首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
H1 linker histones stabilize the nucleosome, limit nucleosome mobility and facilitate the condensation of metazoan chromatin. Here, we have combined systematic mutagenesis, measurement of in vivo binding by photobleaching microscopy, and structural modeling to determine the binding geometry of the globular domain of the H1(0) linker histone variant within the nucleosome in unperturbed, native chromatin in vivo. We demonstrate the existence of two distinct DNA-binding sites within the globular domain that are formed by spatial clustering of multiple residues. The globular domain is positioned via interaction of one binding site with the major groove near the nucleosome dyad. The second site interacts with linker DNA adjacent to the nucleosome core. Multiple residues bind cooperatively to form a highly specific chromatosome structure that provides a mechanism by which individual domains of linker histones interact to facilitate chromatin condensation.  相似文献   

4.
5.
6.
7.
We present a Monte Carlo model for genome folding at the 30-nm scale with focus on linker-histone and nucleosome depletion effects. We find that parameter distributions from experimental data do not lead to one specific chromatin fiber structure, but instead to a distribution of structures in the chromatin phase diagram. Depletion of linker histones and nucleosomes affects, massively, the flexibility and the extension of chromatin fibers. Increasing the amount of nucleosome skips (i.e., nucleosome depletion) can lead either to a collapse or to a swelling of chromatin fibers. These opposing effects are discussed and we show that depletion effects may even contribute to chromatin compaction. Furthermore, we find that predictions from experimental data for the average nucleosome skip rate lie exactly in the regime of maximum chromatin compaction. Finally, we determine the pair distribution function of chromatin. This function reflects the structure of the fiber, and its Fourier-transform can be measured experimentally. Our calculations show that even in the case of fibers with depletion effects, the main dominant peaks (characterizing the structure and the length scales) can still be identified.  相似文献   

8.
9.
10.
11.
《Biophysical journal》2020,118(9):2066-2076
Interactions of chromatin with bivalent immunoglobin nucleosome-binding antibodies and their monovalent (papain-derived) antigen-binding fragment analogs are useful probes for examining chromatin conformational states. To help interpret antibody-chromatin interactions and explore how antibodies might compete for interactions with chromatin components, we incorporate coarse-grained PL2-6 antibody modeling into our mesoscale chromatin model. We analyze interactions and fiber structures for the antibody-chromatin complexes in open and condensed chromatin, with and without H1 linker histone (LH). Despite minimal and transient interactions at physiological salt, we capture significant differences in antibody-chromatin complex configurations in open fibers, with more intense interactions between the bivalent antibody and chromatin compared to monovalent antigen-binding fragments. For these open chromatin fiber morphologies, antibody binding to histone tails is increased and compaction is greater for bivalent compared to monovalent and antibody-free systems. Differences between monovalent and bivalent binding result from antibody competition with internal chromatin fiber components (nucleosome core and linker DNA) for histone tail (H3, H4, H2A, H2B) interactions. This antibody competition for tail contacts reduces tail-core and tail-linker interactions and increases tail-antibody interactions. Such internal structural changes in open fibers resemble mechanisms of LH condensation, driven by charge screening and entropy changes. For condensed fibers at physiological salt, the three systems are much more similar overall, but some subtle tail interaction differences can be noted. Adding LH results in less-dramatic changes for all systems, except that the bivalent complex at physiological salt shows cooperative effects between LH and the antibodies in condensing chromatin fibers. Such dynamic interactions that depend on the internal structure and complex-stabilizing interactions within the chromatin fiber have implications for gene regulation and other chromatin complexes such as with LH, remodeling proteins, and small molecular chaperones that bind and modulate chromatin structure.  相似文献   

12.
The ability of regulatory factors to access their nucleosomal targets is modulated by nuclear proteins such as histone H1 and HMGN (previously named HMG-14/-17 family) that bind to nucleosomes and either stabilize or destabilize the higher-order chromatin structure. We tested whether HMGN proteins affect the interaction of histone H1 with chromatin. Using microinjection into living cells expressing H1–GFP and photobleaching techniques, we found that wild-type HMGN, but not HMGN point mutants that do not bind to nucleosomes, inhibits the binding of H1 to nucleosomes. HMGN proteins compete with H1 for nucleosome sites but do not displace statically bound H1 from chromatin. Our results provide evidence for in vivo competition among chromosomal proteins for binding sites on chromatin and suggest that the local structure of the chromatin fiber is modulated by a dynamic interplay between nucleosomal binding proteins.  相似文献   

13.
Controlling the degree of higher order chromatin folding is a key element in partitioning the metazoan genome into functionally distinct chromosomal domains. However, the mechanism of this fundamental process is poorly understood. Our recent studies suggested that the essential histone variant H2A.Z and the silencing protein HP1alpha may function together to establish a specialized conformation at constitutive heterochromatic domains. We demonstrate here that HP1alpha is a unique chromatin binding protein. It prefers to bind to condensed higher order chromatin structures and alters the chromatin-folding pathway in a novel way to locally compact individual chromatin fibers without crosslinking them. Strikingly, both of these features are enhanced by an altered nucleosomal surface created by H2A.Z (the acidic patch). This shows that the surface of the nucleosome can regulate the formation of distinct higher order chromatin structures mediated by an architectural chromatin binding protein.  相似文献   

14.
15.
Differentiation of embryonic stem (ES) cells from a pluripotent to a committed state involves global changes in genome expression patterns. Gene activity is critically determined by chromatin structure and interactions of chromatin binding proteins. Here, we show that major architectural chromatin proteins are hyperdynamic and bind loosely to chromatin in ES cells. Upon differentiation, the hyperdynamic proteins become immobilized on chromatin. Hyperdynamic binding is a property of pluripotent cells, but not of undifferentiated cells that are already lineage committed. ES cells lacking the nucleosome assembly factor HirA exhibit elevated levels of unbound histones, and formation of embryoid bodies is accelerated. In contrast, ES cells, in which the dynamic exchange of H1 is restricted, display differentiation arrest. We suggest that hyperdynamic binding of structural chromatin proteins is a functionally important hallmark of pluripotent ES cells that contributes to the maintenance of plasticity in undifferentiated ES cells and to establishing higher-order chromatin structure.  相似文献   

16.
17.
The fully organized structure of the eukaryotic nucleosome remains unsolved, in part due to limited information regarding the binding site of the H1 or linker histone. The central globular domain of H1 is believed to interact with the nucleosome core at or near the dyad and to bind at least two strands of DNA. We utilized site-directed mutagenesis and in vivo photobleaching to identify residues that contribute to the binding of the globular domain of the somatic H1 subtype H1c to the nucleosome. As was previously observed for the H10 subtype, the binding residues for H1c are clustered on the surface of one face of the domain. Despite considerable structural conservation between the globular domains of these two subtypes, the locations of the binding sites identified for H1c are distinct from those of H10. We suggest that the globular domains of these two linker histone subtypes will bind to the nucleosome with distinct orientations that may contribute to higher order chromatin structure heterogeneity or to differences in dynamic interactions with other DNA or chromatin-binding proteins.  相似文献   

18.
Numerous nuclear proteins bind to chromatin by targeting unique DNA sequences or specific histone modifications. In contrast, HMGN proteins recognize the generic structure of the 147-bp nucleosome core particle. HMGNs alter the structure and activity of chromatin by binding to nucleosomes; however, the determinants of the specific interaction of HMGNs with chromatin are not known. Here we use systematic mutagenesis, quantitative fluorescence recovery after photobleaching, fluorescence imaging, and mobility shift assays to identify the determinants important for the specific binding of these proteins to both the chromatin of living cells and to purified nucleosomes. We find that several regions of the protein affect the affinity of HMGNs to chromatin; however, the conserved sequence RRSARLSA, is the sole determinant of the specific interaction of HMGNs with nucleosomes. Within this sequence, each of the 4 amino acids in the R-S-RL motif are the only residues absolutely essential for anchoring HMGN protein to nucleosomes, both in vivo and in vitro. Our studies identify a new chromatin-binding module that specifically recognizes nucleosome cores independently of DNA sequence or histone tail modifications.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号