首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Dietary triacylglycerols are a major source of energy for animals. The absorption of dietary triacylglycerols involves their hydrolysis to free fatty acids and monoacylglycerols in the intestinal lumen, the uptake of these products into enterocytes, the resynthesis of triacylgylcerols, and the incorporation of newly synthesized triacylglycerols into nascent chylomicrons for secretion. In enterocytes, the final step in triacylglycerol synthesis is believed to be catalyzed primarily through the actions of acyl-CoA:diacylglycerol acyltransferase (DGAT) enzymes. In this study, we analyzed intestinal triacylglycerol absorption and chylomicron synthesis and secretion in DGAT1-deficient (Dgat1(-/-)) mice. Surprisingly, DGAT1 was not essential for quantitative dietary triacylglycerol absorption, even in mice fed a high fat diet, or for the synthesis of chylomicrons. However, Dgat1(-/-) mice had reduced postabsorptive chylomicronemia (1 h after a high fat challenge) and accumulated neutral-lipid droplets in the cytoplasm of enterocytes when chronically fed a high fat diet. These results suggest a reduced rate of triacylglycerol absorption in Dgat1(-/-) mice. Analysis of intestine from Dgat1(-/-) mice revealed activity for two other enzymes, DGAT2 and diacylglycerol transacylase, that catalyze triacylglycerol synthesis and apparently help to compensate for the absence of DGAT1. Our findings indicate that multiple mechanisms for triacylglycerol synthesis in the intestine facilitate triacylglycerol absorption.  相似文献   

2.
Recently, 3D small intestinal organoids (enteroids) have been developed from cultures of intestinal stem cells which differentiate in vitro to generate all the differentiated epithelial cell types associated with the intestine and mimic the structural properties of the intestine observed in vivo. Small‐molecule drug treatment can skew organoid epithelial cell differentiation toward particular lineages, and these skewed enteroids may provide useful tools to study specific epithelial cell populations, such as goblet and Paneth cells. However, the extent to which differentiated epithelial cell populations in these skewed enteroids represent their in vivo counterparts is not fully understood. This study utilises label‐free quantitative proteomics to determine whether skewing murine enteroid cultures toward the goblet or Paneth cell lineages results in changes in abundance of proteins associated with these cell lineages in vivo. Here, proteomics data confirms that skewed enteroids recapitulate important features of the in vivo gut environment, demonstrating that they can serve as useful models for the investigation of normal and disease processes in the intestine. Furthermore, comparison of mass spectrometry data with histology data contained within the Human Protein Atlas identifies putative novel markers for goblet and Paneth cells.  相似文献   

3.
PURPOSE OF REVIEW: The assembly of intestinal lipoproteins is critical for the transport of fat and fat-soluble vitamins. In this review we propose a nomenclature for these lipoproteins and have summarized recent data about their intracellular assembly and factors that modulate their secretion. RECENT FINDINGS: The assembly and secretion of intestinal lipoproteins increases with the augmented synthesis of apoB, apoAIV and lipids. Chylomicron assembly begins with the formation of primordial, phospholipid-rich particles in the membrane, and their conversion to large chylomicrons occurs in the lumen of the smooth endoplasmic reticulum. Chylomicrons are transported from the endoplasmic reticulum via specialized vesicles to the Golgi for secretion. The identification of genetic mutations in chylomicron retention disease indicates that Sar1b may play a critical role in this process. In addition to chylomicron assembly, intestinal cells have been shown to transport dietary cholesterol via apoB-independent pathways, such as efflux. SUMMARY: Understanding the mechanisms involved in the intracellular transport of chylomicrons and chylomicron-independent secretion pathways are expected to be the next frontiers in the field of intestinal lipoprotein assembly and secretion.  相似文献   

4.
Acyl-CoA:monoacylglycerol transferase (MGAT) plays a predominant role in dietary fat absorption in the small intestine, where it catalyzes the first step of triacylglycerol resynthesis in enterocytes for chylomicron formation and secretion. Although the mouse small intestine exhibits the highest MGAT enzyme activity among all of the tissues studied, the gene encoding the enzyme has not been identified so far. In the present studies, we report the identification and characterization of a mouse intestinal MGAT, MGAT2. Transient expression of MGAT2 in AV-12, COS-7, and Caco-2 cells led to a more than 70-, 30-, and 35-fold increase in the synthesis of diacylglycerol, respectively. MGAT2 expressed in mammalian cells can catalyze the acylation of rac-1-, sn-2-, and sn-3-monoacylglycerols, and the enzyme prefers monoacylglycerols containing unsaturated fatty acyls as substrates. MGAT2 also demonstrates weak DGAT activity, which can be distinguished from its MGAT activity by detergent treatment that abolishes DGAT but not MGAT activity. We also analyzed the biochemical features of MGAT2 and demonstrated homogenate protein-, time-, and substrate concentration-dependent MGAT enzyme activity in transiently transfected COS-7 cells. Northern blot analysis indicates that the mouse MGAT2 is most abundantly expressed in the small intestine, suggesting that MGAT2 may play an important role in dietary fat absorption.  相似文献   

5.
Physiological studies of intact crypt epithelium have been limited by problems of accessibility in vivo and dedifferentiation in standard primary culture. Investigations of murine intestinal stem cells have recently yielded a primary intestinal culture in three-dimensional gel suspension that recapitulates crypt structure and epithelial differentiation (Sato T, Vries RG, Snippert HJ, van de Wetering M, Barker N, Stange DE, Van Es JH, Abo A, Kujala P, Peters PJ, Clevers H. Nature 459: 262-265, 2009). We investigated the utility of murine intestinal crypt cultures (termed "enteroids") for physiological studies of crypt epithelium by focusing on the transport activity of the cystic fibrosis transmembrane conductance regulator Cftr. Enteroids had multiple crypts with well-differentiated goblet and Paneth cells that degranulated on exposure to the muscarinic agonist carbachol. Modified growth medium provided a crypt proliferation rate, as measured by 5-ethynyl-2'-deoxyuridine labeling, which was similar to proliferation in vivo. Immunoblots demonstrated equivalent Cftr expression in comparisons of freshly isolated crypts with primary and passage 1 enteroids. Apparent enteroid differences in mRNA expression of other transporters were primarily associated with villous epithelial contamination of freshly isolated crypts. Microelectrode analysis revealed cAMP-stimulated membrane depolarization in enteroid epithelium from wild-type (WT) but not Cftr knockout (KO) mice. Morphological and microfluorimetric studies, respectively, demonstrated Cftr-dependent cell shrinkage and lower intracellular pH in WT enteroid epithelium in contrast to Cftr KO epithelium or WT epithelium treated with Cftr inhibitor 172. We conclude that crypt epithelium of murine enteroids exhibit Cftr expression and activity that recapitulates crypt epithelium in vivo. Enteroids provide a primary culture model that is suitable for physiological studies of regenerating crypt epithelium.  相似文献   

6.
The crypt-villus axis of the intestine undergoes a continuous renewal process that is driven by intestinal stem cells (ISCs). However, the homeostasis is disturbed under constant exposure to high ambient temperatures, and the precise mechanism is unclear. We found that both EdU+ and Ki67+ cell ratios were significantly reduced after exposure to 41°C, as well as the protein synthesis rate of IPEC-J2 cells, and the expression of ubiquitin and heat shock protein 60, 70, and 90 were significantly increased. Additionally, heat exposure decreased enteroid expansion and budding efficiency, as well as induced apoptosis after 48 hr; however, no significant difference was observed in the apoptosis ratio after 24 hr. In the process of heat exposure, the mechanistic target of rapamycin complex 1 (mTORC1) signaling pathway was significantly inhibited in both IPEC-J2 cells and enteroids. Correspondingly, treatment of IPEC-J2 and enteroids with the mTORC1 agonist MHY1485 at 41°C significantly attenuated the inhibition of proliferation and protein synthesis, increased the ISC activity, and promoted expansion and budding of enteroid. In summary, we conclude that the mTORC1 signaling pathway regulates intestinal epithelial cell and stem cell activity during heat exposure-induced injury.  相似文献   

7.
The epithelium of the gastrointestinal tract is constantly renewed as it turns over. This process is triggered by the proliferation of intestinal stem cells (ISCs) and progeny that progressively migrate and differentiate toward the tip of the villi. These processes, essential for gastrointestinal homeostasis, have been extensively studied using multiple approaches. Ex vivo technologies, especially primary cell cultures have proven to be promising for understanding intestinal epithelial functions. A long-term primary culture system for mouse intestinal crypts has been established to generate 3-dimensional epithelial organoids. These epithelial structures contain crypt- and villus-like domains reminiscent of normal gut epithelium. Commonly, termed “enteroids” when derived from small intestine and “colonoids” when derived from colon, they are different from organoids that also contain mesenchyme tissue. Additionally, these enteroids/colonoids continuously produce all cell types found normally within the intestinal epithelium. This in vitro organ-like culture system is rapidly becoming the new gold standard for investigation of intestinal stem cell biology and epithelial cell physiology. This technology has been recently transferred to the study of human gut. The establishment of human derived epithelial enteroids and colonoids from small intestine and colon has been possible through the utilization of specific culture media that allow their growth and maintenance over time. Here, we describe a method to establish a small intestinal and colon crypt-derived system from human whole tissue or biopsies. We emphasize the culture modalities that are essential for the successful growth and maintenance of human enteroids and colonoids.  相似文献   

8.
African green monkeys were fed diets containing low and moderate cholesterol concentrations with either polyunsaturated or unsaturated fat as 40% of calories. Plasma total cholesterol, low density lipoprotein (LDL) cholesterol, and apoB concentrations generally were higher in animals fed (a) the higher dietary cholesterol concentration and (b) saturated fat. At necropsy, liver and intestine were removed, and measurement of mRNAs for LDL receptors (liver) and for apolipoprotein B (liver and intestine) was done. Monkey small intestine mucosa made exclusively apoB48 while the liver made only apoB100, although apoB mRNA in both tissues was the same size (14 kilobases). No dietary cholesterol or fat effects were found for apoB mRNA abundance in the liver, while the animals fed the higher dietary cholesterol level had 50% lower levels of hepatic LDL receptor mRNA. In a separate group of animals, livers were perfused and the rate of apoB secretion was measured. No dietary fat effect on apoB secretion rate was found, and no relationship between plasma LDL cholesterol concentration and the rate of hepatic apoB production existed. These findings support the idea that the dietary factors that increase LDL concentrations act by reducing clearance of apoB-containing particles rather than by increasing production of these lipoproteins. Hepatic LDL receptor mRNA was similar in abundance in polyunsaturated fat and saturated fat-fed animals, suggesting that the difference in plasma cholesterol concentration between these groups is not mediated via effects on LDL receptor mRNA abundance. The level of intestinal apoB mRNA was about 30% higher in animals fed the moderate dietary cholesterol concentration. Earlier studies have shown that more cholesterol is transported in chylomicrons from the intestine when dietary cholesterol levels are higher, and the increased intestinal apoB mRNA abundance may reflect increased intestinal cholesterol transport and chylomicron apoB48 production.  相似文献   

9.
An intestinal lipodystrophy induced by dietary fat in female Mongolian gerbils (Meriones unguiculatus) was reversed to normal by myo-inositol given in the diet or by injection within 1-4 days. An increase in plasma chylomicron and lipid concentrations was observed before the occurrence of rapid disappearance of accumulated lipids from the intestine. Dietary myo-inositol also caused an increase in triacylglycerol release from everted gut sacs. Thus, myo-inositol might act on the intestine to stimulate the production and secretion of chylomicrons, travelling via the lymphatic pathway into the bloodstream. The activity of pH 9.0 microsomal lipase (EC 3.1.1.3) of gerbil intestine was decreased due to myo-inositol deficiency. The lowered activity could be restored to high levels by feeding of injecting myo-inositol in vivo. A time-course study during intestinal recovery indicates that the increase in microsomal lipase activity correlated with the rapid lipid removal phase of the intestine, but not the initial increase in plasma chylomicron and triacylglycerol concentrations.  相似文献   

10.
11.
12.
The newborn mammal must efficiently absorb dietary fat, predominantly as triacylglycerol, and produce chylomicrons to deliver this lipid to peripheral tissues. The cellular mechanisms involved in enterocyte chylomicron assembly have recently been elucidated, and data on their regulation in the immature gut are beginning to emerge. This review focuses on key proteins involved in chylomicron assembly: apolipoprotein B-48, microsomal triglyceride transfer protein, and apolipoprotein A-IV. Recent studies support a role for apolipoprotein A-IV in enhancing chylomicron secretion by promoting production of larger particles. These proteins are regulated in a manner to maximize the lipid absorptive capacity of the newborn intestine.  相似文献   

13.
Acyl CoA:diacylglycerol acyltransferase (DGAT) 1 catalyzes the final step of triglyceride (TG) synthesis. We show that acute administration of a DGAT1 inhibitor (DGAT1i) by oral gavage or genetic deletion of intestinal Dgat1 (intestine-Dgat1−/−) markedly reduced postprandial plasma TG and retinyl ester excursions by inhibiting chylomicron secretion in mice. Loss of DGAT1 activity did not affect the efficiency of retinol esterification, but it did reduce TG and retinoid accumulation in the small intestine. In contrast, inhibition of microsomal triglyceride transfer protein (MTP) reduced chylomicron secretion after oral fat/retinol loads, but with accumulation of dietary TG and retinoids in the small intestine. Lack of intestinal accumulation of TG and retinoids in DGAT1i-treated or intestine-Dgat1−/− mice resulted, in part, from delayed gastric emptying associated with increased plasma levels of glucagon-like peptide (GLP)-1. However, neither bypassing the stomach through duodenal oil injection nor inhibiting the receptor for GLP-1 normalized postprandial TG or retinyl esters excursions in the absence of DGAT1 activity. In summary, intestinal DGAT1 inhibition or deficiency acutely delayed gastric emptying and inhibited chylomicron secretion; however, the latter occurred when gastric emptying was normal or when lipid was administered directly into the small intestine. Long-term hepatic retinoid metabolism was not impacted by DGAT1 inhibition.  相似文献   

14.
The intestine plays a prominent role in the biosynthesis of triacylglycerol (triglyceride; TAG). Digested dietary TAG is repackaged in the intestine to form the hydrophobic core of chylomicrons, which deliver metabolic fuels, essential fatty acids, and other lipid-soluble nutrients to the peripheral tissues. By controlling the flux of dietary fat into the circulation, intestinal TAG synthesis can greatly impact systemic metabolism. Genes encoding many of the enzymes involved in TAG synthesis have been identified. Among TAG synthesis enzymes, acyl-CoA:monoacylglycerol acyltransferase 2 and acyl-CoA:diacylglycerol acyltransferase (DGAT)1 are highly expressed in the intestine. Their physiological functions have been examined in the context of whole organisms using genetically engineered mice and, in the case of DGAT1, specific inhibitors. An emerging theme from recent findings is that limiting the rate of TAG synthesis in the intestine can modulate gut hormone secretion, lipid metabolism, and systemic energy balance. The underlying mechanisms and their implications for humans are yet to be explored. Pharmacological inhibition of TAG hydrolysis in the intestinal lumen has been employed to combat obesity and associated disorders with modest efficacy and unwanted side effects. The therapeutic potential of inhibiting specific enzymes involved in intestinal TAG synthesis warrants further investigation.  相似文献   

15.
The small intestinal epithelium has classically been envisioned as a conduit for nutrient absorption, but appreciation is growing for a larger and more dynamic role for enterocytes in lipid metabolism. Considerable gaps remain in our knowledge of this physiology, but it appears that the enterocyte’s structural polarization dictates its behavior in fat partitioning, treating fat differently based on its absorption across the apical versus the basolateral membrane. In this review, we synthesize existing data and thought on this dual-track model of enterocyte fat metabolism through the lens of human integrative physiology. The apical track includes the canonical pathway of dietary lipid absorption across the apical brush-border membrane, leading to packaging and secretion of those lipids as chylomicrons. However, this track also reserves a portion of dietary lipid within cytoplasmic lipid droplets for later uses, including the “second-meal effect,” which remains poorly understood. At the same time, the enterocyte takes up circulating fats across the basolateral membrane by mechanisms that may include receptor-mediated import of triglyceride-rich lipoproteins or their remnants, local hydrolysis and internalization of free fatty acids, or enterocyte de novo lipogenesis using basolaterally absorbed substrates. The ultimate destinations of basolateral-track fat may include fatty acid oxidation, structural lipid synthesis, storage in cytoplasmic lipid droplets, or ultimate resecretion, although the regulation and purposes of this basolateral track remain mysterious. We propose that the enterocyte integrates lipid flux along both of these tracks in order to calibrate its overall program of lipid metabolism.  相似文献   

16.
Our understanding of the metabolism of chylomicrons, the lipoprotein that transports dietary fat from the intestine to peripheral tissues, is incomplete. The present studies were conducted to determine whether a labeled intravenous lipid emulsion could be used to estimate chylomicron triglyceride (TG) rate of appearance (R(a)) and thereby quantify the rate of intestinal fat absorption. After an overnight fast, healthy volunteers (n = 6) sipped a (3)H-labeled drink over 6.5 h at a rate of 175 mg fat. kg(-1). h(-1). Beginning at hour 5, an HPLC-purified, (14)C-labeled lipid emulsion was infused intravenously for 90 min. During the study, plasma total and chylomicron TG concentrations increased from 100 +/- 21 to 237 +/- 40 mg/dl and from undetectable to steady-state levels of 35 +/- 13 mg/dl, respectively. After a minor correction for VLDL contamination, tracer-determined chylomicron TG R(a) was 175 +/- 30 mg. kg(-1). h(-1), equal to the presumed ingestion rate. In summary, a radiolabeled intravenous lipid emulsion is able to accurately estimate chylomicron TG R(a) and therefore can be used to measure in vivo fat absorption rates.  相似文献   

17.
Acyl CoA:monoacylglycerol acyltransferase (MGAT) catalyzes the synthesis of diacylglycerol, a precursor of triacylglycerol. In the intestine, MGAT plays a major role in the absorption of dietary fat by catalyzing the resynthesis of triacylglycerol in enterocytes. This resynthesis is required for the assembly of lipoproteins that transport absorbed fat to other tissues. Despite intense efforts, a gene encoding an intestinal MGAT has not been found. Previously, we identified a gene encoding MGAT1, which in mice is expressed in the stomach, kidney, adipose tissue, and liver but not in the intestine. We now report the identification of homologous genes in humans and mice encoding MGAT2. Expression of the MGAT2 cDNA in either insect or mammalian cells markedly increased MGAT activity in cell membranes. MGAT activity was proportional to the level of MGAT2 protein expressed, and the amount of diacylglycerol produced depended on the concentration of MGAT substrates (fatty acyl CoA or monoacylglycerol). In humans, the MGAT2 gene is highly expressed in the small intestine, liver, stomach, kidney, colon, and white adipose tissue; in mice, it is expressed predominantly in the small intestine. The discovery of the MGAT2 gene will facilitate studies to determine the functional role of MGAT2 in fat absorption in the intestine and to determine whether blocking MGAT activity in enterocytes is a feasible approach to inhibit fat absorption and treat obesity.  相似文献   

18.
Dietary fats are efficiently absorbed in the small intestine and transported into the blood via the lymph as chylomicrons, despite enormous variations in the amount and composition of the dietary lipid. The aim of the present study was to investigate how enterocytes respond to increased dietary fats of different composition. Rabbits were fed a low fat chow diet, and chow supplemented with sunflower oil (high n-6 polyunsaturated fatty acids), fish oil (high n-3 polyunsaturated fatty acids), or an oil mixture of a composition similar to that of the typical western diet. Feeding fat for 2 weeks markedly stimulated the ability of the isolated enterocytes to synthesize and secrete apolipoprotein B48, triacylglycerol, and cholesteryl ester (up to 18-, 50-, and 80-fold, respectively) in particles of chylomicron density. The magnitude of stimulation was sunflower oil > western diet lipid > fish oil. Single doses of lipid given 18 h prior to isolation of enterocytes stimulated chylomicron secretion by only 10% of that observed after 2 weeks of dietary supplementation. Enterocytes are replaced rapidly (half-life 1-2 days) by cells which move from the crypts to the tips of the villi, where absorption of nutrients takes place.Our observations suggest that dietary lipids modulate the function of enterocytes as they move from the crypts, so that the cells are 'turned-on' to lipid absorption. The results also show that diets of different fatty acid composition vary in their effects.  相似文献   

19.
This review discusses the regulation of the intestinal and hypothalamic apolipoprotein A-IV (apo A-IV) gene and protein expression. Apo A-IV is a glycoprotein secreted together with triglyceride-rich lipoproteins by the small intestine. Intestinal apo A-IV synthesis is stimulated by fat absorption, probably mediated by chylomicron formation. This stimulation of intestinal apo A-IV synthesis is attenuated by intravenous leptin infusion. Chronic ingestion of a high-fat diet blunts the intestinal apo A-IV in response to dietary lipid. Intestinal apo A-IV synthesis is also stimulated by members of the pancreatic polypeptide family, including peptide YY (PYY), neuropeptide Y (NPY), and pancreatic polypeptide (PP). Recently, apo A-IV was demonstrated to be present in the hypothalamus as well. Hypothalamic apo A-IV level was reduced by food deprivation and restored by lipid feeding. Intracerebroventricular administration of apo A-IV antiserum stimulated feeding and decreased the hypothalamic apo A-IV mRNA level, implying that feeding is intimately regulated by endogenous hypothalamic apo A-IV. Central administration of NPY significantly increased hypothalamic apo A-IV mRNA levels in a dose-dependent manner.  相似文献   

20.
Enterocytes, the absorptive cells of the small intestine, mediate the process of dietary fat absorption by secreting triacylglycerol (TAG) into circulation. When levels of dietary fat are high, TAG is stored in cytoplasmic lipid droplets (CLDs) and sequentially hydrolyzed for ultimate secretion. Mice with deficiency in acyl CoA: diacylglycerol acyltransferase 1 (Dgat1−/− mice) were previously reported to have a reduced rate of intestinal TAG secretion and abnormal TAG accumulation in enterocyte CLDs. This unique intestinal phenotype is critical to their resistance to diet-induced obesity; however, the underlying mechanism remains unclear. Emerging evidence shows that lysosomal TAG hydrolysis contributes to autophagy-mediated CLD mobilization termed lipophagy, and when disrupted results in CLD accumulation. In order to study how lipophagy contributes to the unique intestinal phenotype of Dgat1−/− mice, enterocytes from wild-type (WT) and Dgat1−/− mice were examined at 2 and 6 h after oral oil gavage. Through ultrastructural analysis we observed TAG present within autophagic vesicles (AVs) in mouse enterocytes, suggesting the role of lipophagy in intestinal CLD mobilization during dietary fat absorption. Furthermore, we found that Dgat1−/− mice had abnormal TAG accumulation within AVs and less acidic lysosomes compared to WT mice. Together these findings suggest that the delayed dietary fat absorption seen in Dgat1−/− mice is, in part, due to the dysregulated flux of autophagy-mediated CLD mobilization and impairment of lysosomal acidification in enterocytes. The present study highlights the critical role of lysosome in enterocyte CLD mobilization for proper dietary fat absorption.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号