共查询到20条相似文献,搜索用时 15 毫秒
1.
Naresh Kandakatla Geetha Ramakrishnan Rajasekhar Chekkara Namachivayam Balakrishnan 《生物学前沿》2014,9(5):410-421
Niemann-Pick disease type C1 (NPC1), caused by mutations of NPC1 gene, is an inherited lysosomal lipid storage disorder. Loss of functional NPC1 causes the accumulation of free cholesterol (FC) in endocytic organelles that comprised the characteristics of late endosomes and/or lysosomes. In this study we analyzed the pathogenic effect of 103 nsSNPs reported in NPC1 using computational methods. Rl186C, S940L, R958Q and I1061T mutations were predicted as most deleterious and disease associated with NPC1 using SIFT, Polyphen 2.0, PANTHER, PhD-SNP, Pmut and MUTPred tools which were also endorsed with previous in vivo experimental studies. To understand the atomic arrangement in 3D space, the native and disease associated mutant (Rl186C, S940L, R958Q and I1061T) structures were modeled. Quantitative structural and flexibility analysis was conceded to observe the structural consequence of prioritized disease associated mutations (R1186C, S940L, R958Q and I1061T). Accessible surface area (ASA), free folding energy (FFE) and hydrogen bond (NH bond) showed more flexibility in 3D space in mutant structures. Based on the quantitative assessment and flexibility analysis of NPC1 variants, I1061T showed the most deleterious effect. Our analysis provides a clear clue to wet laboratory scientists to understand the structural and functional effect of NPCI gene upon mutation. 相似文献
2.
溶酶体贮积症是一种罕见的遗传缺陷疾病,溶酶体内未酶解的大分子累积,最终导致细胞功能障碍和临床异常情况。许多溶酶体底物在细胞结构和功能上都有关键的作用,因此溶酶体功能失常的影响非常广泛,如神经受累、间质受累、网状内皮组织受累及胎儿水肿。治疗方法主要有骨髓移植、酶替代疗法、底物减少治疗、基因治疗和分子伴侣治疗。利用转基因及其他一些前沿技术,将有可能彻底根除这些长期困扰人类的溶酶体贮积症。 相似文献
3.
Walter M Chen FW Tamari F Wang R Ioannou YA 《Biology of the cell / under the auspices of the European Cell Biology Organization》2009,101(3):141-152
Background information. Within the group of lysosomal storage diseases, NPC1 [NPC (Niemann‐Pick type C) 1] disease is a lipidosis characterized by excessive accumulation of free cholesterol as well as gangliosides, glycosphingolipids and fatty acids in the late E/L (endosomal/lysosomal) system (Chen et al., 2005 ) due to a defect in late endosome lipid egress. We have previously demonstrated that expression of the small GTPase Rab9 in NPC1 cells can rescue the lipid transport block phenotype (Walter et al., 2003 ), albeit by an undefined mechanism. Results. To investigate further the mechanism by which Rab9 facilitates lipid movement from late endosomes we sought to identify novel Rab9 binding/interacting proteins. In the present study, we report that Rab9 interacts with the intermediate filament phosphoprotein vimentin and this interaction is altered by lipid accumulation in late endosomes, which results in inhibition of PKC (protein kinase C) and hypophosphorylation of vimentin, leading to late endosome dysfunction. Intermediate filament hypophosphorylation, aggregation and entrapment of Rab9 ultimately leads to transport defects and inhibition of lipid egress from late endosomes. Conclusions. These results reveal a previously unappreciated interaction between Rab proteins and intermediate filaments in regulating intracellular lipid transport. 相似文献
4.
Ramirez CM Liu B Aqul A Taylor AM Repa JJ Turley SD Dietschy JM 《Journal of lipid research》2011,52(4):688-698
Lipoprotein cholesterol taken up by cells is processed in the endosomal/lysosomal (E/L) compartment by the sequential action of lysosomal acid lipase (LAL), Niemann-Pick C2 (NPC2), and Niemann-Pick C1 (NPC1). Inactivation of NPC2 in mouse caused sequestration of unesterified cholesterol (UC) and expanded the whole animal sterol pool from 2,305 to 4,337 mg/kg. However, this pool increased to 5,408 and 9,480 mg/kg, respectively, when NPC1 or LAL function was absent. The transport defect in mutants lacking NPC2 or NPC1, but not in those lacking LAL, was reversed by cyclodextrin (CD), and the ED50 values for this reversal varied from ∼40 mg/kg in kidney to >20,000 mg/kg in brain in both groups. This reversal occurred only with a CD that could interact with UC. Further, a CD that could interact with, but not solubilize, UC still overcame the transport defect. These studies showed that processing and export of sterol from the late E/L compartment was quantitatively different in mice lacking LAL, NPC2, or NPC1 function. In both npc2−/− and npc1−/− mice, the transport defect was reversed by a CD that interacted with UC, likely at the membrane/bulk-water interface, allowing sterol to move rapidly to the export site of the E/L compartment. 相似文献
5.
6.
Joseph C. Roney Sunan Li Tamar Farfel-Becker Ning Huang Tao Sun Yuxiang Xie Xiu-Tang Cheng Mei-Yao Lin Frances M. Platt Zu-Hang Sheng 《Developmental cell》2021,56(10):1452-1468.e8
- Download : Download high-res image (235KB)
- Download : Download full-size image
7.
Fumika Karaki Kenji Ohgane Kosuke Dodo Yuichi Hashimoto 《Bioorganic & medicinal chemistry》2013,21(17):5297-5309
A number of hereditary diseases are caused by defective protein trafficking due to a folding defect resulting from point mutations in proteins. Ligands that bind to the folding intermediates of such mutant proteins and rescue their trafficking defects, known as pharmacological chaperones, have promise for the treatment of certain genetic diseases, including Fabry disease, cystic fibrosis, and Niemann-Pick disease type C. Here we show that this pharmacological chaperone effect can be used for ligand screening, that is, binding of candidate ligands can be detected by monitoring the ligand-mediated correction of a localization defect caused by artificially introduced point mutations of the protein of interest. Using this method, we discovered novel steroidal ligands of Niemann-Pick type C1-like 1 (NPC1L1), an intestinal cholesterol transporter that is the target of the cholesterol absorption inhibitor ezetimibe, and conducted structure–activity relationship studies. We also present data indicating that the binding site of the new ligands is distinct from both the N-terminal sterol-binding domain and the ezetimibe-binding site. 相似文献
8.
Lauri Vanharanta Johan Pernen Simon G. Pfisterer Giray Enkavi Ilpo Vattulainen Elina Ikonen 《Traffic (Copenhagen, Denmark)》2020,21(5):386-397
The human Niemann‐Pick C1 (NPC1) gene encoding a 1278 amino acid protein is very heterogeneous. While some variants represent benign polymorphisms, NPC disease carriers and patients may possess rare variants, whose functional importance remains unknown. An NPC1 cDNA construct known as NPC1 wild‐type variant (WT‐V), distributed between laboratories and used as a WT control in several studies, also contains changes regarding specific amino acids compared to the NPC1 Genbank reference sequence. To improve the dissection of subtle functional differences, we generated human cells stably expressing NPC1 variants from the AAVS1 safe‐harbor locus on an NPC1‐null background engineered by CRISPR/Cas9 editing. We then employed high‐content imaging with automated image analysis to quantitatively assess LDL‐induced, time‐dependent changes in lysosomal cholesterol content and lipid droplet formation. Our results indicate that the L472P change present in NPC1 WT‐V compromises NPC1 functionality in lysosomal cholesterol export. All‐atom molecular dynamics simulations suggest that the L472P change alters the relative position of the NPC1 middle and the C‐terminal luminal domains, disrupting the recently characterized cholesterol efflux tunnel. These results reveal functional defects in NPC1 WT‐V and highlight the strength of simulations and quantitative imaging upon stable protein expression in elucidating subtle differences in protein function. 相似文献
9.
Niemann-Pick C1-like 1 protein (NPC1L1) is the putative intestinal sterol transporter and the molecular target of ezetimibe, a potent inhibitor of cholesterol absorption. To address the role of NPC1L1 in cholesterol trafficking in intestine, the regulation of cholesterol trafficking by ezetimibe was studied in the human intestinal cell line, CaCo-2. Ezetimibe caused only a modest decrease in the uptake of micellar cholesterol, but markedly prevented its esterification. Cholesterol trafficking from the plasma membrane to the endoplasmic reticulum was profoundly disrupted by ezetimibe without altering the trafficking of cholesterol from the endoplasmic reticulum to the plasma membrane. Cholesterol oxidase-accessible cholesterol at the apical membrane was increased by ezetimibe. Cholesterol synthesis was modestly increased. Although the amount of cholesteryl esters secreted at the basolateral membrane was markedly decreased by ezetimibe, the transport of lipids and the number of lipoprotein particles secreted were not altered. NPC1L1 gene and protein expression were decreased by sterol influx, whereas cholesterol depletion enhanced NPC1L1 gene and protein expression. These results suggest that NPC1L1 plays a role in cholesterol uptake and cholesterol trafficking from the plasma membrane to the endoplasmic reticulum. Interfering with its function will profoundly decrease the amount of cholesterol transported into lymph. 相似文献
10.
There are more than 40 different forms of inherited lysosomal storage diseases (LSDs) known to occur in humans and the aggregate incidence has been estimated to approach 1 in 7000 live births. Most LSDs are associated with high morbidity and mortality and represent a significant burden on patients, their families, and health care providers. Except for symptomatic therapies, many LSDs remain untreatable, and gene therapy is among the only viable treatment options potentially available. Therapies for some LSDs do exist, or are under evaluation, including heterologous bone marrow transplantation (BMT), enzyme replacement therapy (ERT), and substrate reduction therapy (SRT), but these treatment options are associated with significant concerns, including high morbidity and mortality (BMT), limited positive outcomes (BMT), incomplete response to therapy (BMT, ERT, and SRT), life-long therapy (ERT, SRT), and cost (BMT, ERT, SRT). Gene therapy represents a potential alternative therapy, albeit a therapy with its own attendant concerns. Animal models of LSDs play a critical role in evaluating the efficacy and safety of therapy for many of these conditions. Naturally occurring animal homologs of LSDs have been described in the mouse, rat, dog, cat, guinea pig, emu, quail, goat, cattle, sheep, and pig. In this review we discuss those animal models that have been used in gene therapy experiments and those with promise for future evaluations. 相似文献
11.
These studies investigated the role of gangliosides in governing the steady-state concentration and turnover of unesterified cholesterol in normal tissues and in those of mice carrying the NPC1 mutation. In animals lacking either GM2/GD2 or GM3 synthase, tissue cholesterol concentrations and synthesis rates were normal in nearly all organs, and whole-animal sterol pools and turnover also were not different from control animals. Mice lacking both synthases, however, had small elevations in cholesterol concentrations in several organs, and the whole-animal cholesterol pool was marginally elevated. None of these three groups, however, had changes in any parameter of cholesterol homeostasis in the major regions of the central nervous system. When either the GM2/GD2 or GM3 synthase activity was deleted in mice lacking NPC1 function, the clinical phenotype was not changed, but lifespan was shortened. However, the abnormal cholesterol accumulation seen in the tissues of the NPC1 mouse was unaffected by loss of either synthase, and clinical and molecular markers of hepatic and cerebellar disease also were unchanged. These studies demonstrate that hydrophobic interactions between cholesterol and various gangliosides do not play an important role in determining cellular cholesterol concentrations in the normal animal or in the mouse with the NPC1 mutation. 相似文献
12.
Autophagy is essential for cellular homeostasis and its dysfunction in human diseases has been implicated in the accumulation of misfolded protein and in cellular toxicity. We have recently shown impairment in autophagic flux in the lipid storage disorder, Niemann-Pick type C1 (NPC1) disease associated with abnormal cholesterol sequestration, where maturation of autophagosomes is impaired due to defective amphisome formation caused by failure in SNARE machinery. Abrogation of autophagy also causes cholesterol accumulation, suggesting that defective autophagic flux in NPC1 disease may act as a primary causative factor not only by imparting its deleterious effects, but also by increasing cholesterol load. However, cholesterol depletion treatment with HP-β-cyclodextrin impedes autophagy, whereas pharmacologically stimulating autophagy restores its function independent of amphisome formation. Of potential therapeutic relevance is that a low dose of HP-β-cyclodextrin that does not perturb autophagy, coupled with an autophagy inducer, may rescue both the cholesterol and autophagy defects in NPC1 disease. 相似文献
13.
《Autophagy》2013,9(6):1137-1140
Autophagy is essential for cellular homeostasis and its dysfunction in human diseases has been implicated in the accumulation of misfolded protein and in cellular toxicity. We have recently shown impairment in autophagic flux in the lipid storage disorder, Niemann-Pick type C1 (NPC1) disease associated with abnormal cholesterol sequestration, where maturation of autophagosomes is impaired due to defective amphisome formation caused by failure in SNARE machinery. Abrogation of autophagy also causes cholesterol accumulation, suggesting that defective autophagic flux in NPC1 disease may act as a primary causative factor not only by imparting its deleterious effects, but also by increasing cholesterol load. However, cholesterol depletion treatment with HP-β-cyclodextrin impedes autophagy, whereas pharmacologically stimulating autophagy restores its function independent of amphisome formation. Of potential therapeutic relevance is that a low dose of HP-β-cyclodextrin that does not perturb autophagy, coupled with an autophagy inducer, may rescue both the cholesterol and autophagy defects in NPC1 disease. 相似文献
14.
15.
Niemann‐Pick disease type C is a complex lysosomal storage disorder caused by mutations in either the NPC1 or NPC2 genes that is characterized at the cellular level by the storage of multiple lipids, defective lysosomal calcium homeostasis and unique trafficking defects. We review the potential role of each of the individual storage lipids in initiating the pathogenic cascade and propose a model of NPC1 and NPC2 function based on the current knowledge 相似文献
16.
目的:研究重组9型腺相关病毒(recombinant adeno-associated virus serotype 9,rAAV9)携带FrzA基因转导干预缺血性心衰小鼠心肌Wnt信号通路的可行性,为基因治疗心力衰竭提供新的思路.方法:选择3月龄雄性C57BL/6J小鼠共130只,随机分为空白组(n=10),心衰组(n=40),心衰+空病毒(rAAV9-GFP)注射组(n=40),心衰+rAAV9-FrzA组(n=40),采用结扎左冠状动脉定量控制心梗面积,于术后2周行心脏超声评各组心功能变化,再经尾静脉注射已稀释好的病毒,28d后处死小鼠取心脏标本,RT-PCR检测心肌目的基因FrzA以及Dvl-1,β-catenin的表达;Western blot检测心肌Wnt信号通路关键分子Dvl-1,GSK3β,p-GSK3β,β-catenin的表达.结果:与空白组相比,成功建立心衰模型后小鼠心功能均不同程度降低(P<0.05);FrzA组与心衰组相比,心功能明显改善(P<0.05);经尾静脉注射可成功将rAAV9-FrzA导入小鼠体内,并且目的基因FrzA在心肌组织中高表达(P<0.05);心衰小鼠心肌中Wnt信号通路关键分子Dvl-1,p-GSK3β,β-catenin的表达显著升高(P<0.05),FrzA转导后小鼠心肌中Wnt信号通路中关键分子Dvl-1,p-GSK3β,β-catenin表达均降低(P<0.05)结论:利用rAAV9-FrzA转导缺血性心衰小鼠可以有效的干预心肌Wnt信号通路,抑制其活性,为基因治疗缺血性心衰提供了新的思路. 相似文献
17.
18.
C Xie Xc ZS Zhou X Xae Xee N Li Xe Y Bian X YJ Wang Xb Xc Xefa LJ Wang Xb Xed Xaf BL Li Xe Xff Xf BL Song Xbb Xfdd Xeae 《Journal of lipid research》2012,53(10):2092-2101
The multiple transmembrane protein Niemann-Pick C1 like1 (NPC1L1) is essential for intestinal cholesterol absorption. Ezetimibe binds to NPC1L1 and is a clinically used cholesterol absorption inhibitor. Recent studies in cultured cells have shown that NPC1L1 mediates cholesterol uptake through vesicular endocytosis that can be blocked by ezetimibe. However, how NPC1L1 and ezetimibe work in the small intestine is unknown. In this study, we found that NPC1L1 distributed in enterocytes of villi and transit-amplifying cells of crypts. Acyl-CoA cholesterol acyltransferase 2 (ACAT2), another important protein for cholesterol absorption by providing cholesteryl esters to chylomicrons, was mainly presented in the apical cytoplasm of enterocytes. NPC1L1 and ACAT2 were highly expressed in jejunum and ileum. ACAT1 presented in the Paneth cells of crypts and mesenchymal cells of villi. In the absence of cholesterol, NPC1L1 was localized on the brush border of enterocytes. Dietary cholesterol induced the internalization of NPC1L1 to the subapical layer beneath the brush border and became partially colocalized with the endosome marker Rab11. Ezetimibe blocked the internalization of NPC1L1 and cholesterol and caused their retention in the plasma membrane. This study demonstrates that NPC1L1 mediates cholesterol entering enterocytes through vesicular endocytosis and that ezetimibe blocks this step in vivo. 相似文献
19.
重组腺相关病毒载体(AAV)具有很多安全方面的特性,有利于其在动脉硬化方面的治疗研究.尽管如此,传统的介导单个基因的治疗效果并不是很理想,这都归因于动脉硬化疾病的发生是由于多种基因的缺陷而不是单单某一特定基因.为了克服这个问题,尝试了重组腺相关病毒载体介导的双基因对动脉硬化的治疗研究.实验大鼠分为动脉硬化模型鼠和正常饮食组(即正常对照组),动脉硬化组大鼠被随机分为3组,分别进行AAV-apoAⅠ/SR-BⅠ,AAV-apoAⅠ,与AAV-GFP尾静脉注射,同时正常饮食组尾静脉注射PBS作为对照.其中目的基因mRNA检测采用RT-PCR方法,蛋白质表达的检测采用Western blotting和ELISA.由饮食诱导的动脉硬化和高胆固醇的大鼠模型在尾静脉注射后8周进行冰冻切片的荧光检测.重组AAV载体显示出较强的表达活性.尾静脉注射治疗8周后,AAV-apoAⅠ/SR-BⅠ与AAV-apoAⅠ治疗组血浆总胆固醇和低密度脂蛋白胆固醇浓度与AAV-GFP治疗组相比有了明显下降(P<0.05),高密度脂蛋白胆固醇浓度各组之间没有明显差异,彩色多普勒超声检测发现,AAV-apoAⅠ/SR-BⅠ与AAV-apoAⅠ治疗组的腹主动脉的内中膜厚度相对于AAV-GFP治疗组有了明显下降(P<0.05),血清hs-CRP和SOD的水平有了明显上升(P<0.01),血清MDA的水平有了明显的下降(P<0.01).同时也检测了动脉硬化相关基因mRNA水平的表达.结果显示,rAAV-hapoAⅠ-IRES-hSR-BⅠ治疗后可能是通过抑制NF-κB的活性发挥抗炎作用减少炎症因子的释放,增加动脉硬化板块的稳定性以及降低血浆胆固醇含量的.总之,利用2型腺相关病毒载体介导的基因转移过度表达人载脂蛋白AⅠ和SR-BⅠ可能对饮食诱发大鼠高胆固醇血症和动脉硬化的产生有利影响.这些结果可能为动脉粥样硬化基因治疗提供了一种新的研究思路. 相似文献
20.
Leslie A. McCauliff Zhi Xu Ran Li Sarala Kodukula Dennis C. Ko Matthew P. Scott Peter C. Kahn Judith Storch 《The Journal of biological chemistry》2015,290(45):27321-27331
The cholesterol storage disorder Niemann-Pick type C (NPC) disease is caused by defects in either of two late endosomal/lysosomal proteins, NPC1 and NPC2. NPC2 is a 16-kDa soluble protein that binds cholesterol in a 1:1 stoichiometry and can transfer cholesterol between membranes by a mechanism that involves protein-membrane interactions. To examine the structural basis of NPC2 function in cholesterol trafficking, a series of point mutations were generated across the surface of the protein. Several NPC2 mutants exhibited deficient sterol transport properties in a set of fluorescence-based assays. Notably, these mutants were also unable to promote egress of accumulated intracellular cholesterol from npc2−/− fibroblasts. The mutations mapped to several regions on the protein surface, suggesting that NPC2 can bind to more than one membrane simultaneously. Indeed, we have previously demonstrated that WT NPC2 promotes vesicle-vesicle interactions. These interactions were abrogated, however, by mutations causing defective sterol transfer properties. Molecular modeling shows that NPC2 is highly plastic, with several intense positively charged regions across the surface that could interact favorably with negatively charged membrane phospholipids. The point mutations generated in this study caused changes in NPC2 surface charge distribution with minimal conformational changes. The plasticity, coupled with membrane flexibility, probably allows for multiple cholesterol transfer routes. Thus, we hypothesize that, in part, NPC2 rapidly traffics cholesterol between closely appositioned membranes within the multilamellar interior of late endosomal/lysosomal proteins, ultimately effecting cholesterol egress from this compartment. 相似文献