首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
NMDA receptors (NMDARs) are the major mediator of the postsynaptic response during synaptic neurotransmission. The diversity of roles for NMDARs in influencing synaptic plasticity and neuronal survival is often linked to selective activation of multiple NMDAR subtypes (NR1/NR2A-NMDARs, NR1/NR2B-NMDARs, and triheteromeric NR1/NR2A/NR2B-NMDARs). However, the lack of available pharmacological tools to block specific NMDAR populations leads to debates on the potential role for each NMDAR subtype in physiological signaling, including different models of synaptic plasticity. Here, we developed a computational model of glutamatergic signaling at a prototypical dendritic spine to examine the patterns of NMDAR subtype activation at temporal and spatial resolutions that are difficult to obtain experimentally. We demonstrate that NMDAR subtypes have different dynamic ranges of activation, with NR1/NR2A-NMDAR activation sensitive at univesicular glutamate release conditions, and NR2B containing NMDARs contributing at conditions of multivesicular release. We further show that NR1/NR2A-NMDAR signaling dominates in conditions simulating long-term depression (LTD), while the contribution of NR2B containing NMDAR significantly increases for stimulation frequencies that approximate long-term potentiation (LTP). Finally, we show that NR1/NR2A-NMDAR content significantly enhances response magnitude and fidelity at single synapses during chemical LTP and spike timed dependent plasticity induction, pointing out an important developmental switch in synaptic maturation. Together, our model suggests that NMDAR subtypes are differentially activated during different types of physiological glutamatergic signaling, enhancing the ability for individual spines to produce unique responses to these different inputs.  相似文献   

2.
Muscarinic receptor activation facilitates the induction of synaptic plasticity and enhances cognitive function. However, the specific muscarinic receptor subtype involved and the critical intracellular signaling pathways engaged have remained controversial. Here, we show that the recently discovered highly selective allosteric M(1) receptor agonist 77-LH-28-1 facilitates long-term potentiation (LTP) induced by theta burst stimulation at Schaffer collateral synapses in the hippocampus. Similarly, release of acetylcholine by stimulation of cholinergic fibers facilitates LTP via activation of M(1) receptors. N-methyl-D-aspartate receptor (NMDAR) opening during theta burst stimulation was enhanced by M(1) receptor activation, indicating this is the mechanism for LTP facilitation. M(1) receptors were found to enhance NMDAR activation by inhibiting SK channels that otherwise act to hyperpolarize postsynaptic spines and inhibit NMDAR opening. Thus, we describe a mechanism where M(1) receptor activation inhibits SK channels, allowing enhanced NMDAR activity and leading to a facilitation of LTP induction in the hippocampus.  相似文献   

3.

Background

In brain, N-methyl-D-aspartate (NMDA) receptor (NMDAR) activation can induce long-lasting changes in synaptic α-amino-3-hydroxy-5-methylisoxazole-4-propionate (AMPA) receptor (AMPAR) levels. These changes are believed to underlie the expression of several forms of synaptic plasticity, including long-term potentiation (LTP). Such plasticity is generally believed to reflect the regulated trafficking of AMPARs within dendritic spines. However, recent work suggests that the movement of molecules and organelles between the spine and the adjacent dendritic shaft can critically influence synaptic plasticity. To determine whether such movement is strictly required for plasticity, we have developed a novel system to examine AMPAR trafficking in brain synaptosomes, consisting of isolated and apposed pre- and postsynaptic elements.

Methodology/Principal Findings

We report here that synaptosomes can undergo LTP-like plasticity in response to stimuli that mimic synaptic NMDAR activation. Indeed, KCl-evoked release of endogenous glutamate from presynaptic terminals, in the presence of the NMDAR co-agonist glycine, leads to a long-lasting increase in surface AMPAR levels, as measured by [3H]-AMPA binding; the increase is prevented by an NMDAR antagonist 2-amino-5-phosphonopentanoic acid (AP5). Importantly, we observe an increase in the levels of GluR1 and GluR2 AMPAR subunits in the postsynaptic density (PSD) fraction, without changes in total AMPAR levels, consistent with the trafficking of AMPARs from internal synaptosomal compartments into synaptic sites. This plasticity is reversible, as the application of AMPA after LTP depotentiates synaptosomes. Moreover, depotentiation requires proteasome-dependent protein degradation.

Conclusions/Significance

Together, the results indicate that the minimal machinery required for LTP is present and functions locally within isolated dendritic spines.  相似文献   

4.
Accumulated evidence indicates that astroglial cells actively participate in neuronal synaptic transmission and plasticity. However, it is still not clear whether astrocytes are able to undergo plasticity in response to synaptic inputs. Here we demonstrate that a long-term potentiation (LTP)-like response could be detected at perforant path-dentate astrocyte synapses following high-frequency stimulation (HFS) in hippocampal slices of GFAP-GFP transgenic mice. The potentiation was not dependent on the glutamate transporters nor the group I metabotropic glutamate receptors. However, the induction of LTP requires activation of the NMDA receptor (NMDAR). The presence of functional NMDAR was supported by isolating the NMDAR-gated current and by identifying mRNAs of NMDAR subunits in astrocytes. Our results suggest that astrocytes in the hippocampal dentate gyrus are able to undergo plasticity in response to presynaptic inputs.  相似文献   

5.
Regulation of neuronal NMDA receptor (NMDAR) is critical in synaptic transmission and plasticity. Protein kinase C (PKC) promotes NMDAR trafficking to the cell surface via interaction with NMDAR-associated proteins (NAPs). Little is known, however, about the NAPs that are critical to PKC-induced NMDAR trafficking. Here, we showed that calcium/calmodulin-dependent protein kinase II (CaMKII) could be a NAP that mediates the potentiation of NMDAR trafficking by PKC. PKC activation promoted the level of autophosphorylated CaMKII and increased association with NMDARs, accompanied by functional NMDAR insertion, at postsynaptic sites. This potentiation, along with PKC-induced long term potentiation of the AMPA receptor-mediated response, was abolished by CaMKII antagonist or by disturbing the interaction between CaMKII and NR2A or NR2B. Further mutual occlusion experiments demonstrated that PKC and CaMKII share a common signaling pathway in the potentiation of NMDAR trafficking and long-term potentiation (LTP) induction. Our results revealed that PKC promotes NMDA receptor trafficking and induces synaptic plasticity through indirectly triggering CaMKII autophosphorylation and subsequent increased association with NMDARs.  相似文献   

6.
Protease‐activated receptor‐1 (PAR1) is an unusual G‐protein coupled receptor (GPCR) that is activated through proteolytic cleavage by extracellular serine proteases. Although previous work has shown that inhibiting PAR1 activation is neuroprotective in models of ischemia, traumatic injury, and neurotoxicity, surprisingly little is known about PAR1's contribution to normal brain function. Here, we used PAR1?/? mice to investigate the contribution of PAR1 function to memory formation and synaptic function. We demonstrate that PAR1?/? mice have deficits in hippocampus‐dependent memory. We also show that while PAR1?/? mice have normal baseline synaptic transmission at Schaffer collateral‐CA1 synapses, they exhibit severe deficits in N‐methyl‐d ‐aspartate receptor (NMDAR)‐dependent long‐term potentiation (LTP). Mounting evidence indicates that activation of PAR1 leads to potentiation of NMDAR‐mediated responses in CA1 pyramidal cells. Taken together, this evidence and our data suggest an important role for PAR1 function in NMDAR‐dependent processes subserving memory formation and synaptic plasticity.  相似文献   

7.
N-methyl-d-aspartate receptor (NMDAR)-dependent long-term potentiation (LTP) is extensively studied since it is believed to use the same molecular mechanisms that are required for many forms of learning and memory. Unfortunately, many controversies exist, not least the seemingly simple issue concerning the locus of expression of LTP. Here, we review our recent work and some of the extensive literature on this topic and present new data that collectively suggest that LTP can be explained, during its first few hours, by the coexistence of at least three mechanistically distinct processes that are all triggered by the synaptic activation of NMDARs.  相似文献   

8.
Postsynaptic complexin controls AMPA receptor exocytosis during LTP   总被引:1,自引:0,他引:1  
Long-term potentiation (LTP) is a compelling synaptic correlate of learning and memory. LTP induction requires NMDA receptor (NMDAR) activation, which triggers SNARE-dependent exocytosis of AMPA receptors (AMPARs). However, the molecular mechanisms mediating AMPAR exocytosis induced by NMDAR activation remain largely unknown. Here, we show that complexin, a protein that regulates neurotransmitter release via binding to SNARE complexes, is essential for AMPAR exocytosis during LTP but not for the constitutive AMPAR exocytosis that maintains basal synaptic strength. The regulated postsynaptic AMPAR exocytosis during LTP requires binding of complexin to SNARE complexes. In hippocampal neurons, presynaptic complexin acts together with synaptotagmin-1 to mediate neurotransmitter release. However, postsynaptic synaptotagmin-1 is not required for complexin-dependent AMPAR exocytosis during LTP. These results suggest?a complexin-dependent molecular mechanism for regulating AMPAR delivery to synapses, a mechanism that is surprisingly similar to presynaptic exocytosis but controlled by regulators other than synaptotagmin-1.  相似文献   

9.
NMDA‐type glutamate receptors (NMDAR) are central actors in the plasticity of excitatory synapses. During adaptive processes, the number and composition of synaptic NMDAR can be rapidly modified, as in neonatal hippocampal synapses where a switch from predominant GluN2B‐ to GluN2A‐containing receptors is observed after the induction of long‐term potentiation (LTP). However, the cellular pathways by which surface NMDAR subtypes are dynamically regulated during activity‐dependent synaptic adaptations remain poorly understood. Using a combination of high‐resolution single nanoparticle imaging and electrophysiology, we show here that GluN2B‐NMDAR are dynamically redistributed away from glutamate synapses through increased lateral diffusion during LTP in immature neurons. Strikingly, preventing this activity‐dependent GluN2B‐NMDAR surface redistribution through cross‐linking, either with commercial or with autoimmune anti‐NMDA antibodies from patient with neuropsychiatric symptoms, affects the dynamics and spine accumulation of CaMKII and impairs LTP. Interestingly, the same impairments are observed when expressing a mutant of GluN2B‐NMDAR unable to bind CaMKII. We thus uncover a non‐canonical mechanism by which GluN2B‐NMDAR surface dynamics plays a critical role in the plasticity of maturing synapses through a direct interplay with CaMKII.  相似文献   

10.
The ramifications of statins on plasma cholesterol and coronary heart disease have been well documented. However, there is increasing evidence that inhibition of the mevalonate pathway may provide independent neuroprotective and procognitive pleiotropic effects, most likely via inhibition of isoprenoids, mainly farnesyl pyrophosphate (FPP) and geranylgeranyl pyrophosphate (GGPP). FPP and GGPP are the major donors of prenyl groups for protein prenylation. Modulation of isoprenoid availability impacts a slew of cellular processes including synaptic plasticity in the hippocampus. Our previous work has demonstrated that simvastatin (SV) administration improves hippocampus-dependent spatial memory, rescuing memory deficits in a mouse model of Alzheimer’s disease. Treatment of hippocampal slices with SV enhances long-term potentiation (LTP), and this effect is dependent on the activation of Akt (protein kinase B). Further studies showed that SV-induced enhancement of hippocampal LTP is driven by depletion of FPP and inhibition of farnesylation. In the present study, we report the functional consequences of exposure to SV at cellular/synaptic and molecular levels. While application of SV has no effect on intrinsic membrane properties of CA1 pyramidal neurons, including hyperpolarization-activated cyclic-nucleotide channel-mediated sag potentials, the afterhyperpolarization (AHP), and excitability, SV application potentiates the N-methyl D-aspartate receptor (NMDAR)-mediated contribution to synaptic transmission. In mouse hippocampal slices and human neuronal cells, SV treatment increases the surface distribution of the GluN2B subunit of the NMDAR without affecting cellular cholesterol content. We conclude that SV-induced enhancement of synaptic plasticity in the hippocampus is likely mediated by augmentation of synaptic NMDAR components that are largely responsible for driving synaptic plasticity in the CA1 region.  相似文献   

11.
Learning‐correlated plasticity at CA1 hippocampal excitatory synapses is dependent on neuronal activity and NMDA receptor (NMDAR) activation. However, the molecular mechanisms that transduce plasticity stimuli to postsynaptic potentiation are poorly understood. Here, we report that neurogranin (Ng), a neuron‐specific and postsynaptic protein, enhances postsynaptic sensitivity and increases synaptic strength in an activity‐ and NMDAR‐dependent manner. In addition, Ng‐mediated potentiation of synaptic transmission mimics and occludes long‐term potentiation (LTP). Expression of Ng mutants that lack the ability to bind to, or dissociate from, calmodulin (CaM) fails to potentiate synaptic transmission, strongly suggesting that regulated Ng–CaM binding is necessary for Ng‐mediated potentiation. Moreover, knocking‐down Ng blocked LTP induction. Thus, Ng–CaM interaction can provide a mechanistic link between induction and expression of postsynaptic potentiation.  相似文献   

12.
Long-term potentiation (LTP) and long-term depression (LTD) are the major forms of functional synaptic plasticity observed at CA1 synapses of the hippocampus. The balance between LTP and LTD or “metaplasticity” is controlled by G-protein coupled receptors (GPCRs) whose signal pathways target the N-methyl-D-asparate (NMDA) subtype of excitatory glutamate receptor. We discuss the protein kinase signal cascades stimulated by Gαq and Gαs coupled GPCRs and describe how control of NMDAR activity shifts the threshold for the induction of LTP.  相似文献   

13.
Long-term potentiation (LTP) and long-term depression (LTD) are the major forms of functional synaptic plasticity observed at CA1 synapses of the hippocampus. The balance between LTP and LTD or "metaplasticity" is controlled by G-protein coupled receptors (GPCRs) whose signal pathways target the N-methyl-D-asparate (NMDA) subtype of excitatory glutamate receptor. We discuss the protein kinase signal cascades stimulated by Galphaq and Galphas coupled GPCRs and describe how control of NMDAR activity shifts the threshold for the induction of LTP.  相似文献   

14.
Lu W  Constantine-Paton M 《Neuron》2004,43(2):237-249
NMDA receptor (NMDAR)-mediated increases in AMPA receptor (AMPAR) currents are associated with long-term synaptic potentiation (LTP). Here, we provide evidence that similar changes occur in response to normal increases in sensory stimulation during development. Experiments discriminated between eye opening-induced and age-dependent changes in synaptic currents. At 6 hr after eye opening (AEO), a transient population of currents mediated by NR2B-rich NMDARs increase significantly, and silent synapses peak. Sustained increases in evoked and miniature AMPAR currents occur at 12 hr AEO. Significant changes in AMPAR:NMDAR evoked current ratios, contacts per axon, and inputs per cell are present at 24 hr AEO. The AMPAR current changes are those seen in vitro during NMDAR-dependent LTP. Here, they are a consequence of eye opening and are associated with a new wave of synaptic refinement. These data also suggest that new NR2B-rich NMDAR currents precede and may initiate this developmental synaptic potentiation and functional tuning.  相似文献   

15.
Rapid progress has been made towards understanding the synaptic physiology of excitatory amino acid transmission in the hippocampus. By comparison, the function of opioid peptides localized to some of the same pathways which use glutamate for fast excitation is poorly understood. Here I consider new evidence specifically implicating opioid peptides in long-term potentiation (LTP) induced by high-frequency stimulation of pathways which combine glutamate and opioid neurotransmission. This form of LTP is unique in that it depends on activation of opioid receptors, and unlike many excitatory systems in brain, it does not require activation of the (NMDA) type of glutamate receptor. Thus one of the main functions of opioids in the hippocampus may be to regulate activity-dependent changes in synaptic strength and neuronal excitability. At another level, “opioid” LTP may provide basic insights into peptidergic transmission and its functional interactions with classical neurotransmitters in the brain.  相似文献   

16.
Long-term potentiation (LTP) of synaptic transmission is considered a cellular mechanism for neural plasticity and memory formation. Previously, we showed that in the carp olfactory bulb, LTP occurs at the dendrodendritic mitral-to-granule cell synapse following tetanic electrical stimulation applied to the olfactory tract, and suggested that it is involved in the process of olfactory memory formation. As a first step towards understanding mechanisms underlying plasticity at this synapse, we examined the effects of various drugs (glutamate and GABA receptor agonists and antagonists, noradrenaline, and drugs affecting cAMP signaling) on dendrodendritic mitral-to-granule cell synaptic transmission in an in vitro preparation. Two forms of LTP are involved: a postsynaptic form (tetanus-evoked LTP) and a presynaptic form. The postsynaptic form is evoked at the granule cell dendrite following tetanic olfactory tract stimulation and is suppressed by the NMDA receptor antagonist, D-AP5, enhanced by noradrenaline, and occluded by the metabotropic glutamate receptor agonist, trans-ACPD. The presynaptic form occurs at the mitral cell dendrite following blockade of the GABAA receptor by picrotoxin and bicuculline, or via activation of cAMP signaling by forskolin and 8-Br-cAMP.  相似文献   

17.
Activity-dependent synaptic plasticity underlies, at least in part, learning and memory processes. NMDA receptor (NMDAR)-dependent long-term potentiation (LTP) is a major synaptic plasticity model. During LTP induction, Ca2+/calmodulin-dependent protein kinase II (CaMKII) is activated, autophosphorylated and persistently translocated to the postsynaptic density, where it binds to the NMDAR. If any of these steps is inhibited, LTP is disrupted. The endogenous CaMKII inhibitor proteins CaMKIINα,β are rapidly upregulated in specific brain regions after learning. We recently showed that transient application of peptides derived from CaMKIINα (CN peptides) persistently depresses synaptic strength and reverses LTP saturation, as it allows further LTP induction in previously saturated pathways. The treatment disrupts basal CaMKII-NMDAR interaction and decreases bound CaMKII fraction in spines. To unravel CaMKIIN function and to further understand CaMKII role in synaptic strength maintenance, here we more deeply investigated the mechanism of synaptic depression induced by CN peptides (CN-depression) in rat hippocampal slices. We showed that CN-depression does not require glutamatergic synaptic activity or Ca2+ signaling, thus discarding unspecific triggering of activity-dependent long-term depression (LTD) in slices. Moreover, occlusion experiments revealed that CN-depression and NMDAR-LTD have different expression mechanisms. We showed that CN-depression does not involve complex metabolic pathways including protein synthesis or proteasome-mediated degradation. Remarkably, CN-depression cannot be resolved in neonate rats, for which CaMKII is mostly cytosolic and virtually absent at the postsynaptic densities. Overall, our results support a direct effect of CN peptides on synaptic CaMKII-NMDAR binding and suggest that CaMKIINα,β could be critical plasticity-related proteins that may operate as cell-wide homeostatic regulators preventing saturation of LTP mechanisms or may selectively erase LTP-induced traces in specific groups of synapses.  相似文献   

18.
This review summarizes the various experiments that have been carried out to determine if the expression of long-term potentiation (LTP), in particular N-methyl-D-aspartate (NMDA) receptor-dependent LTP, is presynaptic or postsynaptic. Evidence for a presynaptic expression mechanism comes primarily from experiments reporting that glutamate overflow is increased during LTP and from experiments showing that the failure rate decreases during LTP. However, other experimental approaches, such as monitoring synaptic glutamate release by recording astrocytic glutamate transporter currents, have failed to detect any change in glutamate release during LTP. In addition, the discovery of silent synapses, in which LTP rapidly switches on alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor function at NMDA-receptor-only synapses, provides a postsynaptic mechanism for the decrease in failures during LTP. It is argued that the preponderance of evidence favours a postsynaptic expression mechanism, whereby NMDA receptor activation results in the rapid recruitment of AMPA receptors as well as a covalent modification of synaptic AMPA receptors.  相似文献   

19.
RAS-GRF1 is a guanine nucleotide exchange factor with the ability to activate RAS and RAC GTPases in response to elevated calcium levels. We previously showed that beginning at 1 month of age, RAS-GRF1 mediates NMDA-type glutamate receptor (NMDAR)-induction of long term depression in the CA1 region of the hippocampus of mice. Here we show that beginning at 2 months of age, when mice first acquire the ability to discriminate between closely related contexts, RAS-GRF1 begins to contribute to the induction of long term potentiation (LTP) in the CA1 hippocampus by mediating the action of calcium-permeable, AMPA-type glutamate receptors (CP-AMPARs). Surprisingly, LTP induction by CP-AMPARs through RAS-GRF1 occurs via activation of p38 MAP kinase rather than ERK MAP kinase, which has more frequently been linked to LTP. Moreover, contextual discrimination is blocked by knockdown of Ras-Grf1 expression specifically in the CA1 hippocampus, infusion of a p38 MAP kinase inhibitor into the CA1 hippocampus, or the injection of an inhibitor of CP-AMPARs. These findings implicate the CA1 hippocampus in the developmentally dependent capacity to distinguish closely related contexts through the appearance of a novel LTP-supporting signaling pathway.  相似文献   

20.
Many endogenous factors influence the time course and extent of the detrimental effects of amyloid β-protein (Aβ) on synaptic function. Here, we assessed the impact of varying endogenous glutamatergic and cholinergic transmission by pharmacological means on the disruption of plasticity at hippocampal CA3-to-CA1 synapses in the anaesthetized rat. NMDA receptors (NMDARs) are considered critical in mediating Aβ-induced inhibition of long-term potentiation (LTP). However, intracerebroventricular injection of Aβ1–42 inhibited not only NMDAR-dependent LTP but also voltage-activated Ca2+-dependent LTP induced by strong conditioning stimulation during NMDAR blockade. On the other hand, another form of NMDAR-independent synaptic plasticity, endogenous acetylcholine-induced muscarinic receptor-dependent long-term enhancement, was not hindered by Aβ1–42. Interestingly, augmenting endogenous acetylcholine activation of nicotinic receptors prior to the injection of Aβ1–42 prevented the inhibition of NMDAR-dependent LTP, whereas the same intervention when introduced after the infusion of Aβ was ineffective. We also examined the duration of action of Aβ, including water soluble Aβ from Alzheimer''s disease (AD) brain. Remarkably, the inhibition of LTP induction caused by a single injection of sodium dodecyl sulfate-stable Aβ dimer-containing AD brain extract persisted for at least a week. These findings highlight the need to increase our understanding of non-NMDAR mechanisms and of developing novel means of overcoming, rather than just preventing, the deleterious synaptic actions of Aβ.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号