首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have studied theoretically and numerically the effect of extraordinary optical transmission of light propagating through the one-dimensional periodic arrays of infinite slits with sub-wavelength dimensions. In our study, we have concentrated on mechanisms which are responsible for this effect. Within our analysis, we have attempted to draw the attention towards the origin and reasons of earlier misinterpretations concerning the spectral position of EOT prediction and the related role of surface plasmon polaritons in manifestation of the effect. Using the sequence of suitable parameter two-dimensional spaces (in terms of structure period-filling factor; thickness-wavelength; wavelength-angle), we were able to look into subtle physical mechanisms operating in the background of this extraordinary optical transmission effect. To study these effects associated with the extraordinary optical transmission, we have applied our efficient two-dimensional numerical technique based on the rigorous coupled-wave analysis. Within the thickness-wavelength parameter space, we have been able to identify and describe three distinct interaction regions, with specific behaviour. Finally, we have proposed and discussed the supporting mechanism explaining the interaction, based on the interference of resonant and non-resonant contributions at the slit openings.  相似文献   

2.
In this paper, a novel plasmonic bandgap cavity inducing the enhancement of extraordinary optical transmission is presented. Numerical simulations have been performed to model a free-standing structure made of a one-dimensional periodic arrangement of gold strips. Two different values of the lattice constant have been properly chosen to realize a double heterostructure-like cavity to accomplish extraordinary optical transmission assisted by the formation of a plasmonic bandgap in the adjacent regions. Numerical results prove the capability of this optical device to efficiently transmit input light beams with far-field transmission values close to 100% due to the excitation of surface plasmon polariton resonant modes.  相似文献   

3.
Optical transmission properties of periodic X-shaped plasmonic nanohole arrays in a silver film are investigated by performing the finite element method. Obvious peaks appear in the transmission spectra due to surface plasmon polaritons (SPPs) on the top surface of the silver film, to the Fabry–Ferot resonance effect of SPPs in the nanohole, and to the localized surface plasmon resonance of the nanohole. Besides the topologic shape parameters of the X-shaped nanohole, transmission properties strongly depend on incident polarization. The results of this study not only present a tunable plasmonic filter, but also aid in the understanding of the mechanisms of the extraordinary optical transmission phenomenon.  相似文献   

4.
Plasmonics - Nanoapertures in a metallic film exhibit extraordinary optical transmission (EOT) owing to the surface plasmon resonance. Their transmission properties are known to be dependent on the...  相似文献   

5.
We propose a novel plasmonic metal structure composed of a silver film perforated with a two-dimensional square array of two-level cylindrical holes on a silica substrate. The transmission properties of this structure are theoretically calculated by the finite-difference time-domain (FDTD) method. Double-enhanced transmission peaks are achieved in the visible and infrared regions, which mainly originate from the excitation of localized surface plasmon resonances (LSPRs), the hybridization of plasmon modes, and the optical cavity mode formed in the holes. The enhanced transmission behaviors can be effectively tailored by changing the geometrical parameters and dielectric materials filled in the holes. These findings indicate that our proposed structure has potential applications in highly integrated optoelectronic devices.  相似文献   

6.
In this paper, we present a peculiar metal-dielectric-metal (MDM) nanosandwich grating structure that can achieve extraordinary optical transmission performances at normal incidence in the ultraviolet-visible-near infrared (UV-VIS-NIR) regions. The proposed structure shows three obvious spectrum characteristics: it can obtain high transmittance up to 80 % in NUV region and efficiently blocking visible wavelengths for transverse-magnetic (TM) polarized incidence; a broadband NIR polarizer can be inspired in the wavelength range from 950 to 1400 nm; more surprisingly, these performances do not deteriorated until 30° tilting angle. Compared to other grating structures with single metal overlayer, it shows wider band-stop characteristics and higher broadband transmission transmittance and extinction ratio (ER) in the investigated wavebands. We analyze the underlying physical mechanism by using numerical simulation, which is primarily attributed to metal ultraviolet transparency, surface plasmon polariton (SPP) at metal/dielectric interface, Fabry–Perot (FP)-like cavity mode within this dielectric grating, and optical magnetic resonance especially in the dielectric interlayer of the MDM sandwiched structure. This structure is very important for developing high-performance subwavelength multifunctional integrated optical devices.  相似文献   

7.
Interleukin (IL-15), a pro-inflammatory cytokine has been studied as a possible marker of Alzheimer’s disease (AD); however its exact role in neuro-inflammation or the pathogenesis AD is not well understood yet. A Multiple Indicators Multiple Causes (MIMIC) approach was used to examine the relationship between serum IL-15 levels and AD in a well characterized AD cohort, the Texas Alzheimer''s Research and Care Consortium (TARCC). Instead of categorical diagnoses, we used two latent construct d (for dementia) and g’ (for cognitive impairments not contributing to functional impairments) in our analysis. The results showed that the serum IL-15 level has significant effects on cognition, exclusively mediated by latent construct d and g’. Contrasting directions of association lead us to speculate that IL-15’s effects in AD are mediated through functional networks as d scores have been previously found to be specifically related to default mode network (DMN). Our finding warrants the need for further research to determine the changes in structural and functional networks corresponding to serum based biomarkers levels.  相似文献   

8.

Background

Hepcidin is a 25-aminoacid cysteine-rich iron regulating peptide. Increased hepcidin concentrations lead to iron sequestration in macrophages, contributing to the pathogenesis of anaemia of chronic disease whereas decreased hepcidin is observed in iron deficiency and primary iron overload diseases such as hereditary hemochromatosis. Hepcidin quantification in human blood or urine may provide further insights for the pathogenesis of disorders of iron homeostasis and might prove a valuable tool for clinicians for the differential diagnosis of anaemia. This study describes a specific and non-operator demanding immunoassay for hepcidin quantification in human sera.

Methods and Findings

An ELISA assay was developed for measuring hepcidin serum concentration using a recombinant hepcidin25-His peptide and a polyclonal antibody against this peptide, which was able to identify native hepcidin. The ELISA assay had a detection range of 10–1500 µg/L and a detection limit of 5.4 µg/L. The intra- and interassay coefficients of variance ranged from 8–15% and 5–16%, respectively. Mean linearity and recovery were 101% and 107%, respectively. Mean hepcidin levels were significantly lower in 7 patients with juvenile hemochromatosis (12.8 µg/L) and 10 patients with iron deficiency anemia (15.7 µg/L) and higher in 7 patients with Hodgkin lymphoma (116.7 µg/L) compared to 32 age-matched healthy controls (42.7 µg/L).

Conclusions

We describe a new simple ELISA assay for measuring hepcidin in human serum with sufficient accuracy and reproducibility.  相似文献   

9.
In order to early screen and detect suspected biomarkers from pathogens and the human body itself, tracers or reaction strategies that can act as signal enhancers have been proposed forth at purpose. In this paper, we discussed the applicability of magnetic microparticles-assisted time-resolved fluoroimmunoassay (MMPs-TRFIA) for sensitive determination of potential analytes. Hepatitis B e antigen, antibody to hepatitis B surface antigen and free triiodothyronine were used as biomarker models to explore the reliability of the method. By coupling with bioprobes, MMPs were used as immunoassay carriers to capture target molecules. Under optimal condition, assay performance, including accuracy, precision and specificity, was outstanding and demonstrated satisfactory. To further evaluate the performance of the MMPs-TRFIA in patients, a total of 728 serum samples from hospital were analyzed for three biomarkers in parallel with the proposed method and chemiluminescence immunoassay kit commercially available. Fairly good agreements are obtained between the two methods via data analysis. Not only that but the reliability of MMPs-TRFIA has also been illustrated by three different reaction models. It is confirmed that the novel method modified with MMPs has been established and showed great potential applications in both biological detection and clinical diagnosis, including big molecule protein and low molecular weight haptens.  相似文献   

10.
Compact and efficient terahertz (THz) polarization conversion components are of importance for applications where the small dimension of the laser device/system is critical. Here, we propose an ultracompact L-shaped subwavelength patterns on metal films to realize the THz polarization management. By optimizing the geometric parameters of single-layered and double-layered patterns, the linear-polarized THz incidence can be converted to elliptical polarized output or rotated by 90° efficiently due to the THz extraordinary optical transmission phenomenon. The physical mechanism is explored by mode analysis using numerical and analytical modeling.  相似文献   

11.

Background and Objectives

Accurate diagnosis of febrile seizures in children presenting after paroxysmal episodes associated with fever, is hampered by the lack of objective postictal biomarkers. The aim of our study was to investigate whether FS are associated with increased levels of serum copeptin, a robust marker of arginine vasopressin secretion.

Methods

This was a prospective emergency-setting cross-sectional study of 161 children between six months and five years of age. Of these, 83 were diagnosed with febrile seizures, 69 had a febrile infection without seizures and nine had epileptic seizures not triggered by infection. Serum copeptin and prolactin levels were measured in addition to standard clinical, neurophysiological, and laboratory assessment. Clinical Trial Registration: NCT01884766.

Results

Circulating copeptin was significantly higher in children with febrile seizures (median [interquartile range] 18.9 pmol/L [8.5-36.6]) compared to febrile controls (5.6 pmol/L [4.1-9.4]; p <0.001), with no differences between febrile and epileptic seizures (21.4 pmol/L [16.1-46.6]; p = 0.728). In a multivariable regression model, seizures were the major determinant of serum copeptin (beta 0.509; p <0.001), independently of clinical and baseline laboratory indices. The area under the receiver operating curve for copeptin was 0.824 (95% CI 0.753-0.881), significantly higher compared to prolactin (0.667 [0.585-0.742]; p <0.001). The diagnostic accuracy of copeptin increased with decreasing time elapsed since the convulsive event (at 120 min: 0.879 [0.806-0.932] and at <60 min: 0.975 [0.913-0.997]).

Conclusions

Circulating copeptin has high diagnostic accuracy in febrile seizures and may be a useful adjunct for accurately diagnosing postictal states in the emergency setting.  相似文献   

12.
13.
It is now well known that the cellular and tissue microenvironment are critical regulators influencing tumor initiation and progression. Moreover, the extracellular matrix (ECM) has been demonstrated to be a critical regulator of cell behavior in culture and homeostasis in vivo. The current approach of culturing cells on two-dimensional (2D), plastic surfaces results in the disturbance and loss of complex interactions between cells and their microenvironment. Through the use of three-dimensional (3D) culture assays, the conditions for cell-microenvironment interaction are established resembling the in vivo microenvironment. This article provides a detailed methodology to grow breast cancer cells in a 3D basement membrane protein matrix, exemplifying the potential of 3D culture in the assessment of cell invasion into the surrounding environment. In addition, we discuss how these 3D assays have the potential to examine the loss of signaling molecules that regulate epithelial morphology by immunostaining procedures. These studies aid to identify important mechanistic details into the processes regulating invasion, required for the spread of breast cancer.  相似文献   

14.
Lupus Nephritis (LN) develops in more than half of the Systemic Lupus Erythematous (SLE) patients. However, lack of reliable, specific biomarkers for LN hampers clinical management of patients and impedes development of new therapeutics. The goal of this study was to investigate whether oxidative stress biomarkers in patients with SLE is predictive of renal pathology. Serum biochemical and oxidative stress markers were measured in patients with inactive lupus, active lupus with and without nephritis and compared to healthy control group. To assess the predictive performance of biomarkers, Receiver Operating Characteristic (ROC) curves were constructed and cut-offs were used to identify SLE patients with nephritis. We observed an increased oxidative stress response in all SLE patients compared to healthy controls. Among the several biomarkers tested, serum thiols had a significant inverse association with SLE Disease Activity Index (SLEDAI). Interestingly, thiols were able too aptly differentiate between SLE patients with and without renal pathology, and serum thiol levels were not affected by immunosuppressive drug therapy. The decreased thiols in SLE correlated significantly with serum creatinine and serum C3 levels. Further retrospective evaluation using serum creatinine or C3 levels in combination with thiol’s cutoff values from ROC analysis, we could positively predict chronicity of renal pathology in SLE patients. In summary, serum thiols emerge as an inexpensive and reliable indicator of LN, which may not only help in early identification of renal pathology but also aid in the therapeutic management of the disease, in developing countries with resource poor settings.  相似文献   

15.
There is a major resurgence of interest in brown adipose tissue (BAT) biology, particularly regarding its determinants and consequences in newborns and infants. Reliable methods for non-invasive BAT measurement in human infants have yet to be demonstrated. The current study first validates methods for quantitative BAT imaging of rodents post mortem followed by BAT excision and re-imaging of excised tissues. Identical methods are then employed in a cohort of in vivo infants to establish the reliability of these measures and provide normative statistics for BAT depot volume and fat fraction. Using multi-echo water-fat MRI, fat- and water-based images of rodents and neonates were acquired and ratios of fat to the combined signal from fat and water (fat signal fraction) were calculated. Neonatal scans (n = 22) were acquired during natural sleep to quantify BAT and WAT deposits for depot volume and fat fraction. Acquisition repeatability was assessed based on multiple scans from the same neonate. Intra- and inter-rater measures of reliability in regional BAT depot volume and fat fraction quantification were determined based on multiple segmentations by two raters. Rodent BAT was characterized as having significantly higher water content than WAT in both in situ as well as ex vivo imaging assessments. Human neonate deposits indicative of bilateral BAT in spinal, supraclavicular and axillary regions were observed. Pairwise, WAT fat fraction was significantly greater than BAT fat fraction throughout the sample (ΔWAT-BAT = 38%, p<10−4). Repeated scans demonstrated a high voxelwise correlation for fat fraction (Rall = 0.99). BAT depot volume and fat fraction measurements showed high intra-rater (ICCBAT,VOL = 0.93, ICCBAT,FF = 0.93) and inter-rater reliability (ICCBAT,VOL = 0.86, ICCBAT,FF = 0.93). This study demonstrates the reliability of using multi-echo water-fat MRI in human neonates for quantification throughout the torso of BAT depot volume and fat fraction measurements.  相似文献   

16.

Background

In prolonged hemorrhagic shock, reductions in intestinal mucosal blood perfusion lead to mucosal barrier damage and systemic inflammation. Gastrointestinal failure in critically ill patients has a poor prognosis, so early assessment of mucosal barrier injury in shock patients is clinically relevant. Unfortunately, there is no serum marker that can accurately assess intestinal ischemia-reperfusion injury.

Objective

The aim of this study was to assess if serum diamine oxidase levels can reflect intestinal mucosal injury subsequent to prolonged hemorrhagic shock.

Methods

Thirty New Zealand white rabbits were divided into three groups: a control group, a medium blood pressure (BP) group (exsanguinated to a shock BP of 50 to 41 mm Hg), and a low BP group (exsanguinated to a shock blood pressure of 40 to 31 mm Hg), in which the shock BP was sustained for 180 min prior to fluid resuscitation.

Results

The severity of hemorrhagic shock in the low BP group was significantly greater than that of the medium BP group according to the post-resuscitation BP, serum tumor necrosis factor (TNF)-α, and arterial lactate. Intestinal damage was significantly more severe in the low BP group according to Chiu’s scoring, claudin-1, intercellular adhesion molecule (ICAM)-1, and myeloperoxidase expression. Serum diamine oxidase was significantly increased in the low BP group compared to the medium BP and control groups and was negatively correlated with shock BP.

Conclusion

Serum diamine oxidase can be used as a serological marker in evaluating intestinal injury and shows promise as an indicator of hemorrhagic shock severity.  相似文献   

17.
Normal animal sera inhibit at least one Clostridium histolyticum proteinase. An assay procedure based on immune hemolysis was developed for the estimation of this inhibition. This inhibitory activity occurs in various levels in the sera of different animal species. The highest titers have been obtained with rat sera. The inhibitory activity from human serum was isolated and purified 16- to 27-fold by Sephadex G-200 gel filtration and diethylaminoethyl cellulose or hydroxylapatite chromatography. The properties of the human serum inhibitor of the clostridial proteinase were compared with a trypsin inhibiting factor found in the partially purified preparations. Identical behavior of the two inhibitory factors was observed when measured by heat inactivation, beta-mercaptoethanol sensitivity, pH stability, and sucrose gradient centrifugation. The inhibitory factor has an approximate sedimentation coefficient (S(20,w)) of 17. Goat anti-alpha-2-macroglobulin specifically precipitated the clostridial proteinase inhibitor from a partially purified preparation.  相似文献   

18.

Purpose

The purpose of this study was to evaluate the metabolomic changes in 3D-cultured human mesenchymal stem cells (hMSCs) in alginate beads, so as to identify biomarkers during chondrogenesis using 1H nuclear magnetic resonance (NMR) spectroscopy.

Materials and Methods

hMSCs (2×106 cells/mL) were seeded into alginate beads, and chondrogenesis was allowed to progress for 15 days. NMR spectra of the chondrogenic hMSCs were obtained at 4, 7, 11, and 15 days using a 14.1-T (600-MHz) NMR with the water suppression sequence, zgpr. Real-Time polymerase chain reaction (PCR) was performed to confirm that that the hMSCs differentiated into chondrocytes and to analyze the metabolomic changes indicated by the NMR spectra.

Results

During chondrogenesis, changes were detected in several metabolomes as hMSC chondrogenesis biomarkers, e.g., fatty acids, alanine, glutamate, and phosphocholine. The metabolomic changes were compared with the Real-Time PCR results, and significant differences were determined using statistical analysis. We found that changes in metabolomes were closely related to biological reactions that occurred during the chondrogenesis of hMSCs.

Conclusions

In this study, we confirm that metabolomic changes detected by 1H-NMR spectroscopy during chondrogenic differentiation of 3D-cultured hMSCs in alginate beads can be considered as biomarkers of stem cell differentiation.  相似文献   

19.

Background

Although inflammation is an important feature of pulmonary arterial hypertension (PAH), the usefulness of local inflammatory markers as biomarkers for PAH is unknown. In this study, we tested whether plasma concentrations of human pentraxin 3 (PTX3), a local inflammatory marker, would be a useful biomarker for detecting PAH.

Methods

Plasma PTX3 concentrations were evaluated in 50 PAH patients (27 with idiopathic PAH, 17 with PAH associated with connective tissue disease (CTD-PAH), and six with congenital heart disease), 100 age and sex-matched healthy controls, and 34 disease-matched CTD patients without PAH. Plasma concentrations of B-type natriuretic peptide (BNP) and C-reactive protein (CRP) were also determined.

Results

Mean PTX3 levels were significantly higher in all PAH patients than in the healthy controls (4.40±0.37 vs. 1.94±0.09 ng/mL, respectively; P<0.001). Using a threshold level of 2.84 ng/mL, PTX3 yielded a sensitivity of 74.0% and a specificity of 84.0% for the detection of PAH. In CTD-PAH patients, mean PTX3 concentrations were significantly higher than in CTD patients without PAH (5.02±0.69 vs. 2.40±0.14 ng/mL, respectively; P<0.001). There was no significant correlation between plasma levels of PTX3 and BNP or CRP. Receiver operating characteristic (ROC) curves for screening PAH in patients with CTD revealed that PTX3 (area under the ROC curve 0.866) is superior to BNP. Using a PTX3 threshold of 2.85 ng/mL maximized true-positive and false-negative results (sensitivity 94.1%, specificity 73.5%).

Conclusion

Plasma concentrations of PTX3 may be a better biomarker of PAH than BNP, especially in patients with CTD.  相似文献   

20.
为了探讨血液中肾损伤分子-1 (KIM-1)和血清肌酐(SCr)的表达对外科术后急性肾损伤(AKI)的早期诊断价值,本研究选取医院内2018年3月至2019年3月进行外科手术的患者48例,分为AKI组患者即实验组12例,非AKI组患者即对照组36例,收集所有患者手术后0、3 h、6 h、9 h、12 h、24 h、48 h和72 h的血液样本,检测各个时间点血液中KIM-1和血清肌酐SCr水平,将血液中KIM-1与血清肌酐SCr水平进行相关统计学分析,绘制受试者工作特征曲线(ROC),探究并对比血液中KIM-1和血清肌酐的表达对外科手术后患者发生AKI的早期诊断价值。本研究数据显示,AKI组患者在手术后(3 h, 6 h, 9 h, 12 h)血液中KIM-1水平都高于0 h基准值,并且在6 h达到最大值;与此同时,AKI组患者手术后(0, 3 h, 6 h, 9 h)血液中KIM-1水平明显高于非AKI组患者。AKI组患者手术后血液中KIM-1 (0, 3 h, 6 h, 9 h)水平和手术后24 h的血清肌酐SCr水平呈正相关。本研究表明,3~9 h血液中KIM-1水平升高对患者外科手术后AKI的发生具备较高的诊断价值,血液中KIM-1可以作为早期诊断患者外科手术后发生AKI的一项生物标志物,且血清肌酐SCr的观测效率明显低于血液中KIM-1,可作为辅助诊疗手段。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号