首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We identified a ~30-kb genomic island (named GI8) carrying the binary toxin gene operon binA/binB on both the chromosome and large pBsph plasmid in the mosquitocidal Lysinibacillus sphaericus C3-41 strain. We found that GI8 is related to the occurrence of binA/binB within L. sphaericus and displays excision and integration capability by recognizing the attB region, which consists of a 2-nt target site (AT) flanked by an 11-nt imperfect inverted repeat. pBsph and two pBsph-like plasmids (p2362 and p1593) were found to carry a type IV secretion system (T4SS) and displayed transmissibility within a narrow host range specific to L. sphaericus. GI8 can be co-transferred with pBsph as a composite element by integration into its attB site, then excised from pBsph and re-integrated into the chromosomal attB site in the new host. The potential hosts of GI8, regardless of whether they are toxic or non-toxic to mosquito larvae, share good collinearity at the chromosomal level. Data indicated that the appearance of the mosquitocidal L. sphaericus lineage was driven by horizontal transfer of the T4SS-type conjugative plasmid and GI8 with excision and specific integration capability.  相似文献   

2.

Background:

Multidrug resistance in Salmonella enteritidis isolates is a public health problem worldwide; the present study, therefore, was designed for antimicrobial-resistance determination in this strain.

Methods:

Salmonella strains isolated from poultry samples by biochemical positive and negative tests were subjected to PCR and identified as Salmonella enteritidis. For detection and identification of Salmonella enteritidis isolates, sdfI gene-specific primers were used.

Results:

We found that 100% of isolates were resistant to ampicillin, 90% were resistant to cephalothin and streptomycin, 70% were resistant to cefotaxime, and 60% were resistant to kanamycin and gentamicin.

Conclusion:

Salmonella enteritidis isolates had antimicrobial resistance to mentioned antibiotics. Key Words: Antibiotic Resistance, PCR, Poultry, Salmonella enteritidis  相似文献   

3.

Background

Visceral Leishmaniasis (VL) caused by species from the Leishmania donovani complex is the most severe form of the disease, lethal if untreated. VL caused by Leishmania infantum is a zoonosis with an increasing number of human cases and millions of dogs infected in the Old and the New World. In this study, L. infantum (syn. L.chagasi) strains were isolated from human and canine VL cases. The strains were obtained from endemic areas from Brazil and Portugal and their genetic polymorphism was ascertained using the LSSP-PCR (Low-Stringency Single Specific Primer PCR) technique for analyzing the kinetoplastid DNA (kDNA) minicircles hypervariable region.

Principal Findings

KDNA genetic signatures obtained by minicircle LSSP-PCR analysis of forty L. infantum strains allowed the grouping of strains in several clades. Furthermore, LSSP-PCR profiles of L. infantum subpopulations were closely related to the host origin (human or canine). To our knowledge this is the first study which used this technique to compare genetic polymorphisms among strains of L. infantum originated from both the Old and the New World.

Conclusions

LSSP-PCR profiles obtained by analysis of L. infantum kDNA hypervariable region of parasites isolated from human cases and infected dogs from Brazil and Portugal exhibited a genetic correlation among isolates originated from the same reservoir, human or canine. However, no association has been detected among the kDNA signatures and the geographical origin of L. infantum strains.  相似文献   

4.

Background

Acinetobacter baumannii is an increasingly multidrug-resistant (MDR) cause of hospital-acquired infections, often associated with limited therapeutic options. We investigated A. baumannii isolates at a New York hospital to characterize genetic relatedness.

Methods

Thirty A. baumannii isolates from geographically-dispersed nursing units within the hospital were studied. Isolate relatedness was assessed by repetitive sequence polymerase chain reaction (rep-PCR). The presence and characteristics of integrons were assessed by PCR. Metabolomic profiles of a subset of a prevalent strain isolates and sporadic isolates were characterized and compared.

Results

We detected a hospital-wide group of closely related carbapenem resistant MDR A. baumannii isolates. Compared with sporadic isolates, the prevalent strain isolates were more likely to be MDR (p = 0.001). Isolates from the prevalent strain carried a novel Class I integron sequence. Metabolomic profiles of selected prevalent strain isolates and sporadic isolates were similar.

Conclusion

The A. baumannii population at our hospital represents a prevalent strain of related MDR isolates that contain a novel integron cassette. Prevalent strain and sporadic isolates did not segregate by metabolomic profiles. Further study of environmental, host, and bacterial factors associated with the persistence of prevalent endemic A. baumannii strains is needed to develop effective prevention strategies.  相似文献   

5.

Background

Despite the decades-long use of Bacillus atrophaeus var. globigii (BG) as a simulant for biological warfare (BW) agents, knowledge of its genome composition is limited. Furthermore, the ability to differentiate signatures of deliberate adaptation and selection from natural variation is lacking for most bacterial agents. We characterized a lineage of BGwith a long history of use as a simulant for BW operations, focusing on classical bacteriological markers, metabolic profiling and whole-genome shotgun sequencing (WGS).

Results

Archival strains and two “present day” type strains were compared to simulant strains on different laboratory media. Several of the samples produced multiple colony morphotypes that differed from that of an archival isolate. To trace the microevolutionary history of these isolates, we obtained WGS data for several archival and present-day strains and morphotypes. Bacillus-wide phylogenetic analysis identified B. subtilis as the nearest neighbor to B. atrophaeus. The genome of B. atrophaeus is, on average, 86% identical to B. subtilis on the nucleotide level. WGS of variants revealed that several strains were mixed but highly related populations and uncovered a progressive accumulation of mutations among the “military” isolates. Metabolic profiling and microscopic examination of bacterial cultures revealed enhanced growth of “military” isolates on lactate-containing media, and showed that the “military” strains exhibited a hypersporulating phenotype.

Conclusions

Our analysis revealed the genomic and phenotypic signatures of strain adaptation and deliberate selection for traits that were desirable in a simulant organism. Together, these results demonstrate the power of whole-genome and modern systems-level approaches to characterize microbial lineages to develop and validate forensic markers for strain discrimination and reveal signatures of deliberate adaptation.  相似文献   

6.

Background

Salmonella are important human and animal pathogens. Though highly related, the Salmonella lineages may be strictly adapted to different hosts or cause different diseases, from mild local illness like gastroenteritis to fatal systemic infections like typhoid. Therefore, rapid and accurate identification of Salmonella is essential for timely and correct diagnosis of Salmonella infections. The current identification methods such as 16S rRNA sequencing and multilocus sequence typing are expensive and time consuming. Additionally, these methods often do not have sufficient distinguishing resolution among the Salmonella lineages.

Methodologies/Principal Findings

We compared 27 completely sequenced Salmonella genomes to identify possible genomic features that could be used for differentiation of individual lineages. We concatenated 2372 core genes in each of the 27 genomes and constructed a neighbor-joining tree. On the tree, strains of each serotype were clustered tightly together and different serotypes were unambiguously separated with clear genetic distances, demonstrating systematic genomic divergence among the Salmonella lineages. We made detailed comparisons among the 27 genomes and identified distinct sets of genomic differences, including nucleotide variations and genomic islands (GIs), among the Salmonella lineages. Two core genes STM4261 and entF together could unambiguously distinguish all Salmonella lineages compared in this study. Additionally, strains of a lineage have a common set of GIs and closely related lineages have similar sets of GIs.

Conclusions

Salmonella lineages have accumulated distinct sets of mutations and laterally acquired DNA (e.g., GIs) in evolution. Two genes entF and STM4261 have diverged sufficiently among the Salmonella lineages to be used for their differentiation. Further investigation of the distinct sets of mutations and GIs will lead to novel insights into genomic evolution of Salmonella and greatly facilitate the elucidation of pathogeneses of Salmonella infections.  相似文献   

7.

Background

Stenotrophomonas maltophilia is emerging as one of the most frequently found bacteria in chronic pulmonary infection. Biofilm is increasingly recognized as a contributing factor to disease pathogenesis. In the present study, a total of 37 isolates of S. maltophilia obtained from chronic pulmonary infection patients were evaluated to the relationship between biofilm production and the relative genes expression.

Methods

The clonal relatedness of isolates was determined by pulse-field gel electrophoresis. Biofilm formation assays were performed by crystal violet assay, and confirmed by Electron microscopy analysis and CLSM analysis. PCR was employed to learn gene distribution and expression.

Results

Twenty-four pulsotypes were designated for 37 S. maltophilia isolates, and these 24 pulsotypes exhibited various levels of biofilm production, 8 strong biofilm-producing S. maltophilia strains with OD492 value above 0.6, 14 middle biofilm-producing strains with OD492 average value of 0.4 and 2 weak biofilm-producing strains with OD492 average value of 0.19. CLSM analysis showed that the isolates from the early stage of chronic infection enable to form more highly structured and multilayered biofim than those in the late stage. The prevalence of spgM, rmlA, and rpfF genes was 83.3%, 87.5%, and 50.0% in 24 S. maltophilia strains, respectively, and the presence of rmlA, spgM or rpfF had a close relationship with biofilm formation but did not significantly affect the mean amount of biofilm. Significant mutations of spgM and rmlA were found in both strong and weak biofilm-producing strains.

Conclusion

Mutations in spgM and rmlA may be relevant to biofilm formation in the clinical isolates of S. maltophilia.  相似文献   

8.
Lysinibacillus sphaericus is a spore-forming bacterium used in the biological control of mosquitoes and in bioremediation. Mosquito larvae exposed to heavy metals are tolerant to concentrations above the permissible limit for industrial residual waters. In this work, we characterize 51 L. sphaericus strains for metal tolerance and larvicidal activity against Culex quinquefasciatus. Lysinibacillus sphaericus OT4b.2, OT4b.20, OT4b.25, OT4b.26 and OT4b.58 were as toxic as the spores of the reference strain 2362 against C. quinquefasciatus larvae. 19 Mosquito-pathogenic L. sphaericus strains and 6 non-pathogenic strains were able to grow in arsenate, hexavalent chromium and/or lead. 16S rRNA gene sequences and phylogenetic analyses clustered 84 % of the metal-tolerant strains in L. sphaericus group 1, which encompasses the mosquitocidal strains. The larvicidal activity of vegetative and sporulated cells and its high tolerance to arsenate, hexavalent chromium and lead indicate that L. sphaericus OT4b.26 is a strong candidate for further studies examining its potential for biological control of mosquitoes in waters contaminated with metals.  相似文献   

9.

Background

Waterborne Campylobacter jejuni outbreaks are common in the Nordic countries, and PFGE (pulsed field gel electrophoresis) remains the genotyping method of choice in outbreak investigations. However, PFGE cannot assess the clonal relationship between isolates, leading to difficulties in molecular epidemiological investigations. Here, we explored the applicability of whole genome sequencing to outbreak investigation by re-analysing three C. jejuni strains (one isolated from water and two from patients) from an earlier resolved Finnish waterborne outbreak from the year 2000.

Results

One of the patient strains had the same PFGE profile, as well as an identical overall gene synteny and three polymorphisms in comparison with the water strain. However, the other patient isolate, which showed only minor differences in the PFGE pattern relative to the water strain, harboured several polymorphisms as well as rearrangements in the integrated element CJIE2. We reconstructed the genealogy of these strains with ClonalFrame including in the analysis four C. jejuni isolated from chicken in 2012 having the same PFGE profile and sequence type as the outbreak strains. The three outbreak strains exhibited a paraphyletic relationship, implying that the drinking water from 2000 was probably contaminated with at least two different, but related, C. jejuni strains.

Conclusions

Our results emphasize the capability of whole genome sequencing to unambiguously resolve the clonal relationship between isolates of C. jejuni in an outbreak situation and evaluate the diversity of the C. jejuni population.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-15-768) contains supplementary material, which is available to authorized users.  相似文献   

10.

Background

Shiga toxin (Stx) are cardinal virulence factors of enterohemorrhagic E. coli O157:H7 (EHEC O157). The gene content and genomic insertion sites of Stx-associated bacteriophages differentiate clinical genotypes of EHEC O157 (CG, typical of clinical isolates) from bovine-biased genotypes (BBG, rarely identified among clinical isolates). This project was designed to identify bacteriophage-mediated differences that may affect the virulence of CG and BBG.

Methods

Stx-associated bacteriophage differences were identified by whole genome optical scans and characterized among >400 EHEC O157 clinical and cattle isolates by PCR.

Results

Optical restriction maps of BBG strains consistently differed from those of CG strains only in the chromosomal insertion sites of Stx2-associated bacteriophages. Multiplex PCRs (stx1, stx2a, and stx2c as well as Stx-associated bacteriophage - chromosomal insertion site junctions) revealed four CG and three BBG that accounted for >90% of isolates. All BBG contained stx2c and Stx2c-associated bacteriophage – sbcB junctions. All CG contained stx2a and Stx2a-associated bacteriophage junctions in wrbA or argW.

Conclusions

Presence or absence of stx2a (or another product encoded by the Stx2a-associated bacteriophage) is a parsimonious explanation for differential virulence of BBG and CG, as reflected in the distributions of these genotypes in humans and in the cattle reservoir.  相似文献   

11.

Background

Saccharomyces cerevisiae has been associated with human life for millennia in the brewery and bakery. Recently it has been recognized as an emerging opportunistic pathogen. To study the evolutionary history of S. cerevisiae, the origin of clinical isolates and the importance of a virulence-associated trait, population genetics and phenotypic assays have been applied to an ecologically diverse set of 103 strains isolated from clinics, breweries, vineyards, fruits, soil, commercial supplements and insect guts.

Methodology/Principal Findings

DNA sequence data from five nuclear DNA loci were analyzed for population structure and haplotype distribution. Additionally, all strains were tested for survival of oxidative stress, a trait associated with microbial pathogenicity. DNA sequence analyses identified three genetic subgroups within the recombining S. cerevisiae strains that are associated with ecology, geography and virulence. Shared alleles suggest that the clinical isolates contain genetic contribution from the fruit isolates. Clinical and fruit isolates exhibit high levels of recombination, unlike the genetically homogenous soil isolates in which no recombination was detected. However, clinical and soil isolates were more resistant to oxidative stress than any other population, suggesting a correlation between survival in oxidative stress and yeast pathogenicity.

Conclusions/Significance

Population genetic analyses of S. cerevisiae delineated three distinct groups, comprising primarily the (i) human-associated brewery and vineyard strains, (ii) clinical and fruit isolates (iii) and wild soil isolates from eastern U.S. The interactions between S. cerevisiae and humans potentiate yeast evolution and the development of genetically, ecologically and geographically divergent groups.  相似文献   

12.

Background

Serotype-specific PCR assays targeting Salmonella enterica serotypes Typhi and Paratyphi A, the causal agents of typhoid and paratyphoid fevers, are required to accelerate formal diagnosis and to overcome the lack of typing sera and, in some situations, the need for culture. However, the sensitivity and specificity of such assays must be demonstrated on large collections of strains representative of the targeted serotypes and all other bacterial populations producing similar clinical symptoms.

Methodology

Using a new family of repeated DNA sequences, CRISPR (clustered regularly interspaced short palindromic repeats), as a serotype-specific target, we developed a conventional multiplex PCR assay for the detection and differentiation of serotypes Typhi and Paratyphi A from cultured isolates. We also developed EvaGreen-based real-time singleplex PCR assays with the same two sets of primers.

Principal findings

We achieved 100% sensitivity and specificity for each protocol after validation of the assays on 188 serotype Typhi and 74 serotype Paratyphi A strains from diverse genetic groups, geographic origins and time periods and on 70 strains of bacteria frequently encountered in bloodstream infections, including 29 other Salmonella serotypes and 42 strains from 38 other bacterial species.

Conclusions

The performance and convenience of our serotype-specific PCR assays should facilitate the rapid and accurate identification of these two major serotypes in a large range of clinical and public health laboratories with access to PCR technology. These assays were developed for use with DNA from cultured isolates, but with modifications to the assay, the CRISPR targets could be used in the development of assays for use with clinical and other samples.  相似文献   

13.

Background

Staphylococcus aureus is commonly carried asymptomatically in the human anterior nares and occasionally enters the bloodstream to cause invasive disease. Much of the global diversity of S. aureus remains uncharacterised, and is not clear how disease propensity varies between strains, and between host populations.

Methodology

We compared 147 isolates recovered from five kindergartens in Chengdu, China, with 51 isolates contemporaneously recovered from cases of pediatric infection from the main hospital serving this community. The samples were characterised by MLST, the presence/absence of PVL, and antibiotic resistance profiling.

Principal Findings

Genotype frequencies within individual kindergartens differ, but the sample recovered from cases of disease shows a general enrichment of certain MLST genotypes and PVL positive isolates. Genotypes under-represented in the disease sample tend to correspond to a single sequence cluster, and this cluster is more common in China than in other parts of the world.

Conclusions/Significance

Virulence propensity likely reflects a synergy between variation in the core genome (MLST) and accessory genome (PVL). By combining evidence form biogeography and virulence we demonstrate the existence of a “native” clade in West China which has lowered virulence, possibility due to acquired host immunity.  相似文献   

14.

Background

The Bacillus genus of Firmicutes bacteria is ubiquitous in nature and includes one of the best characterized model organisms, B. subtilis, as well as medically significant human pathogens, the most notorious being B. anthracis and B. cereus. As the most abundant living entities on the planet, bacteriophages are known to heavily influence the ecology and evolution of their hosts, including providing virulence factors. Thus, the identification and analysis of Bacillus phages is critical to understanding the evolution of Bacillus species, including pathogenic strains.

Results

Whole genome nucleotide and proteome comparison of the 83 extant, fully sequenced Bacillus phages revealed 10 distinct clusters, 24 subclusters and 15 singleton phages. Host analysis of these clusters supports host boundaries at the subcluster level and suggests phages as vectors for genetic transfer within the Bacillus cereus group, with B. anthracis as a distant member. Analysis of the proteins conserved among these phages reveals enormous diversity and the uncharacterized nature of these phages, with a total of 4,442 protein families (phams) of which only 894 (20%) had a predicted function. In addition, 2,583 (58%) of phams were orphams (phams containing a single member). The most populated phams were those encoding proteins involved in DNA metabolism, virion structure and assembly, cell lysis, or host function. These included several genes that may contribute to the pathogenicity of Bacillus strains.

Conclusions

This analysis provides a basis for understanding and characterizing Bacillus and other related phages as well as their contributions to the evolution and pathogenicity of Bacillus cereus group bacteria. The presence of sparsely populated clusters, the high ratio of singletons to clusters, and the large number of uncharacterized, conserved proteins confirms the need for more Bacillus phage isolation in order to understand the full extent of their diversity as well as their impact on host evolution.  相似文献   

15.

Background

The Bacillus genus of Firmicutes bacteria is ubiquitous in nature and includes one of the best characterized model organisms, B. subtilis, as well as medically significant human pathogens, the most notorious being B. anthracis and B. cereus. As the most abundant living entities on the planet, bacteriophages are known to heavily influence the ecology and evolution of their hosts, including providing virulence factors. Thus, the identification and analysis of Bacillus phages is critical to understanding the evolution of Bacillus species, including pathogenic strains.

Results

Whole genome nucleotide and proteome comparison of the 93 extant Bacillus phages revealed 12 distinct clusters, 28 subclusters and 14 singleton phages. Host analysis of these clusters supports host boundaries at the subcluster level and suggests phages as vectors for genetic transfer within the Bacillus cereus group, with B. anthracis as a distant member of the group. Analysis of the proteins conserved among these phages reveals enormous diversity and the uncharacterized nature of these phages, with a total of 4,922 protein families (phams) of which only 951 (19%) had a predicted function. In addition, 3,058 (62%) of phams were orphams (phams containing a gene product from a single phage). The most populated phams were those encoding proteins involved in DNA metabolism, virion structure and assembly, cell lysis, or host function. These included several genes that may contribute to the pathogenicity of Bacillus strains.

Conclusions

This analysis provides a basis for understanding and characterizing Bacillus phages and other related phages as well as their contributions to the evolution and pathogenicity of Bacillus cereus group bacteria. The presence of sparsely populated clusters, the high ratio of singletons to clusters, and the large number of uncharacterized, conserved proteins confirms the need for more Bacillus phage isolation in order to understand the full extent of their diversity as well as their impact on host evolution.  相似文献   

16.

Objective

To investigate the prevalence and mechanisms of fluoroquinolone resistance in Shigella species isolated in Bangladesh and to compare with similar strains isolated in China.

Methods

A total of 3789 Shigella isolates collected from Clinical Microbiology Laboratory of icddr,b, during 2004–2010 were analyzed for antibiotic susceptibility. Analysis of plasmids, plasmid-mediated quinolone-resistance genes, PFGE, and sequencing of genes of the quinolone-resistance-determining regions (QRDR) were conducted in representative strains isolated in Bangladesh and compared with strains isolated in Zhengding, China. In addition, the role of efflux-pump was studied by using the efflux-pump inhibitor carbonyl cyanide-m-chlorophenylhydrazone (CCCP).

Results

Resistance to ciprofloxacin in Shigella species increased from 0% in 2004 to 44% in 2010 and S. flexneri was the predominant species. Of Shigella spp, ciprofloxacin resistant (CipR) strains were mostly found among S. flexneri (8.3%), followed by S. sonnei (1.5%). Within S. flexneri (n = 2181), 14.5% were resistance to ciprofloxacin of which serotype 2a was predominant (96%). MIC of ciprofloxacin, norfloxacin, and ofloxacin were 6–32 mg/L, 8–32 mg/L, and 8–24 mg/L, respectively in S. flexneri 2a isolates. Sequencing of QRDR genes of resistant isolates showed double mutations in gyrA gene (Ser83Leu, Asp87Asn/Gly) and single mutation in parC gene (Ser80Ile). A difference in amino acid substitution at position 87 was found between strains isolated in Bangladesh (Asp87Asn) and China (Asp87Gly) except for one. A novel mutation at position 211 (His→Tyr) in gyrA gene was detected only in the Bangladeshi strains. Susceptibility to ciprofloxacin was increased by the presence of CCCP indicating the involvement of energy dependent active efflux pumps. A single PFGE type was found in isolates from Bangladesh and China suggesting their genetic relatedness.

Conclusions

Emergence of fluoroquinolone resistance in Shigella undermines a major challenge in current treatment strategies which needs to be followed up by using empirical therapeutic strategies.  相似文献   

17.

Background

Rapid new diagnostic methods (including Xpert MTB/RIF assay) use rifampicin resistance as a surrogate marker for multidrug resistant tuberculosis. Patients infected with rifampicin susceptible strains are prescribed first line anti-tuberculosis therapy. The roll out of such methods raises a concern that strains with resistance to other first line anti-tuberculosis drugs including isoniazid will be missed and inappropriate treatment given. To evaluate implications of using such methods review of resistance data from high burden settings such as ours is essential.

Objective

To determine resistance to first line anti-tuberculosis drugs amongst rifampicin susceptible pulmonary Mycobacterium tuberculosis (MTB) isolates from Pakistan.

Materials and Methods

Data of pulmonary Mycobacterium tuberculosis strains isolated in Aga Khan University Hospital (AKUH) laboratory (2009–2011) was retrospectively analyzed. Antimicrobial susceptibility profile of rifampicin susceptible isolates was evaluated for resistance to isoniazid, pyrazinamide, ethambutol, and streptomycin.

Results

Pulmonary specimens submitted to AKUH from 2009 to 2011 yielded 7738 strains of Mycobacterium tuberculosis. These included 54% (n 4183) rifampicin susceptible and 46% (n: 3555) rifampicin resistant strains. Analysis of rifampicin susceptible strains showed resistance to at least one of the first line drugs in 27% (n:1133) of isolates. Overall isoniazid resistance was 15.5% (n: 649), with an isoniazid mono-resistance rate of 4% (n: 174). Combined resistance to isoniazid, pyrazinamide, and ethambutol was noted in 1% (n: 40), while resistance to isoniazid, pyrazinamide, ethambutol, and streptomycin was observed in 1.7% (n: 70) of strains.

Conclusions

Our data suggests that techniques (including Xpert MTB/RIF assay) relying on rifampicin susceptibility as an indicator for initiating first line therapy will not detect patients infected with MTB strains resistant to other first line drugs (including isoniazid). The roll out of these techniques must therefore be accompanied by strict monitoring ensuring early resistance detection to increase chances of improved patient outcomes.  相似文献   

18.

Background

Invasive Non-typhoidal Salmonella (iNTS) are an important cause of bacteraemia in children and HIV-infected adults in sub-Saharan Africa. Previous research has shown that iNTS strains exhibit a pattern of gene loss that resembles that of host adapted serovars such as Salmonella Typhi and Paratyphi A. Salmonella enterica serovar Bovismorbificans was a common serovar in Malawi between 1997 and 2004.

Methodology

We sequenced the genomes of 14 Malawian bacteraemia and four veterinary isolates from the UK, to identify genomic variations and signs of host adaptation in the Malawian strains.

Principal Findings

Whole genome phylogeny of invasive and veterinary S. Bovismorbificans isolates showed that the isolates are highly related, belonging to the most common international S. Bovismorbificans Sequence Type, ST142, in contrast to the findings for S. Typhimurium, where a distinct Sequence Type, ST313, is associated with invasive disease in sub-Saharan Africa. Although genome degradation through pseudogene formation was observed in ST142 isolates, there were no clear overlaps with the patterns of gene loss seen in iNTS ST313 isolates previously described from Malawi, and no clear distinction between S. Bovismorbificans isolates from Malawi and the UK.The only defining differences between S. Bovismorbificans bacteraemia and veterinary isolates were prophage-related regions and the carriage of a S. Bovismorbificans virulence plasmid (pVIRBov).

Conclusions

iNTS S. Bovismorbificans isolates, unlike iNTS S. Typhiumrium isolates, are only distinguished from those circulating elsewhere by differences in the mobile genome. It is likely that these strains have entered a susceptible population and are able to take advantage of this niche. There are tentative signs of convergent evolution to a more human adapted iNTS variant. Considering its importance in causing disease in this region, S. Bovismorbificans may be at the beginning of this process, providing a reference against which to compare changes that may become fixed in future lineages in sub-Saharan Africa.  相似文献   

19.

Background

The enoyl-acyl carrier protein (ACP) reductase enzyme (FabI) is the target for a series of antimicrobial agents including novel compounds in clinical trial and the biocide triclosan. Mutations in fabI and heterodiploidy for fabI have been shown to confer resistance in S. aureus strains in a previous study. Here we further determined the fabI upstream sequence of a selection of these strains and the gene expression levels in strains with promoter region mutations.

Results

Mutations in the fabI promoter were found in 18% of triclosan resistant clinical isolates, regardless the previously identified molecular mechanism conferring resistance. Although not significant, a higher rate of promoter mutations were found in strains without previously described mechanisms of resistance. Some of the mutations identified in the clinical isolates were also detected in a series of laboratory mutants. Microarray analysis of selected laboratory mutants with fabI promoter region mutations, grown in the absence of triclosan, revealed increased fabI expression in three out of four tested strains. In two of these strains, only few genes other than fabI were upregulated. Consistently with these data, whole genome sequencing of in vitro selected mutants identified only few mutations except the upstream and coding regions of fabI, with the promoter mutation as the most probable cause of fabI overexpression. Importantly the gene expression profiling of clinical isolates containing similar mutations in the fabI promoter also showed, when compared to unrelated non-mutated isolates, a significant up-regulation of fabI.

Conclusions

In conclusion, we have demonstrated the presence of C34T, T109G, and A101C mutations in the fabI promoter region of strains with fabI up-regulation, both in clinical isolates and/or laboratory mutants. These data provide further observations linking mutations upstream fabI with up-regulated expression of the fabI gene.

Electronic supplementary material

The online version of this article (doi:10.1186/s12864-015-1544-y) contains supplementary material, which is available to authorized users.  相似文献   

20.

Background

Matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) allows rapid and reliable identification of microorganisms, particularly clinically important pathogens.

Methodology/Principal Findings

We compared the identification efficiency of MALDI-TOF MS with that of Phoenix®, API® and 16S ribosomal DNA sequence analysis on 1,019 strains obtained from routine diagnostics. Further, we determined the agreement of MALDI-TOF MS identifications as compared to 16S gene sequencing for additional 545 strains belonging to species of Enterococcus, Gardnerella, Staphylococcus, and Streptococcus. For 94.7% of the isolates MALDI-TOF MS results were identical with those obtained with conventional systems. 16S sequencing confirmed MALDI-TOF MS identification in 63% of the discordant results. Agreement of identification of Gardnerella, Enterococcus, Streptococcus and Staphylococcus species between MALDI-TOF MS and traditional method was high (Crohn''s kappa values: 0.9 to 0.93).

Conclusions/Significance

MALDI-TOF MS represents a rapid, reliable and cost-effective identification technique for clinically relevant bacteria.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号