首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.

Purpose

Estradiol (E2) modulates testicular functions including steroidogenesis, but the mechanisms of E2 signaling in human testis are poorly understood. GPER-1 (GPR30), a G protein-coupled membrane receptor, mediates rapid genomic and non-genomic response to estrogens. The aim of this study was to evaluate GPER-1 expression in the testis, and its role in estradiol dependent regulation of steroidogenesis in isolated rat Leydig cells and human testis.

Materials and Methods

Isolated Leydig cells (LC) from adult rats and human testicular tissue were used in this study. Expression and localization studies of GPER-1 were performed with qRT-PCR, immunofluorescence, immunohistochemistry and Western Blot. Luteinizing Hormone (LH) -stimulated, isolated LC were incubated with estradiol, G-1 (GPER-1-selective agonist), and estrogen receptor antagonist ICI 182,780. Testosterone production was measured with radioimmunoassay. LC viability after incubation with G-1 was measured using 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium, inner salt (MTS) assay.

Results

GPER-1 mRNA is abundantly expressed in rat LC and human testis. Co-localization experiments showed high expression levels of GPER-1 protein in LC. E2-dependent activation of GPER-1 lowers testosterone production in isolated rats LCs and in human testis, with statistically and clinically significant drops in testosterone production by 20–30% as compared to estradiol-naïve LC. The exposure to G-1 does not affect viability of isolated LCs.

Conclusions

Our results indicate that activation of GPER-1 lowers testosterone levels in the rat and human testis. The expression of GPER-1 in human testis, which lack ERα, makes it an exciting target for developing new agents affecting testosterone production in men.  相似文献   

3.
4.

Background

Comparison of toxicogenomic data facilitates the identification of deregulated gene patterns and maximizes health risk prediction in human.

Results

Here, we performed phenotypic anchoring on the effects of acute exposure to low-grade polluted groundwater using mouse and zebrafish. Also, we evaluated two windows of chronic exposure in mouse, starting in utero and at the end of lactation. Bioinformatic analysis of livers microarray data showed that the number of deregulated biofunctions and pathways is higher after acute exposure, compared to the chronic one. It also revealed specific profiles of altered gene expression in all treatments, pointing to stress response/mitochondrial pathways as major players of environmental toxicity. Of note, dysfunction of steroid hormones was also predicted by bioinformatic analysis and verified in both models by traditional approaches, serum estrogens measurement and vitellogenin mRNA determination in mice and zebrafish, respectively.

Conclusions

In our report, phenotypic anchoring in two vertebrate model organisms highlights the toxicity of low-grade pollution, with varying susceptibility based on exposure window. The overlay of zebrafish and mice deregulated pathways, more than single genes, is useful in risk identification from chemicals implicated in the observed effects.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-15-1067) contains supplementary material, which is available to authorized users.  相似文献   

5.

Objectives

Although several studies have been conducted regarding Kaposi sarcoma (KS), its histogenesis still remains to be elucidated. The aim of our study was to analyze the immunophenotype of Kaposi sarcoma and to present a hypothesis about the histogenesis of this tumor, based on a case series and a review of relevant literature.

Methods

In 15 cases of KSs diagnosed during 2000–2011, the clinicopathological features were correlated with the immunoexpression of c-Kit, SMA, CD34, CD31, vascular endothelial growth factor (VEGF), COX-2, c-KIT, smooth muscle antigen (SMA), and stem cell surface marker CD105.

Results

Both CD105 and c-KIT rate of the spindle-shaped tumor cell positivity increased in parallel to the pathological stage. All cases displayed CD105 and weak c-KIT positivity in the endothelial cells. SMA, VEGF, and COX-2 were focally expressed in all cases. CD34 marked both endothelium and spindle-shaped tumor cells. No c-KIT expression was noticed in KS of the internal organs.

Conclusions

KS seems to be a variant of myofibroblastic tumors that originates from the viral modified pluripotent mesenchymal cells of the connective tissue transformed in spindle-shaped KS cells, followed by a mesenchymal-endothelial transition and a myofibroblastic-like differentiation. This paper mailnly showed that KS cannot be considered a pure vascular tumor.  相似文献   

6.

Background

Although Imatinib mesylate has revolutionized the treatment of chronic myeloid leukemia, some patients develop resistance with progression of leukemia. Alternative or additional targeting of signalling pathways deregulated in Bcr-Abl-driven chronic myeloid leukemia may provide a feasible option for improving clinical response and overcoming resistance.

Results

In this study, we investigate ability of CR8 isomers (R-CR8 and S-CR8) and MR4, three derivatives of the cyclin-dependent kinases (CDKs) inhibitor Roscovitine, to exert anti-leukemic activities against chronic myeloid leukemia in vitro and then, we decipher their mechanisms of action. We show that these CDKs inhibitors are potent inducers of growth arrest and apoptosis of both Imatinib-sensitive and –resistant chronic myeloid leukemia cell lines. CR8 and MR4 induce dose-dependent apoptosis through mitochondrial pathway and further caspases 8/10 and 9 activation via down-regulation of short-lived survival and anti-apoptotic factors Mcl-1, XIAP and survivin which are strongly implicated in survival of Bcr-Abl transformed cells.

Conclusions

These results suggest that CDK inhibitors may constitute a complementary approach to treat chronic myeloid leukemia.

Electronic supplementary material

The online version of this article (doi:10.1186/s12929-015-0163-x) contains supplementary material, which is available to authorized users.  相似文献   

7.
8.
9.
10.
11.
12.
13.

Background

Arecoline, a major alkaloid in Areca nut has the ability to induce oxidative stress. The effect of Areca nut, arecoline on reducing sperm quality and quantity were documented previously using several animal models. Junction disruption by down-regulation of the junction-adhesive protein via oxidative stress is an important route mediating abnormal spermatogenesis. Therefore, in this present study, we investigated the functional role of arecoline on junctional proteins.

Results

To analyze direct effects of arecoline on testis cells, confluent mouse testicular Sertoli cell line TM4 was exposed to arecoline. Arecoline decreased insoluble zonula occludens-1 (ZO-1) protein expression in TM4 cells, however, arecoline treatment increased TNF-alpha production in both TM4 and monocytic THP1 cells. In addition, ERK1/2 inhibitor PD98059 reversed arecoline effects on TNF-alpha and ZO-1.

Conclusions

Arecoline increases the production of TNF-alpha and induces protein redistribution of ZO-1. All these results explain the role of arecoline in male reproductive dysfunction, besides its cytotoxic induction.

Electronic supplementary material

The online version of this article (doi:10.1186/s12929-014-0093-z) contains supplementary material, which is available to authorized users.  相似文献   

14.

Background

Kaposi''s sarcoma (KS) is a vascular neoplasm characterized by the dysregulated expression of angiogenic and inflammatory cytokines. The driving force of the KS lesion, the KSHV-infected spindle cell, secretes elevated levels of vascular endothelial growth factor (VEGF), essential for KS development. However, the origin of VEGF in this tumor remains unclear.

Methodology/Principal Findings

Here we report that the KSHV G protein-coupled receptor (vGPCR) upregulates VEGF in KS through an intricate paracrine mechanism. The cytokines secreted by the few vGPCR-expressing tumor cells activate in neighboring cells multiple pathways (including AKT, ERK, p38 and IKKβ) that, in turn, converge on TSC1/2, promoting mTOR activation, HIF upregulation, and VEGF secretion. Conditioned media from vGPCR-expressing cells lead to an mTOR-dependent increase in HIF-1α and HIF-2α protein levels and VEGF upregulation. In a mouse allograft model for KS, specific inhibition of the paracrine activation of mTOR in non-vGPCR-expressing cells was sufficient to inhibit HIF upregulation in these cells, and abolished the ability of the vGPCR-expressing cells to promote tumor formation in vivo. Similarly, pharmacologic inhibition of HIF in this model blocked VEGF secretion and also lead to tumor regression.

Conclusions/Significance

Our findings provide a compelling explanation for how the few tumor cells expressing vGPCR can contribute to the dramatic amplification of VEGF secretion in KS, and further provide a molecular mechanism for how cytokine dysregulation in KS fuels angiogenesis and tumor development. These data further suggest that activation of HIF by vGPCR may be a vulnerable target for the treatment of patients with KS.  相似文献   

15.
16.
17.
18.

Background

Diamond–Blackfan anemia (DBA) is a class of human diseases linked to defective ribosome biogenesis that results in clinical phenotypes. Genetic mutations in ribosome protein (RP) genes lead to DBA phenotypes, including hematopoietic defects and physical deformities. However, little is known about the global regulatory network as well as key miRNAs and gene pathways in the zebrafish model of DBA.

Results

In this study, we establish the DBA model in zebrafish using an RPS24 morpholino and found that RPS24 is required for both primitive hematopoiesis and definitive hematopoiesis processes that are partially mediated by the p53 pathway. Several deregulated genes and miRNAs were found to be related to hematopoiesis, vascular development and apoptosis in RPS24-deficient zebrafish via RNA-seq and miRNA-seq data analysis, and a comprehensive regulatory network was first constructed to identify the mechanisms of key miRNAs and gene pathways in the model. Interestingly, we found that the central node genes in the network were almost all targeted by significantly deregulated miRNAs. Furthermore, the enforced expression of miR-142-3p, a uniquely expressed miRNA, causes a significant decrease in primitive erythrocyte progenitor cells and HSCs.

Conclusions

The present analyses demonstrate that the comprehensive regulatory network we constructed is useful for the functional prediction of new and important miRNAs in DBA and will provide insights into the pathogenesis of mutant rps24-mediated human DBA disease.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-15-759) contains supplementary material, which is available to authorized users.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号