust‐trap pollen samples do not provide a reliable assessment of the modern vegetation. Dust‐trap samples contain much higher percentages of tree pollen than non‐dust‐trap samples, and many of the taxa present are exotic. In the extremely windy environments of the Tibetan Plateau, contamination of dust‐trap samples by long‐distance transport of exotic pollen is a serious problem.
  • 3 The most characteristic vegetation types present on the Tibetan Plateau are alpine meadows, steppe and desert. Non‐arboreal pollen (NAP) therefore dominates the pollen samples in most regions. Percentages of arboreal pollen (AP) are high in samples from the southern and eastern Tibetan Plateau, where alpine forests are an important component of the vegetation. The relative importance of forest and non‐forest vegetation across the Plateau clearly follows climatic gradients: forests occur on the southern and eastern margins of the Plateau, supported by the penetration of moisture‐bearing airmasses associated with the Indian and Pacific summer monsoons; open, treeless vegetation is dominant in the interior and northern margins of the Plateau, far from these moisture sources.
  • 4 The different types of non‐forest vegetation are characterized by different modern pollen assemblages. Thus, alpine deserts are characterized by high percentages of Chenopodiaceae and Artemisia, with Ephedra and Nitraria. Alpine meadows are characterized by high percentages of Cyperaceae and Artemisia, with Ranunculaceae and Polygonaceae. Alpine steppe is characterized by high abundances of Artemisia, with Compositae, Cruciferae and Chenopodiaceae. Although Artemisia is a common component of all non‐forest vegetation types on the Tibetan Plateau, the presence of other taxa makes it possible to discriminate between the different vegetation types.
  • 5 The good agreement between modern vegetation and modern surface pollen samples across the Tibetan Plateau provides a measure of the reliability of using pollen data to reconstruct past vegetation patterns in non‐forested areas.
  相似文献   

5.
Plant Functional Diversity and Species Diversity in the Mongolian Steppe   总被引:1,自引:0,他引:1  

Background

The Mongolian steppe is one of the most important grasslands in the world but suffers from aridization and damage from anthropogenic activities. Understanding structure and function of this community is important for the ecological conservation, but has seldom been investigated.

Methodology/Principal Findings

In this study, a total of 324 quadrats located on the three main types of Mongolian steppes were surveyed. Early-season perennial forbs (37% of total importance value), late-season annual forbs (33%) and late-season perennial forbs (44%) were dominant in meadow, typical and desert steppes, respectively. Species richness, diversity and plant functional type (PFT) richness decreased from the meadow, via typical to desert steppes, but evenness increased; PFT diversity in the desert and meadow steppes was higher than that in typical steppe. However, above-ground net primary productivity (ANPP) was far lower in desert steppe than in the other two steppes. In addition, the slope of the relationship between species richness and PFT richness increased from the meadow, via typical to desert steppes. Similarly, with an increase in species diversity, PFT diversity increased more quickly in both the desert and typical steppes than that in meadow steppe. Random resampling suggested that this coordination was partly due to a sampling effect of diversity.

Conclusions/Significance

These results indicate that desert steppe should be strictly protected because of its limited functional redundancy, which its ecological functioning is sensitive to species loss. In contrast, despite high potential forage production shared by the meadow and typical steppes, management of these two types of steppes should be different: meadow steppe should be preserved due to its higher conservation value characterized by more species redundancy and higher spatial heterogeneity, while typical steppe could be utilized moderately because its dominant grass genus Stipa is resistant to herbivory and drought.  相似文献   

6.
Concomitant changes of annual precipitation and its seasonal distribution within the context of global climate change have dramatic impacts on aboveground net primary productivity (ANPP) of grassland ecosystems. In this study, combining remote sensing products with in situ measurements of ANPP, we quantified the effects of mean annual precipitation (MAP) and precipitation seasonal distribution (PSD) on the spatial variations in ANPP along a climate gradient in Eurasian temperate grassland. Our results indicated that ANPP increased exponentially with MAP for the entire temperate grassland, but linearly for a specific grassland type, i.e. the desert steppe, typical steppe, and meadow steppe from arid to humid regions. The slope of the linear relationship appeared to be steeper in the more humid meadow steppe than that in the drier typical and desert steppes. PSD also had significant effect on the spatial variations in ANPP. It explained 39.4% of the spatial ANPP for the entire grassland investigated, being comparable with the explanatory power of MAP (40.0%). On the other hand, the relative contribution of PSD and MAP is grassland type specific. MAP exhibited a much stronger explanatory power than PSD for the desert steppe and the meadow steppe at the dry and wet end, respectively. However, PSD was the dominant factor affecting the spatial variation in ANPP for the median typical steppe. Our results imply that altered pattern of PSD due to climate change may be as important as the total amount in terms of effects on ANPP in Eurasian temperate grassland.  相似文献   

7.
Aim To understand the scenarios of ‘anthropogenic biomes’ that integrate human and ecological systems, we need to explore the impacts of climate and human disturbance on vegetation in the past and present. Interactions among surface pollen, modern vegetation and human activities along climate and land‐use gradients are tested to evaluate the natural and anthropogenic forces shaping the modern vegetation, and hence to aid the reconstruction of vegetation and climate in the past. This in turn will help with future predictions. Location The North‐east China Transect (NECT) in north‐eastern China. Methods We analysed 33 surface pollen samples and 213 quadrats across four vegetation zones along the moisture/land‐use gradients of the NECT. Detrended correspondence analysis (DCA) and redundancy analysis (RDA) of 52 pollen taxa and three environmental variables were used to distinguish anthropogenic and climatic factors that affect surface pollen assemblages along the NECT. Results The 33 surface samples are divided into four pollen zones (forest, meadow steppe, typical steppe and desert steppe) corresponding to major vegetation types in the NECT. Variations in pollen ratios of fern/herb (F/H), Artemisia/Chenopodiaceae (A/C) and arboreal pollen/non‐arboreal pollen (AP/NAP) represent the vegetation and precipitation gradient along the NECT. DCA and RDA analyses suggest that surface pollen assemblages are significantly influenced by the precipitation gradient. Changes in the abundance of Chenopodiaceae pollen are related to both human activities and precipitation. Main conclusions Surface pollen assemblages, fossil pollen records, archaeological evidence and historical documents in northern China show that a large increase of Chenopodiaceae pollen indicates human‐caused vegetation degradation in sandy habitats. The A/C ratio is a good indicator of climatic aridity, but should be used in conjunction with multiple proxies of human activities and climate change in the pollen‐based reconstruction of anthropogenic biomes.  相似文献   

8.
建立现代植被与表土花粉的精确关系,是基于孢粉记录定量重建古植被与古气候的基础与关键.截止目前,植物群落样方记录较少参与到现代植被与花粉的统计分析中,限制了其精确关系的定量表达.本文通过中国东北样带的森林、草甸草原、典型草原和荒漠草原33个表土样品分析及植被样方调查,基于Bray-Curtis相异系数,研究了东北样带现代...  相似文献   

9.
中国针茅属植物的地理分布   总被引:12,自引:0,他引:12  
本文论述了中国针茅属植物的地理分布、生态特点及其与植被分布的关系。中国针茅属有32种1亚种及4变种,据该属各个种所处环境中的气候和土壤等因素的变化,不同种的分布也各异。属的分布区的类型属于吴征镒(1979)的中国植物区系分区的泛北极植物区中的6个植物亚区,即亚洲荒漠植物亚区,欧、亚森林植物亚区,青藏高原植物亚区,中国-喜马拉雅植物亚区,欧、亚草原植物亚区及中国-日本森林植物亚区。  相似文献   

10.
通过对西天山南坡不同植被带52个表土花粉样品的鉴定,研究表土花粉组合与现代植被分布的关系,分析蒿属/藜科比值(A/C)在该区域的指示意义.结果表明:山顶至山底可以划分为5个植被带,分别为高山荒漠带、高山草甸带、草甸草原带、山地荒漠带、典型荒漠带,代表性科属为蒿属、藜科、禾本科和麻黄属,该区域不同植被类型表土样品花粉组合差异明显.西天山南坡表土花粉在一定程度上受到北坡的影响,海拔越高影响越大.A/C值随海拔升高而先升高再降低,在高山草甸区域达到最高,可以作为反映山地垂直方向气候干湿变化的有效指标.由于A/C值波动较大,利用该比值进行气候环境重建时,需注意受人类活动等因素影响所产生的高值可能带来误判.  相似文献   

11.
为了解我国北方不同草原类型中针茅根部内生真菌的群落结构及多样性变化,从新疆、甘肃、内蒙古3省(区)选择了6种不同草原类型(亚高山草甸、高山草甸、戈壁、荒漠草原、典型草原和草甸草原),进行针茅根部组织内生真菌的研究.共分离得到针茅根部内生真菌213株,根据序列的相似性(以97%为阈值),共获得51个真菌分类操作单元(OTUs),覆盖了4门7纲23科27属.在门的水平上子囊菌门真菌为绝对优势菌群,占分离真菌总数的93.4%,在各草原类型中均有分布;6种草原类型中针茅根部内生真菌的优势属差别较大,仅子囊菌门的镰孢菌属为各草原类型共有优势属,占分离真菌总数的41.3%,亚高山草甸的微结节霉属、高山草甸的Saccharicola和短梗霉属、戈壁的弯孢属和根霉属以及草甸草原的木霉属,为各草原类型中针茅根部内生真菌的优势属.高山草甸针茅根部内生真菌群落覆盖的门和属最多,Margalef丰富度指数和香农多样性指数最高,均匀度指数仅次于荒漠草原;而荒漠草原的Margalef丰富度指数最低,典型草原的多样性指数和均匀度指数最低.高山草甸和荒漠草原的内生真菌群落结构与其他草原类型之间的相似性系数都较低,分别为0.12~0.25和0.13~0.22,其他几种草原类型之间相似性相对较高,尤其是典型草原和草甸草原之间相似性系数为0.60.冗余分析(RDA)表明,海拔和纬度是影响6种草原类型中针茅根部内生真菌群落结构变化的主要环境因子.  相似文献   

12.
A total of 31 suface sediment samples were collected from West Kunlun Mountain in south Xinjiang Autonomous Region in northwest China. These samples are from seven types of vegetation: Picea schrenkiana Fisch. et Mey. forest, Sabina Spach. woodland, sub-alpine steppe, alpine meadow, desert vegetion, cushion-vegetation and vegetation adjancent to glaciers. Pollen percentages and pollen concentrations were calculated in all samples. The dominant pollen types in the region are Chenopodiaceae, Artemisia, Picea, Ephedra, Gramineae, Cyperaceae, Rosaceae, Leguminosae, Compositae etc. In order to reveal the relationship between pollen composition and the vegetation type from which the soil sample was collected, principal component analysis and group average cluster analysis were employed on the pollen data. The results revealed that the major vegetation types in this region could be distinguished by pollen composition: a. Samples from desert vegetation were dominated by pollen of Chenopodiaceae (about 60195%). The percentages of all other pollen types were low. b. Picea forest samples were rich in Picea pollen (about 20%) Sabina forest had more Sabina pollen grains than other vegetation types (about 5%, others <1%). Pollen percentages of Artemisia, Chenopodiaceae and Ephedra were comparatively higher (each about 20%) in these samples from the two types of vegetations. C. Pollen percentages of Artemisia, Cyperaceae, Gramineae and Chenopodiaceae were high in both sub-alpine steppe and alpine meadow. But steppe containal more Artemisia and Chenopodiaceae (steppe 33.75% and 32.30%, meadow 15.57% and 19.48% in average), less Cyperaceae and Gramineae (steppe 2.58% and 7.60%, meadow 22.35% and 12.93% in average) than meadow. d. Samples from cushion-vegetation and vegetation adjacent to glaciers were mainly composed of pollen grains transported from other sites. It was not easy to distinguish them from other vegetation types. Principal component analysis and cluster analysis distinguish samples from Picea forest, Sabina woodland, sub-alpine steppe, alpine meadow and desert vegetation. Therefore we think it will be possible to apply the module to reconstruct past vegetation in this region and other similar regions. Regression analysis was also applied to reveal the relationships between pollen and plant percentages of Artemisia, Chenopodiaceae, Cyperaceae and Gramineae. The results indicated that a linear relationship existed between pollen and plant percentages for Artemisia, Chenopodiaceae and Cyperaeeae.  相似文献   

13.
Vegetation reconstruction based on pollen from coprolites of extinct spotted hyena (Crocuta crocuta spelaea, Goldfuss 1832) recovered from excavations carried out in 1998 at San Teodoro Cave (Sicily, Italy) supports previous indications of pre-Late Glacial conditions. Eight of the twelve coprolites analysed contained well-preserved pollen grains. There is a general similarity between the pollen contents from the coprolites but they show variability. They suggest a main vegetation type dominated by steppic taxa (Poaceae, Artemisia, Ephedra, Chenopodiaceae and Asteraceae) but also including arboreal taxa (Pinus and Cupressaceae). Low percentages of pollen of mesophilous woody taxa (Quercus, Betula, Abies, Alnus, Pistacia, among others) are noticeable, suggesting the existence of nearby refugia for temperate and Mediterranean vegetation. A reconstruction of the landscape, using the coprolite pollen record and other pollen records from Sicily and south Italy, shows the predominance, during the pre-Late Glacial, of a wooded steppe biome, with elements representing a variety of local environmental conditions.  相似文献   

14.
叶永昌  周广胜  殷晓洁 《生态学报》2016,36(15):4718-4728
定量评估气候变化对内蒙古草原植被分布及其净第一性生产力的影响有助于理解干旱区域生态系统结构和功能对气候变化的响应。基于最大熵模型(MaxEnt)评价了气候因子的重要性,进而模拟了1961-2010年内蒙古草原植被的地理分布,同时应用综合模型模拟了净第一性生产力变化。研究表明,湿润指数(MI)、年降水量(P)、最暖月平均温度(Tw)和最冷月平均温度(Tc)是决定草原植被分布的主导气候因子。1961-2010年内蒙古草甸草原、典型草原和荒漠草原分布面积分别减少了5%、1%和62%,草原面积整体减少了11%,预示着草原向着荒漠化的方向发展。降水是决定内蒙古草原净第一性生产力变化的最重要因素。  相似文献   

15.
We use 86 pollen trap and surface soil pollen samples in steppe areas of China to explore the relationships between modern pollen, vegetation, and climate. The modern pollen spectra from both sources have comparable compositions with regard to the major pollen taxa. However, the number of taxa in the traps was higher than in the surface soil samples. Both pollen accumulation rates and pollen concentrations are higher in the typical steppe areas than in the desert steppe areas. Discriminant analysis indicates that pollen spectra from trap and surface soil samples roughly reflect the vegetation zones of desert steppe and typical steppe, especially in the case of the trap samples. Detrended canonical correspondence analysis suggests that pollen assemblages have a significant relationship with the temperature of the coldest month and the mean annual precipitation.  相似文献   

16.
白永飞  许志信  李德新 《生态学报》2002,22(8):1215-1223
用地统计学的方法,研究比较了内蒙古高原4类地带性针茅草原群落,贝加尔针茅(Stipa baicalensis)群落,大针茅(S.grandis)群落,克氏针茅(S.krylovii)群落和小针茅(S.kelemenzii)群落0-20cm土壤水分和碳,氮的小尺度空间异质性特征,结果表明;4类群落土壤水分,有机碳和全氮均表现出显著的小尺度空间结构特征。自相关尺度为1.91m-10.81m,结构性方差占样本方差的35.31%-99.74%。从贝加尔针茅群落到小针茅群落空间自相关的尺度逐渐增大,纹理有逐渐变粗的趋势,土壤水分,碳和氮的小尺度空间格局共同作用于群落的生态学过程,即土壤水分格局→植物种群格局(基本斑块的大小)→土壤碳空间格局→土壤氮空间格局,同时,由于生态学过程的反馈作用,土壤氮空间格局→种群格局→土壤水分格局,土壤属性空间自相关尺度的改变可能是导致群落演替的驱动力,草原退化可能与土壤异质性尺度的改变相关。  相似文献   

17.
18.
宁夏典型温性天然草地固碳特征   总被引:1,自引:0,他引:1  
本文研究了宁夏草甸草原、温性草原、草原化荒漠和荒漠草原4种温性典型天然草地生态系统碳储量及其构成特征。结果表明: 草甸草原、温性草原、草原化荒漠和荒漠草原植被总生物量分别为1178.91、481.22、292.80和209.09 g·m-2。其中,地下根系生物量是构成草甸草原和温性草原植被总生物量的主体,分别占总生物量的73.1%和56.6%;地上植被生物量是构成草原化荒漠和荒漠草原植被总生物量的主体,分别占总生物量的50.3%和47.6%;枯落物生物量占比较低,分别仅为8.5%、8.0%、6.4%和16.2%。草甸草原、温性草原、草原化荒漠和荒漠草原4种天然草地生态系统碳储量分别为13.90、5.94、2.69和2.37 kg·m-2,其中植被碳储量分别为470.26、192.23、117.17、83.36 g·m-2,0~40 cm土层土壤有机碳储量分别为13.43、5.75、2.58和2.29 kg·m-2,土壤有机碳储量是构成宁夏典型天然草地碳储量的主体,分别占到了生态系统碳储量的96.6%、96.8%、95.6%和96.5%。4种草地类型植被总生物量、植被碳储量、土壤有机碳储量和生态系统碳储量均表现为:草甸草原>温性草原>草原化荒漠>荒漠草原。  相似文献   

19.
Aims Extreme climate events have become more severe and frequent with global change in recent years. The Chinese temperate steppes are an important component of the Eurasian steppes and highly sensitive and vulnerable to climatic change. As a result, the occurrence of extreme climate events must have strong impacts on the temperate steppes. Therefore, understanding the spatio-temporal trends in extreme climate is important for us to assess the sensitivity and vulnerability of Chinese temperate steppes to climatic changes. This research had two specific objects to (i) specify the temporal changes in extreme climate events across the whole steppe and (ii) compare the trend differences for extreme climate events in different types of steppes—meadow steppe, typical steppe and desert steppe.  相似文献   

20.
降水时间对内蒙古温带草原地上净初级生产力的影响   总被引:1,自引:0,他引:1  
郭群  胡中民  李轩然  李胜功 《生态学报》2013,33(15):4808-4817
全球气候变化下降水时间的改变将深刻影响草原生态系统地上净初级生产力(ANPP),而草原生态系统ANPP是区域碳循环的重要过程.利用1998-2007年的SPOT-VEG NDVI数据并结合111个样点的ANPP地面样方调查数据,获得了内蒙古温带草原1998-2007年的ANPP区域数据,依此分析了中国内蒙古温带草原以及区域内的3种植被类型(荒漠草原、典型草原、草甸草原)降水时间对ANPP的影响.研究结果表明,对于整个内蒙古温带草原来说,一个水分年内(从上一年9月份到当年地上生物量达最大值时的8月份)影响ANPP较为重要的降水月份为2-7月份,其中,5-7月份降水尤为重要.具体到每个月降水的影响,研究发现,7月份降水最重要,而仍处于生长季的8月份降水相对于其他生长季降水作用最小;影响不同草地类型最重要的降水时期存在一定差异,对荒漠草原和典型草原地区来说,ANPP达最大值前3个月(5-7月份)的生长季降水最重要,而8月份降水影响较小,而草甸草原地区8月份和非生长季的3、4月份降水最重要,但各个降水时期降水对ANPP的影响都较荒漠草原和典型草原小,大部分地区降水对ANPP的影响不显著.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号