首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Zhang LW  HL Liu  DY Zhang  WG Bian 《Phyton》2015,84(1):58-63
Seed dormancy release and germination of Corispermum lehmannianum Bunge were tested using various treatments: temperature, cold stratification, gibberelins (GA3), dry storage and sand burial. Results showed that temperature and light did not affect the germination of fresh seeds, cold stratification and GA3 could improve seed germination, whereas dry storage and sand burial did not. The germination percentage was highest at 35/20 °C after the cold stratification and GA3 treatments. Corispermum lehmannianum seeds were classified as non-deep, Type-2, physiological dormancy (PD), whose seed dormancy could be released by cold stratification and GA3.  相似文献   

2.
Seed responses to temperature are often essential to the study of germination ecology, but the ecological role of temperature in orchid seed germination remains uncertain. The response of orchid seeds to cold stratification have been studied, but the exact physiological role remains unclear. No studies exist that compare the effects of either cold stratification or temperature on germination among distant populations of the same species. In two separate experiments, the role of temperature (25, 22/11, 27/15, 29/19, 33/24°C) and chilling at 10°C on in vitro seed germination were investigated using distant populations of Calopogon tuberosus var. tuberosus. Cooler temperatures promoted germination of Michigan seeds; warmer temperatures promoted germination of South Carolina and north central Florida seeds. South Florida seed germination was highest under both warm and cool temperatures. More advanced seedling development generally occurred at higher temperatures with the exception of south Florida seedlings, in which the warmest temperature suppressed development. Fluctuating diurnal temperatures were more beneficial for germination compared to constant temperatures. Cold stratification had a positive effect on germination among all populations, but South Carolina seeds required the longest chilling treatments to obtain maximum germination. Results from the cold stratification experiment indicate that a physiological dormancy is present, but the degree of dormancy varies across the species range. The variable responses among populations may indicate ecotypic differentiation.  相似文献   

3.
4.
The purpose of this study was to investigate the effects of various presowing treatments on the germinability (final germination percentage) and germination rate of loquat seeds in order to increase seedling production in nurseries (applied research) as well as provide answers for important physiological issues related to loquat seeds and their seed coat (basic research). Three experiments were carried out with various pre-sowing treatments. These treatments included full or partial removal of seed coat (perisperm), partial cutting of cotyledons as well as moist chilling at 5°C for 13 days and/or soaking the seeds in water or 250 ppm gibberellic acid (GA3) solution for 24 h. According to the results, cotyledons excision resulted in delayed germination, regardless of the presence or absence of the seed coat in comparison with the decoated seeds that demonstrated the highest germination rate amongst them. In addition, even the partial excision of seed coats affected positively both the germinability and the germination rate, compared to the control-intact seeds. Furthermore, control-intact seeds had a higher germination percentage when exposed to moist chilling independently of the application or not of gibberellin; while the combination of gibberellin application and moist chilling improved both the percentage and the rate of germination of decoated seeds. In conclusion, the role of perisperm (seed coat) in the germination procedure of loquat seeds seems to be important, indicating the existence of seed coat-imposed dormancy on loquat seeds. Finally, the existence of a mild endogenous embryo-dormancy on loquat is also discussed.  相似文献   

5.
The seeds of Fraxinus excelsior L. are dormant after harvest, since they need a period of chilling for germination. Moist treatment at 20°C for 2–3 months followed by stratification at 4°C for 7 months breaks dormancy. We observed that germination occurred during stratification and was spread over a period of 3 months. Germination at low temperature was temporarily inhibited by a moderate reduction of the seed water content initiated after the third month of stratification. This allowed the afterripening process to continue.
The following procedure was developed to suppress dormancy and to induce uniform germination:
  • 1. 

    Imbibition of the seeds and moist treatment at 20°C for 2–3 months;

  • 2. 

    stratification for 3 months;

  • 3. 

    treatment at low temperature and low water potential for at least 4 months, this treatment should not exceed 6 months;

  • 4. 

    complete rehydration of the seeds at 16°C.

  相似文献   

6.
Seeds of Delphinium fissum subsp. sordidum are physiologically dormant at maturity, with underdeveloped embryos; thus they have morphophysiological dormancy (MPD). The aims of this study were to determine the requirements for embryo growth, dormancy break and germination, to characterise the type of seed dormancy and to evaluate the effects of light, seed age, pollination mechanism, and inter-annual and inter-population variability on germinative ability. After 3 months of incubation at 5°C (cold stratification) in darkness conditions, the mean embryo length increased from 5.6 to 2.07 mm, with 76% of seeds germinating. Conversely, embryos of seeds incubated during 3 months at 20/7 or 28/14°C hardly grew and no germination was recorded. Since cold stratification was the only requirement for the loss of MPD, and both dry storage in laboratory conditions and warm stratification prior to cold stratification shortened the cold stratification period required for germination, it could be concluded that D. fissum subsp. sordidum seeds have intermediate complex MPD. Cold stratification and incubation in darkness conditions promoted higher germination percentages than those in light. In addition, germinative ability increased with seed age up to 8 months (reaching 96% at 5°C in darkness), showed a pronounced inter-annual and inter-population variability, as well as a significant decrease in seeds coming from pollination by geitonogamy. High temperatures (25/10 or 28/14°C) induced seeds to secondary dormancy, so seedling emergence in the greenhouse was restricted to February–March. The requirements for dormancy break and germination reflect an adaptation to trigger germination in late winter. This study is the first one to document a gradual increase in germination percentage with seed age for plant species with intermediate complex MPD.  相似文献   

7.
Pearl millet (Pennisetum spicatum (L.) Körn.) and maize (Zea mays L.) are C4 grass species grown for feeding humans and animals in Almadinah Almunawwarah, which is in the western part of Saudi Arabia. During the winter, the mean temperature, which drops to 14°C, represents a major problem for the growth of these species in this region. Therefore, the objectives of this research were to investigate the growth response and the photosynthetic performance of P. spicatum and Z. mays under a low temperature stress. The treatments involved daytime and nighttime temperatures of 14/12°C (low temperature) and 24/22°C (optimum temperature). The results indicated that low temperature significantly reduced all growth and physiological parameters, including seed germination, leaf expansion, leaf area, shoot length and root length of the two species compared to those of the control. Additionally, the low temperature significantly decreased the light-saturated assimilation rate (Asat), quantum yield (ϕ), saturated rate of carbon dioxide uptake (Amax) and efficiency of carboxylation on both species compared to those of the control. Moreover, the values of Fv/Fm and the chlorophyll contents of both species were significantly reduced by low temperature compared to those of the control. It can be concluded that both species had little tolerance to low temperatures.  相似文献   

8.
梾木种子低温层积过程中内源激素含量的动态变化特征   总被引:2,自引:0,他引:2  
应用酶联免疫吸附测定法(ELISA)研究了梾木种子低温层积过程中内源激素含量的动态变化,分析了内源激素与种子休眠与发芽的关系。结果表明:(1)梾木种子中IAA含量在层积处理初期剧烈降低,持续一段时间后又显著升高,但后期下降,且IAA/ABA也出现同样的变化;种子中ABA含量在层积处理前期较高,但随着处理时间的延长趋于下降;种子内GA1/3含量以及GA1/3/ABA均随层积处理时间的延长逐渐增大;种子内ZRs和iPAs含量的变化相对较为平稳,尽管有一定的波动,但整体呈渐趋增高趋势。(2)梾木种子发芽率及发芽势在未经层积处理以及处理时间少于90d的条件下均为0,但随着层积处理时间的延长二者明显上升,层积处理的时间长短对梾木种子萌发有显著影响。(3)相关分析表明,梾木种子内GA1/3含量与种子的发芽率、发芽势均呈显著正相关关系,相关系数分别为0.688、0.662;种子内GA1/3/ABA增大有利于种子休眠解除和萌发。  相似文献   

9.
We tested the hypothesis that seeds of the monocarpic perennial Ferula gummosa from the Mediterranean area and central Asia have deep complex morphophysiological dormancy. We determined the water permeability of seeds, embryo morphology, temperature requirements for embryo growth and seed germination and responses of seeds to warm and cold stratification and to different concentrations of GA3. The embryo has differentiated organs, but it is small (underdeveloped) and must grow inside the seed, reaching a critical embryo length, seed length ratio of 0.65–0.7, before the seed can germinate. Seeds required 9 weeks of cold stratification at <10°C for embryo growth, dormancy break and germination to occur. Thus, seeds have morphophysiological dormancy (MPD). Furthermore, GA3 improved the germination percentage and rate at 5°C and promoted 20 and 5% germination of seeds incubated at 15 and 20°C, respectively. Thus, about 20% of the seeds had intermediate complex MPD. For the other seeds in the seed lot, cold stratification (5°C) was the only requirement for dormancy break and germination and GA3 could not substitute for cold stratification. Thus, about 80% of the seeds had deep complex MPD.  相似文献   

10.
Allantoin as the metabolite of purine catabolism can store and remobilize nitrogen for plant growth and development. However, emerging evidence suggests it also contributes to plant tolerance to stress response through altering abscisic acid (ABA) and reducing reactive oxygen species (ROS) level. 1-CYS PEROXIREDOXIN (PER1) is a seed-specific antioxidant that enhances seed longevity through scavenging ROS over-accumulation. High temperature (HT) suppresses seed germination and induces seed secondary dormancy, called as seed germination thermoinhibition. However, the mechanism that allantoin and PER1 regulate seed germination thermoinhibition remains unknown. In this study, we reported that allantoin treatment enhances seed germination under HT stress. Consistently, the aln mutants displayed higher seed germination, as well as more accumulation of endogenous allantoin, than that of wild-type control. Further biochemical and genetic analyses showed that allantoin reduces ABA content under HT, and allantoin targets PER1 to efficiently scavenge HT-induced ROS accumulation, meanwhile, the function of allantoin requires PER1 during seed gemination thermotolerance. Collectively, our finding proposes a novel function of allantoin in enhancing seed germination tolerance to HT, and uncovers the underlying mechanism by which allantoin regulates seed germination through altering ABA metabolism and PER1-mediated ROS level under HT stress.  相似文献   

11.
The seeds of Paris polyphylla var. yunnanensis are deeply dormant, and they remain dormant for 18 months or longer in their natural environment. Periodic exposure of the seeds to a low-temperature of 4 °C broke the dormancy in about 16 weeks (112 days). The most effective temperature stratification scheme was an interval of 14 days at 4 °C and 14 days at 22 °C. Both GA3 and ethephon significantly enhanced the germination rate during the stratification treatment. The seed coat, particularly the mesophyll outer layer of the seed coat, strongly inhibited the germination. With removal of the seed coat and exposure of the uncoated seeds to 600 mg/l GA3 for 48 h before the temperature stratification of 14 days at 4 °C and 14 days at 22 °C for 112 days, a germination percentage as high as 95.3% of the seeds was attained in about 160 days.  相似文献   

12.
The effects of stratification temperatures and burial in soil on dormancy levels of Carex pendula L. and C. remota L., two spring-germinating perennials occurring in moist forests, were investigated. Seeds buried for 34 months outdoors, and seeds stratified in the laboratory at temperatures between 3 and 18 °C for periods between 2 and 28 weeks, were tested over a range of temperatures. Seeds of the two species responded similarly to stratification treatments, except for an absolute light requirement in C. pendula. Primary dormancy was alleviated at all stratification temperatures, but low temperatures were more effective than higher ones . (≥ 12 °C). Dormancy induction in non-dormant seeds kept at 5 °C occurred when seeds were subsequently exposed to 18 °C. Dormancy was not induced by a transfer to lower temperatures. Buried seeds of both species exhibited seasonal dormancy cycles with high germination from autumn to spring and low germination during summer. Temperatures at which the processes of dormancy relief and of dormancy induction occurred, overlapped to a high degree. Whether, and when, dormancy changes occurred depended on test conditions. The lower temperature limit for germination (> 10%) was 9 °C in C. remota and 15 °C in C. pendula. Germination ceased abruptly above 36 °C. Germination requirements and dormancy patterns suggest regeneration from seed in late spring and summer at disturbed, open sites (forest gaps) and the capability to form long, persistent seed banks in both species.  相似文献   

13.
  • Information on the optimal conditions to promote the germination of Lamprocapnos spectabilis (L.) Fukuhara seeds is limited; consequently, this study was conducted to establish the requirements to break seed dormancy and promote germination.
  • The selected seeds had morphophysiological dormancy and had not begun embryo development. To study the dormancy breaking and embryo development processes, seeds were subjected to constant or changing temperature treatments during moist stratification.
  • High temperature and humidity resulted in vigorous embryo growth, with the longest embryos occurring after 1 month of incubation at 20 °C. At 4 °C, the seeds required incubation period of at least 3 months to germinate. Embryo growth and germination were higher with changing high and low temperatures than under a constant temperature, and changing temperatures also considerably changed the endogenous hormone levels, embryo development and germination. Bioactive gibberellin (GA) content was higher in seeds incubated at 20 °C for 1 month, then at 4 °C for 2 months. The content of endogenous abscisic acid in seeds subjected to the same treatment decreased by 97.6% compared with that of the untreated seeds.
  • Embryo growth and seed germination require changing high and low temperatures; however, exogenous GA3 could substitute for high temperatures, as it also causes accelerated germination. In this study, the seeds of L. spectabilis were identified as an intermediate simple type, a sub‐level of morphophysiologically dormant seeds.
  相似文献   

14.
The effect of temperature on the level of dormancy of primary and secondary dormant Carex pendula and Carex remota seeds was investigated. Primary dormant and secondary dormant seeds were stratified for 4 weeks at 5, 11, 13, and 15 °C, respectively, and tested for germination at 15/5 °C in light. To obtain secondary dormant seeds, primary dormant seeds were stratified at 5 °C and afterwards at 25 °C for 4 weeks. Germination tests were carried out in water and in 25 μmol KNO3-solution to examine differences in sensitivity to nitrate between seeds relieved from primary and secondary dormancy. In both species, seeds with primary and with induced secondary dormancy showed no significant differences in germination. The two sedges showed significant differences in the effect of stratification temperatures between primary and secondary dormant seeds. Primary dormant seeds of C. pendula showed high germination (>80%) in nitrate-solution after stratification at all temperatures, while only temperatures of 5, 11, and 13 °C led to higher germination in nitrate-solution in secondary dormant seeds. Germination percentages of primary and of secondary dormant C. pendula seeds in water increased to a higher extent only after stratification at 5 and 11 °C; stratification of 11 °C was more effective in secondary than in primary dormant seeds. The only temperature that relieved primary dormancy in C. remota seeds was 5 °C where germination in water and nitrate-solution was >90%. Germination of secondary dormant seeds was increased by stratification at 11 °C independent of the test solution but higher germination after stratification at 13 °C occurred only in nitrate-solution. The results support the existence of physiological differences in the regulation of primary and secondary dormancy by temperature, and in the reaction of nitrate, at least in C. remota.  相似文献   

15.
Fluctuating temperature plays a critical role in determining the timing of seed germination in many plant species. However, the physiological and biochemical mechanisms underlying such a response have been paid little attention. The present study investigated the effect of plant growth regulators and cold stratification in regulating Leymus chinensis seed germination and dormancy response to temperature. Results showed that seed germination was less than 2 % at all constant temperatures while fluctuating temperature significantly increased germination percentage. The highest germination was 71 % at 20/30 °C. Removal of the embryo enclosing material of L. chinensis seed germinated to 74 %, and replaced the requirement for fluctuating temperature to germinate, by increasing embryo growth potential. Applications of GA4+7 significantly increased seed germination at constant temperature. Also, inhibition of GA biosynthesis significantly decreased seed germination at fluctuating temperatures depending upon paclobutrazol concentration. This implied GA was necessary for non-dormant seed germination and played an important role in regulating seed germination response to temperature. Inhibition of ABA biosynthesis during imbibition completely released seed dormancy at 20/30 °C, but showed no effect on seed germination at constant temperature, suggesting ABA biosynthesis was important for seed dormancy maintenance but may not involve in seed germination response to temperature. Cold stratification with water or GA3 induced seed into secondary dormancy, but this effect was reversed by exogenous FL, suggesting ABA biosynthesis during cold stratification was involved in secondary dormancy. Also, cold stratification with FL entirely replaced the requirement of fluctuating temperature for germination with seeds having 73 % germination at constant temperature. This appears to be attributed to inhibition of ABA biosynthesis and an increase of GA biosynthesis during cold stratification, leading to an increased embryo growth potential. We suggest that fluctuating temperature promotes seed germination by increasing embryo growth potential, mainly attributed to GA biosynthesis during imbibitions. ABA is important for seed dormancy maintenance and induction but showed less effect on non-dormant seed germination response to temperature.  相似文献   

16.
Investigations on seeds of Scrophularia marilandica L. were undertaken to determine their germination requirements. Seeds were collected from three naturally occurring sites and one greenhouse-grown population in London, Ontario in September and October of 1997. Some were set to germinate immediately after collection; others were stored in or on soil outside and/or under controlled laboratory conditions before testing. Germination was assessed under two light/temperature regimes (35°C 14 h light, 20°C 10 h dark and 25°C 14 h light, 10°C 10 h dark), in continuous darkness, and in the presence of two germination-promoting chemicals (GA3 and KNO3). Fresh seeds germinated best at 35/20°C, while stored seeds germinated best at 25/10°C. No differences in percent germination were found among three seed-maturity stages. All chemical treatments, except 0.01 M KNO3, increased percent germination. Significant differences were found both among and within sites for most chemical treatments, but exposure to 3 × 10−4 M GA3 caused almost every seed to germinate. When compared to the control, both the gibberellic acid and the soil-storage treatments contributed to faster germination. Exposure of seeds to naturally prevailing conditions on the soil surface followed by testing under the 25/10°C regime produced the highest percent germination. No seeds germinated in the dark. In summary, seeds of S. marilandica exhibit physiological dormancy, which can be alleviated by exposure to light, after-ripening and/or cold stratification. It is probable that the differences in germination response among sites can be attributed to differences in environmental conditions during seed production. These experiments indicate that the seeds of S. marilandica must be buried shortly after dispersal in order to form a persistent seed bank.  相似文献   

17.
Carex is a globally distributed genus with more than 2000 species worldwide and Carex species are the characteristic vegetation of sedge meadow wetlands. In the mid-continental United States, Carex species are dominant in natural freshwater wetlands yet are slow to recolonize hydrologically restored wetlands. To aid in Carex revegetation efforts, we determined the dormancy breaking and temperature germination requirements of 12 Carex species. Seeds were cold stratified at 5/1°C for 0–6 months and then incubated in light at 5/1°C, 14/1°C, 22/8°C, 27/15°C, or 35/30°C. We found that all Carex species produced conditionally dormant seeds. The optimal temperature for germination for all but three species was 27/15°C. As is the case in other species with physiological dormancy, cold stratification increased germination percentages, broadened the temperature range suitable for germination, and increased germination rates for most species, but the magnitude of the effects varied among species. Many species germinated to 80% at 27/15°C without cold stratification and at 22/8°C with ≤1 month of stratification but required much longer stratification (up to 6 months depending on the species) to germinate to 80% at 14/1°C and 35/30°C. Our findings illustrate how a stratification pretreatment can greatly benefit Carex seed sowing efforts by triggering rapid germination to higher percentages. We recommend that cold stratification be targeted towards species with strong dormancy or used across a wider range of species when seed supplies for restoration are limiting. For Carex revegetation, establishing Carex canopies rapidly may help to prevent the invasion of undesirable species such as Phalaris arundinacea.  相似文献   

18.
In this study, we show that seeds of Ilex maximowicziana collected from northern and southern Taiwan differ in germination responses to temperature. Seeds produced by plants growing in the tropical environment of southern Taiwan were more responsive (in a positive way) to higher incubation temperatures than those produced by plants growing in the subtropical environment of northern Taiwan. On the other hand, seeds produced in northern Taiwan were more responsive (in a positive way) to low incubation temperatures and to cold stratification than those from southern Taiwan. Germination percentages and rates of seeds from northern Taiwan were higher at 20/10°C than at 30/20°C, reaching a plateau of >80% germination after 12 weeks incubation, whereas germination of seeds from southern Taiwan reached >80% at 30/20 and 25°C but not at 20/10°C. Gibberellic acid (GA3) increased germination rate but not germination percentage of seeds from both southern and northern Taiwan. Freshly matured seeds of I. maximowicziana have rudimentary embryos. During dormancy break, embryo length increased 11.5- and 8.0-fold in northern and southern seeds, respectively, before radicle emergence. Thus, seeds of Ilex maximowicziana have nondeep simple morphophysiological dormancy. This is the first detailed study of the germination requirements of a subtropical/tropical species of the large cosmopolitan genus Ilex.  相似文献   

19.
The effects of water temperature and bottom sediment type were studied on seed dormancy and germination of Zostera japonica Ascherson & Graebner in mesocosm. To test whether the germination rate is affected by cold stratification, seeds were divided into two groups: those exposed to cold (7 °C) and those left untreated (23–15 °C). Additionally, to mimic tidal variation, we used five tidal depth treatments for germination experiments in mesocosm. In mesocosm tanks, there was a wide range of daily fluctuating temperature at datum line +40 cm (17–25 °C), D.L. +20 cm (15 °C), and D.L. +0 cm (4–7 °C). In contrast, the maximum temperature range at D.L. −20 cm and −40 cm was narrow (5–6 °C). In the no cold stratification group, the maximum germination rates on sandy, muddy sand, and muddy bottom sediment were 3%, 11%, and 3%, respectively. In the cold stratification group (7 °C), the maximum germination rates were 40%, 53%, and 54%, respectively. First germination was observed 36 ± 0 days and 43 ± 6 days after the start of the germination experiment in the cold stratification group and the no cold stratification group, respectively. Bottom sediment type and tidal level did not affect seed germination in the both stratification group. Cold stratification strongly increases germination in all sediment types tested and under varying temperature regimes and at different tidal levels. We also tested whether seed germination is affected by daily fluctuations in temperature (10 °C constant, 15 °C/10 °C, and 20 °C/10 °C were compared) in an indoor incubator. Forty-two days after being sown, the maximum seedling emergence rates in the three groups were 3 ± 5%, 21 ± 7%, and 42 ± 26%, respectively. At 20 °C/10 °C, first germination was observed 11 days after the start of incubation, the germination rate rose sharply after 18 day of incubation, and then it leveled off after 32–42 days of incubation. In the no cold stratification group, seed germination was not observed in any of the three treatments. This finding suggests that the breaking of seed dormancy and germination of Z. japonica seeds are determined strongly by cold temperature and daily fluctuations of temperature, respectively.  相似文献   

20.
Blackthorn (Prunus spinosa L.) germination is often low, so new methods need to be developed with a view to improving nursery yields and to inform decision-making on natural regeneration. To this end, the effects of seed moisture content (MC) levels in combination with warm and chilling treatments on blackthorn seed dormancy release were investigated. In another experiment, the effect on seed germination of warm and chilling treatments in combination with exogenous hormones was investigated. Following treatment, the seeds were allowed to germinate at a constant 15°C with 8 h lighting per day or 20 (dark)/30°C (light). Seed lot effects were evident, but were consistent across treatments. Seeds adjusted to the lower target MC level (TMC) maintained high germination potential over a longer period of treatment than in those held in the fully imbibed (FI) state. The highest germination was achieved in the TMC seeds that were given six weeks warm treatment followed by 32 weeks chilling. Hormone treatments significantly reduced the amount of chilling needed to release dormancy in TMC seeds, but not in the FI seeds. Overall, germination response was better at 15°C test temperature than at 20/30°C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号