首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Kinetic analysis of the DNA unwinding and translocation activities of helicases is necessary for characterization of the biochemical mechanism(s) for this class of enzymes. Saccharomyces cerevisiae Pif1 helicase was characterized using presteady state kinetics to determine rates of DNA unwinding, displacement of streptavidin from biotinylated DNA, translocation on single-stranded DNA (ssDNA), and ATP hydrolysis activities. Unwinding of substrates containing varying duplex lengths was fit globally to a model for stepwise unwinding and resulted in an unwinding rate of ∼75 bp/s and a kinetic step size of 1 base pair. Pif1 is capable of displacing streptavidin from biotinylated oligonucleotides with a linear increase in the rates as the length of the oligonucleotides increased. The rate of translocation on ssDNA was determined by measuring dissociation from varying lengths of ssDNA and is essentially the same as the rate of unwinding of dsDNA, making Pif1 an active helicase. The ATPase activity of Pif1 on ssDNA was determined using fluorescently labeled phosphate-binding protein to measure the rate of phosphate release. The quantity of phosphate released corresponds to a chemical efficiency of 0.84 ATP/nucleotides translocated. Hence, when all of the kinetic data are considered, Pif1 appears to move along DNA in single nucleotide or base pair steps, powered by hydrolysis of 1 molecule of ATP.  相似文献   

2.
Saccharomyces cerevisiae Piflp helicase is the founding member of the Pifl subfamily that isconserved from yeast to human.The potential human homolog of the yeast PIFI gene has been cloned fromthe cDNA library of the Hek293 cell line.Here,we described a purification procedure of glutathione S-transferase(GST)-fused N terminal truncated human Pifl protein(hPif1ΔN)from yeast and characterizedthe enzymatic kinetics of its ATP hydrolysis activity.The ATPase activity of human Pif1 is dependent ondivalent cation,such as Mg~(2 ),Ca~(2 )and single-stranded DNA.Km for ATP for the ATPase activity isapproximately 200 μM.As the ATPase activity is essential for hPifl's helicase activity,these results willfacilitate the further investigation on hPif1.  相似文献   

3.
M Bianchi  B Riboli    G Magni 《The EMBO journal》1985,4(11):3025-3030
RecA protein was found to catalyze the dissociation of the strands of a DNA substrate consisting of a 20-nucleotide primer annealed to circular single-stranded M13mp DNA. The strand separation reaction requires ATP hydrolysis and the presence of single-stranded DNA flanking the duplex DNA region to be unwound. RecA-catalyzed strand separation is effective only for very short duplexes, not exceeding 30 bp, and is not stimulated by single-stranded DNA-binding protein. These results are consistent with the ability of recA protein to disrupt regions of secondary structure in single-stranded DNA and to incorporate large non-homologies into heteroduplex DNA.  相似文献   

4.
We have developed a new method, quadruplex priming amplification, to greatly simplify nucleic acid amplification and real-time quantification assays. The method relies on specifically designed guanine-rich primers, which after polymerase elongation are capable of spontaneous dissociation from target sites and forming DNA quadruplex. The quadruplex is characterized by significantly more favorable thermodynamics than the corresponding DNA duplexes. As a result, target sequences are accessible for the next round of priming and DNA amplification proceeds under isothermal conditions with improved product yield. In addition, the quadruplex formation is accompanied by an increase in intrinsic fluorescence of the primers, allowing simple and accurate detection of product DNA.  相似文献   

5.
G-quadruplex structures of telomeric sequences are of growing interest because they inhibit telomerase, an enzyme involved in the maintenance of telomere length of cancer cells. As we have shown previously, the antiparallel structure of G-quadruplexes can be cross-linked in vitro by the anti-tumour drug cisplatin. The question arises whether platination of quadruplex structures of human telomeric sequences by cisplatin could be relevant from a biological point of view. Therefore, we have compared the kinetics of reactions of the diaqua form of cisplatin, cis-[Pt(NH(3))(2)(H(2)O)(2)](2+), with the human telomeric quadruplex structure, a duplex DNA and a single-stranded DNA containing one specific platination GG site. The ratio between the platination rate constants was obtained using two intramolecular competition experiments: either a construct with a junction between duplex DNA containing a unique GG platination site and the quadruplex structure of the human telomeric sequence AG(3)(T(2)AG(3))(3), or a construct with a junction between duplex DNA and a single strand containing each a unique GG platination site. Those competition experiments allowed us to conclude that the platination of the quadruplex is favoured over that of the GG duplex by a factor of about two whereas the GG duplex is platinated three times faster than the GG single strand.  相似文献   

6.
Covalent ligation studies on the human telomere quadruplex   总被引:5,自引:4,他引:1  
Qi J  Shafer RH 《Nucleic acids research》2005,33(10):3185-3192
Recent X-ray crystallographic studies on the human telomere sequence d[AGGG(TTAGGG)3] revealed a unimolecular, parallel quadruplex structure in the presence of potassium ions, while earlier NMR results in the presence of sodium ions indicated a unimolecular, antiparallel quadruplex. In an effort to identify and isolate the parallel form in solution, we have successfully ligated into circular products the single-stranded human telomere and several modified human telomere sequences in potassium-containing solutions. Using these sequences with one or two terminal phosphates, we have made chemically ligated products via creation of an additional loop. Circular products have been identified by polyacrylamide gel electrophoresis, enzymatic digestion with exonuclease VII and electrospray mass spectrometry in negative ion mode. Optimum pH for the ligation reaction of the human telomere sequence ranges from 4.5 to 6.0. Several buffers were also examined, with MES yielding the greatest ligation efficiency. Human telomere sequences with two phosphate groups, one each at the 3′ and 5′ ends, were more efficient at ligation, via pyrophosphate bond formation, than the corresponding sequences with only one phosphate group, at the 5′ end. Circular dichroism spectra showed that the ligation product was derived from an antiparallel, single-stranded guanine quadruplex rather than a parallel single-stranded guanine quadruplex structure.  相似文献   

7.
On linear single-stranded DNA, RecA filaments assemble and disassemble in the 5' to 3' direction. Monomers (or other units) associate at one end and dissociate from the other. ATP hydrolysis occurs throughout the filament. Dissociation can result when ATP is hydrolyzed by the monomer at the disassembly end. We have developed a comprehensive model for the end-dependent filament disassembly process. The model accounts not only for disassembly, but also for the limited reassembly that occurs as DNA is vacated by disassembling filaments. The overall process can be monitored quantitatively by following the resulting decline in DNA-dependent ATP hydrolysis. The rate of disassembly is highly pH dependent, being negligible at pH 6 and reaching a maximum at pH values above 7. 5. The rate of disassembly is not significantly affected by the concentration of free RecA protein within the experimental uncertainty. For filaments on single-stranded DNA, the monomer kcat for ATP hydrolysis is 30 min-1, and disassembly proceeds at a maximum rate of 60-70 monomers per minute per filament end. The latter rate is that predicted if the ATP hydrolytic cycles of adjacent monomers are not coupled in any way.  相似文献   

8.
The transfer of recA protein from a fluorescently modified single-stranded DNA, containing 1,N6-ethenoadenosine and 3,N4-ethenocytosine, to polydeoxythymidylic acid (poly(dT)) was shown to occur by a complex mechanism in both the absence and presence of ADP (Menetski, J. P., and Kowalczykowski, S. C. (1987) J. Biol. Chem. 262, 2085-2092). A part of the mechanism involves the formation of a kinetic ternary intermediate. Since the binding and hydrolysis of ATP by recA protein is involved in many of the recA protein in vitro activities, we have analyzed the effect of ATP on the transfer reaction. In the presence of ATP, the transfer reaction is dependent on the concentration of the competitor single-stranded DNA, poly(dT). This result suggests that transfer does not occur by a simple dissociation mechanism. The reaction occurs via two kinetically distinct species of protein X DNA complexes with properties that are similar to those characterized for the transfer reaction in the absence of ATP. There is a complicated effect of nucleotide concentration on the rate of transfer. At low concentrations of ATP (less than 50 microM), increasing nucleotide concentration increases the rate of transfer; this is similar to the effect of ADP. However, at high concentrations of ATP (greater than 50 microM), increasing ATP concentration decreases the rate of transfer. Finally, the processivity of ATP hydrolysis during transfer was found to increase with increases in ATP concentration. Less than one ATP molecule was hydrolyzed per transfer event at low ATP concentrations (less than 20 microM) while greater than 50 molecules were hydrolyzed at high ATP concentration (greater than 250 microM). These data suggest that the rate of transfer is not directly coupled to the rate of hydrolysis.  相似文献   

9.
Reverse gyrase is a hyperthermophile-specific enzyme that can positively supercoil DNA concomitant with ATP hydrolysis. However, the DNA supercoiling activity is inefficient and requires an excess amount of enzyme relative to DNA. We report here several activities that reverse gyrase can efficiently mediate with a substoichiometric amount of enzyme. In the presence of a nucleotide cofactor, reverse gyrase can readily relax negative supercoils, but not the positive ones, from a plasmid DNA substrate. Reverse gyrase can completely relax positively supercoiled DNA, provided that the DNA substrate contains a single-stranded bubble. Reverse gyrase efficiently anneals complementary single-stranded circles. A substoichiometric amount of reverse gyrase can insert positive supercoils into DNA with a single-stranded bubble, in contrast to plasmid DNA substrate. We have designed a novel method based on phage-mid DNA vectors to prepare a circular DNA substrate containing a single-stranded bubble with defined length and sequence. With these bubble DNA substrates, we demonstrated that efficient positive supercoiling by reverse gyrase requires a bubble size larger than 20 nucleotides. The activities of annealing single-stranded DNA circles and positive supercoiling of bubble substrate demonstrate that reverse gyrase can function as a DNA renaturase. These biochemical activities also suggest that reverse gyrase can have an important biological function in sensing and eliminating unpaired regions in the genome of a hyperthermophilic organism.  相似文献   

10.
已知Pif1解旋酶在维持基因组稳定性方面发挥重要作用,且不同生物Pif1解旋酶具有不同的生物学活性;然而迄今为止,嗜热细菌Pif1解旋酶的生物学活性分子特征的研究尚未见报道。本文运用生物化学与生物物理学前沿技术,系统地研究了嗜热脱铁去硫弧菌Pif1解旋酶(Defe.Pif1)结合活性与解旋活性的分子特征。通过原核表达纯化系统,本研究获得纯度95%以上、无标签的Defe.Pif1蛋白。利用荧光偏振技术研究Defe.Pif1结合反应的底物特异性,揭示出Defe.Pif1优先结合ssDNA与G4 DNA,并对含3′-尾链的部分双链底物有较强亲和力,其结合反应底物特异性为:ssDNA > G4 DNA > 3′-ssDNA-dsDNA≈Y-structure > Other substrates。通过快速停留检测技术研究Defe.Pif1的解旋活性,明确其最适解旋温度为50℃,最佳反应溶液为10 mmol/L NaCl、3 mmol/L DTT、3 mmol/L MgCl2及1 mmol/L ATP;进一步的解旋动力学特征分析结果显示,Defe.Pif1可以高效解旋含G4结构的DNA底物,其解旋5′-G4 dsDNA底物时的解旋幅度超过90%,解旋速率也与其解旋5′-ss-dsDNA底物的速率相近,提示Defe.Pif1解旋G4 DNA更接近Bs.Pif1的单体反应模式。此外,本研究还发现Defe.Pif1解旋不同类型复制叉/复制泡底物时拥有独特的解旋倾向性:与解旋其它复制中间体DNA的低效性不同,Defe.Pif1解旋12nt bubble底物的速率与幅度均较高,暗示12nt bubble结构很可能是该解旋酶复制中间体的天然底物。上述结果证明,Defe.Pif1不仅具有Pif1解旋酶家族成员共同的结合与解旋G4 DNA等活性特征;而且作为嗜热细菌的解旋酶,它还具有独特的反应条件与解旋底物特异性。本研究为研究Pif1解旋酶家族其它成员的分子特征与生物功能提供了潜在的研究策略,为阐明此类Pif1解旋酶的分子作用机制奠定实验基础。  相似文献   

11.
Helicase I has been purified to greater than 95% homogeneity from an F+ strain of Escherichia coli, and characterized as a single-stranded DNA-dependent ATPase and a helicase. The duplex DNA unwinding reaction requires a region of ssDNA for enzyme binding and concomitant nucleoside 5'-triphosphate hydrolysis. All eight predominant nucleoside 5'-triphosphates can satisfy this requirement. Unwinding is unidirectional in the 5' to 3' direction. The length of duplex DNA unwound is independent of protein concentration suggesting that the unwinding reaction is highly processive. Kinetic analysis of the unwinding reaction indicates that the enzyme turns over very slowly from one DNA substrate molecule to another. The ATP hydrolysis reaction is continuous when circular partial duplex DNA substrates are used as DNA effectors. When linear partial duplex substrates are used ATP hydrolysis is barely detectable, although the kinetics of the unwinding reaction on linear partial duplex substrates are identical to those observed using a circular partial duplex DNA substrate. This suggests that ATP hydrolysis fuels continuous translocation of helicase I on circular single-stranded DNA while on linear single stranded DNA the enzyme translocates to the end of the DNA molecule where it must slowly dissociate from the substrate molecule and/or slowly associate with a new substrate molecule, thus resulting in a very low rate of ATP hydrolysis.  相似文献   

12.
The RecB and RecD subunits of the RecBCD enzyme of Escherichia coli contain amino acid sequences similar to a consensus mononucleotide binding motif found in a large number of other enzymes. We have constructed by site-directed mutagenesis a lysine-to-glutamine mutation in this sequence in the RecB protein. The mutant enzyme (RecB-K29Q-CD) has essentially no nuclease or ATP hydrolysis activity on double-stranded DNA, showing the importance of RecB for unwinding double-stranded DNA. However, ATP hydrolysis stimulated by single-stranded DNA is reduced by only about 5-8-fold compared to the wild-type, nuclease activity on single-stranded DNA is reduced by less than 2-fold, and the nuclease activity of the RecB-K29Q-CD enzyme requires ATP. The effects of the RecB mutation suggest that the RecD protein hydrolyzes ATP and can stimulate the RecBCD enzyme nuclease activity on single-stranded DNA.  相似文献   

13.
The bacterial RecA protein and the homologous Rad51 protein in eukaryotes both bind to single-stranded DNA (ssDNA), align it with a homologous duplex, and promote an extensive strand exchange between them. Both reactions have properties, including a tolerance of base analog substitutions that tend to eliminate major groove hydrogen bonding potential, that suggest a common molecular process underlies the DNA strand exchange promoted by RecA and Rad51. However, optimal conditions for the DNA pairing and DNA strand exchange reactions promoted by the RecA and Rad51 proteins in vitro are substantially different. When conditions are optimized independently for both proteins, RecA promotes DNA pairing reactions with short oligonucleotides at a faster rate than Rad51. For both proteins, conditions that improve DNA pairing can inhibit extensive DNA strand exchange reactions in the absence of ATP hydrolysis. Extensive strand exchange requires a spooling of duplex DNA into a recombinase-ssDNA complex, a process that can be halted by any interaction elsewhere on the same duplex that restricts free rotation of the duplex and/or complex, I.e. the reaction can get stuck. Optimization of an extensive DNA strand exchange without ATP hydrolysis requires conditions that decrease nonproductive interactions of recombinase-ssDNA complexes with the duplex DNA substrate.  相似文献   

14.
Helicases move on DNA via an ATP binding and hydrolysis mechanism coordinated by well-characterized helicase motifs. However, the translocation along single-stranded DNA (ssDNA) and the strand separation of double-stranded (dsDNA) may be loosely or tightly coupled. Dda is a phage T4 SF1B helicase with sequence homology to the Pif1 family of helicases that tightly couples translocation to strand separation. The crystal structure of the Dda-ssDNA binary complex reveals a domain referred to as the "pin" that was previously thought to remain static during strand separation. The pin contains a conserved phenylalanine that mediates a transient base-stacking interaction that is absolutely required for separation of dsDNA. The pin is secured at its tip by protein-protein interactions through an extended SH3 domain thereby creating a rigid strut. The conserved interface between the pin and the SH3 domain provides the mechanism for tight coupling of translocation to strand separation.  相似文献   

15.
16.
Pif1p is the prototypical member of the PIF1 family of DNA helicases, a subfamily of SFI helicases conserved from yeast to humans. Baker's yeast Pif1p is involved in the maintenance of mitochondrial, ribosomal and telomeric DNA and may also have a general role in chromosomal replication by affecting Okazaki fragment maturation. Here we investigate the substrate preferences for Pif1p. The enzyme was preferentially active on RNA–DNA hybrids, as seen by faster unwinding rates on RNA–DNA hybrids compared to DNA–DNA hybrids. When using forked substrates, which have been shown previously to stimulate the enzyme, Pif1p demonstrated a preference for RNA–DNA hybrids. This preferential unwinding could not be correlated to preferential binding of Pif1p to the substrates that were the most readily unwound. Although the addition of the single-strand DNA-binding protein replication protein A (RPA) stimulated the helicase reaction on all substrates, it did not diminish the preference of Pif1p for RNA–DNA substrates. Thus, forked RNA–DNA substrates are the favored substrates for Pif1p in vitro. We discuss these findings in terms of the known biological roles of the enzyme.  相似文献   

17.
The extracellular nuclease from Alteromonas espejiana sp. BAL 31 can be isolated as two distinct proteins, the "fast" (F) and "slow" (S) species, both of which have been purified to homogeneity. The F and S species of the nuclease have molecular weights, respectively, of 109 X 10(3) and 85 X 10(3), and both are single polypeptide chains with an isoelectric pH near 4.2. Both species catalyze the degradation of single-stranded and linear duplex DNAs to 5'-mononucleotides. The degradation of linear duplex DNA occurs through a terminally directed hydrolysis mechanism that results in the removal of nucleotides from both the 3' and 5' ends. Apparent Michaelis constants (Km) have been obtained for the exonuclease activities of both species and for the activity against single-stranded DNA of the S species. The Km for the hydrolysis of single-stranded DNA catalyzed by the F species has not been obtained because the reaction velocity was maximal even at the lowest substrate concentrations accessible in the photometric assay. The ratio of the turnover numbers for the exonuclease activities of the two species indicates that the F species will shorten linear duplex DNA at a rate 27 +/- 5 (S.D.) times faster than an equimolar concentration of the S species in the limit of high substrate concentration, while the corresponding ratio for the activities against single-stranded DNA (1.2 +/- 0.1) shows that the two species are similar with respect to hydrolysis of this substrate. In the limit of high substrate concentrations, the F and S species break phosphodiester bonds in single-stranded DNA at rates 1.3 +/- 0.3 and 33 +/- 2 times those for the exonucleolytic degradation of linear duplex DNA, respectively. It has not been established whether the two species are physically related.  相似文献   

18.
Hepatitis C virus (HCV) NS3 protein has two enzymatic activities of helicase and protease that are essential for viral replication. The helicase separates the strands of DNA and RNA duplexes using the energy from ATP hydrolysis. To understand how ATP hydrolysis is coupled to helicase movement, we measured the single turnover helicase translocation-dissociation kinetics and the pre-steady-state Pi release kinetics on single-stranded RNA and DNA substrates of different lengths. The parameters of stepping were determined from global fitting of the two types of kinetic measurements into a computational model that describes translocation as a sequence of coupled hydrolysis-stepping reactions. Our results show that the HCV helicase moves with a faster rate on single stranded RNA than on DNA. The HCV helicase steps on the RNA or DNA one nucleotide at a time, and due to imperfect coupling, not every ATP hydrolysis event produces a successful step. Comparison of the helicase domain (NS3h) with the protease-helicase (NS3-4A) shows that the most significant contribution of the protease domain is to improve the translocation stepping efficiency of the helicase. Whereas for NS3h, only 20% of the hydrolysis events result in translocation, the coupling for NS3-4A is near-perfect 93%. The presence of the protease domain also significantly reduces the stepping rate, but it doubles the processivity. These effects of the protease domain on the helicase can be explained by an improved allosteric cross-talk between the ATP- and nucleic acid-binding sites achieved by the overall stabilization of the helicase domain structure.  相似文献   

19.
Motif III in the putative helicases of superfamily 2 is highly conserved in both its sequence and its structural context. It typically consists of the sequence alcohol-alanine-alcohol (S/T-A-S/T). Historically, it was thought to link ATPase activity with a “helicase” strand displacement activity that disrupts RNA or DNA duplexes. DEAD-box proteins constitute the largest family of superfamily 2; they are RNA-dependent ATPases and ATP-dependent RNA binding proteins that, in some cases, are able to disrupt short RNA duplexes. We made mutations of motif III (S-A-T) in the yeast DEAD-box protein Ded1 and analyzed in vivo phenotypes and in vitro properties. Moreover, we made a tertiary model of Ded1 based on the solved structure of Vasa. We used Ded1 because it has relatively high ATPase and RNA binding activities; it is able to displace moderately stable duplexes at a large excess of substrate. We find that the alanine and the threonine in the second and third positions of motif III are more important than the serine, but that mutations of all three residues have strong phenotypes. We purified the wild-type and various mutants expressed in Escherichia coli. We found that motif III mutations affect the RNA-dependent hydrolysis of ATP (kcat), but not the affinity for ATP (Km). Moreover, mutations alter and reduce the affinity for single-stranded RNA and subsequently reduce the ability to disrupt duplexes. We obtained intragenic suppressors of the S-A-C mutant that compensate for the mutation by enhancing the affinity for ATP and RNA. We conclude that motif III and the binding energy of γ-PO4 of ATP are used to coordinate motifs I, II, and VI and the two RecA-like domains to create a high-affinity single-stranded RNA binding site. It also may help activate the β,γ-phosphoanhydride bond of ATP.  相似文献   

20.
Formation of D-loops during the exchange of strands between a circular single-stranded DNA and a completely homologous linear duplex proceeds optimally when the duplex DNA is added to the complex of recA protein and single-stranded DNA formed in the presence of single-stranded DNA-binding protein and ATP. D-loops are undetectable when 200 microM adenosine 5'-O-(thiotriphosphate) is substituted for ATP. D-loops can be formed in the presence of adenosine 5'-O-(thiotriphosphate) if recA protein is the last component added to the reaction. However, these D-loops, which depend upon homologous sequences, are unstable upon deproteinization and are formed to a more limited extent than the structures formed with ATP. This finding indicates that D-loops formed under these conditions may be largely nonintertwined paranemic structures rather than plectonemic structures in which two of the strands are interwoven. When adenosine 5'-O-(thiotriphosphate) is added to an ongoing reaction containing ATP, formation of plectonemic structures and ATP hydrolysis is inhibited to an equivalent extent. We, therefore, conclude that ATP hydrolysis is required for the formation of plectonemic structures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号