首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 12 毫秒
1.
2.
3.
This study analyzes the evolution of the research field of industrial symbiosis (IS). We elucidate its embedding in industrial ecology (IE), trace the development of research themes, and reveal the evolution of the research network through analysis of the core literature and journals that appeared from 1997 to 2012 by citation analysis, cocitation analysis, and network analysis. In the first period (1997–2005), IS research held a minority share in the IE literature. The research revolved around the concept of IS, the assessment of eco‐industrial park projects, and the establishment of waste treatment and recycling networks. In the second period (2006–2012), diverse research approaches and theories enriched the field, which has led to a maturation in theory building. Our findings clearly illustrate that IS evolved from practice‐oriented research toward coherent theory building through a systematic underpinning and linking of diverse topics. As scientific attention shifted from exploring a phenomenon to elucidating underlying mechanisms, IS knowledge found worldwide practical implementation. The coauthorship network shows that the academic communities of IS are distributed worldwide and that international collaboration is widespread. Through bibliometric and network analysis of IS, we have created a systemic, quantitative image of the evolution of the IS research field and community, which gives IS researchers an underpinned overview of the IS research and may help them to identify new directions and synergy in worldwide research.  相似文献   

4.
Living organisms constantly interact with their habitats, selectively taking up compounds from their surroundings to meet their particular needs but also excreting metabolic products and thus modifying their environment. The small size, ubiquity, metabolic versatility, flexibility, and genetic plasticity (horizontal transfer) of microbes allow them to tolerate and quickly adapt to unfavorable and/or changing environmental conditions. The consumption of resources and the formation of metabolic products by spatially separated microbial populations constitute the driving forces that lead to chemical gradient formation. Communication and cooperation, both within and among bacterial species, have produced the properties that give these organisms a selective advantage. Observations of a wide range of natural habitats have established that bacteria do not function as individuals; rather, the vast majority of bacteria in natural and pathogenic ecosystems live in biofilms, defined as surface-associated, complex aggregates of bacterial communities that are attached to solid substrates and embedded in a polymer matrix of their own production. The spatial configurations of biofilms reach levels of complexity nearing those of multicellular eukaryotes. Microbial consortia have played important roles throughout the history of life on Earth, from the microbial mats (a type of biofilm) that were probably the first ecosystems in the early Archean, to the complex microbiota of the intestinal tract of different animals.  相似文献   

5.
While much work has been done on the conditions surrounding the emergence and establishment of industrial symbiosis (IS), new attention is being paid to understanding the evolution of IS over time. We demonstrate empirically how a new, facilitated IS initiative developed and evolved over an 8‐year period. We explore its network evolution by considering how the facilitator's actions enabled and precluded two fundamental network processes—serendipitous and goal‐directed processes. We discuss implications for a more generalized theory of IS development by exploring why and how different evolutionary trajectories may unfold.  相似文献   

6.
Mutualistic symbioses are considered to evolve from parasitic relationships. Vertical transmission, defined as the direct transfer of infection from a parent organism to its progeny, has been suggested as a key factor causing reduction of symbiont virulence and evolution of mutualism. On the other hand, there are several mutualistic associations without vertical transmission, such as those between plants and mycorrhizal fungi, legumes and rhizobia, and some corals and dinoflagellates. It is expected that all mutualisms evolve perfect vertical transmission if the relationship is really mutualistic, because hosts may fail to acquire symbionts if they do not transmit the symbionts by vertical transmission. We have developed a mathematical model to clarify the conditions under which mutualistic symbiosis without vertical transmission should evolve. The evolution may occur when and only when (i) vertical transmission involves some costs in the host, (ii) the symbiont suffers direct negative effects if it exploits the host too intensively, (iii) the host establishes the ability to make use of waste products from the symbiont, and (iv) the mechanism of vertical transmission is controlled by the host. We also clarify the conditions under which mutualistic symbiosis with vertical transmission evolves.  相似文献   

7.
VA菌根共生的起源和进化   总被引:10,自引:2,他引:10  
VA菌根共生的起源和进化赵之伟(云南大学生物学系,昆明650091)OriginandEvolutionoftheVAMycorrhizalSymbiosis.ZhaoZhiwei(BiologyDepartmentofYunnanUniversit...  相似文献   

8.
Insect-fungus interactions range from agonistic to mutualistic,and include several spectacular examples of complex symbioses.A potential benefit of mycophagy (the ingestion of fungal tissue)is the augmentation of digestive capacity by the ingestion offungal enzymes that remain active in the gut following ingestion.Cellulose digestion is mediated by ingested fungal enzymes inthe wood-boring larvae of cerambycid beetles and siricid woodwasps,in detritus-feeding stonefly nymphs, and in the workers of fungus-growingtermites. In this paper I discuss a plausible scenario for theevolution of stable symbiotic insect-fungus associations, inwhich the augmentation of digestive capacity through the ingestionof fungal enzymes is an important factor leading to the establishmentof interdependence between the interacting partners in a mutualism.Ingested fungal enzymes play a different role in the mutualisticassociation of the attine ants and their symbiotic fungi. Analyses of the associations of the siricid woodwasps, fungus-growingtermites, and fungus-growing ants with their symbiotic fungipermit the testing of Law's (1985) predictions concerning theconsequences of evolution in a mutualistic environment. As predicted,the rate of speciation has been slower in the protected partnerthan in the host partner, selection has favored asexual reproductionin the protected partner, and, at least in the attine ant-fungussymbiosis, the protected partner exhibits a low degree of specificitytoward different host species. Insect-fungus interactions provide rich material for the studyof both mechanistic and theoretical aspects of mutualism.  相似文献   

9.

Background

Deep-sea mussels harboring chemoautotrophic symbionts from hydrothermal vents and seeps are assumed to have evolved from shallow-water asymbiotic relatives by way of biogenic reducing environments such as sunken wood and whale falls. Such symbiotic associations have been well characterized in mussels collected from vents, seeps and sunken wood but in only a few from whale falls.

Methodology/Principal Finding

Here we report symbioses in the gill tissues of two mussels, Adipicola crypta and Adipicola pacifica, collected from whale-falls on the continental shelf in the northwestern Pacific. The molecular, morphological and stable isotopic characteristics of bacterial symbionts were analyzed. A single phylotype of thioautotrophic bacteria was found in A. crypta gill tissue and two distinct phylotypes of bacteria (referred to as Symbiont A and Symbiont C) in A. pacifica. Symbiont A and the A. crypta symbiont were affiliated with thioautotrophic symbionts of bathymodiolin mussels from deep-sea reducing environments, while Symbiont C was closely related to free-living heterotrophic bacteria. The symbionts in A. crypta were intracellular within epithelial cells of the apical region of the gills and were extracellular in A. pacifica. No spatial partitioning was observed between the two phylotypes in A. pacifica in fluorescence in situ hybridization experiments. Stable isotopic analyses of carbon and sulfur indicated the chemoautotrophic nature of A. crypta and mixotrophic nature of A. pacifica. Molecular phylogenetic analyses of the host mussels showed that A. crypta constituted a monophyletic clade with other intracellular symbiotic (endosymbiotic) mussels and that A. pacifica was the sister group of all endosymbiotic mussels.

Conclusions/Significance

These results strongly suggest that the symbiosis in A. pacifica is at an earlier stage in evolution than other endosymbiotic mussels. Whale falls and other modern biogenic reducing environments may act as refugia for primal chemoautotrophic symbioses between eukaryotes and prokaryotes since the extinction of ancient large marine vertebrates.  相似文献   

10.
11.
12.
Polyembryony, referring here to situations where a nucellar embryo is formed along with the zygotic embryo, has different consequences for the fitness of the maternal parent and offspring. We have developed genetic and inclusive fitness models to derive the conditions that permit the evolution of polyembryony under maternal and offspring control. We have also derived expressions for the optimal allocation (evolutionarily stable strategy, ESS) of resources between zygotic and nucellar embryos. It is seen that (i) Polyembryony can evolve more easily under maternal control than under that of either the offspring or the ‘selfish’ endosperm. Under maternal regulation, evolution of polyembryony can occur for any clutch size. Under offspring control polyembryony is more likely to evolve for high clutch sizes, and is unlikely for low clutch sizes (<3). This conflict between mother and offspring decreases with increase in clutch size and favours the evolution of polyembryony at high clutch sizes, (ii) Polyembryony can evolve for values of “x” (the power of the function relating fitness to seed resource) greater than 0.5758; the possibility of its occurrence increases with “x”, indicating that a more efficient conversion of resource into fitness favours polyembryony. (iii) Under both maternal parent and offspring control, the evolution of polyembryony becomes increasingly unlikely as the level of inbreeding increases, (iv) The proportion of resources allocated to the nucellar embryo at ESS is always higher than that which maximizes the rate of spread of the allele against a non-polyembryonic allele.  相似文献   

13.
Parasitism among aquatic invertebrates is common, if not ubiquitous,and can be pathological to hosts. However, host evolution inresponse to parasitism has received little attention, particularlyfor marine invertebrates. Drawing on the rich literature demonstratingprey adaptations to predators, I develop analogous predictionsfor the ways in which host life histories may be molded by theirparasites. Such adaptations are expected when the effects ofparasites are severe and when the probability of infection ishigh. Predicted life history changes include the evolution ofsemelparity, reduced age at first reproduction and reduced sizeat first reproduction. Using Recent and fossil populations oftwo bivalves species in the genusTransennella, I show that theincidence of trematode parasites may explain a trend of reducedsize through time and contribute to the maintenance of sexualdimorphism for size.  相似文献   

14.
Eukaryotes have evolved and diversified in the context of persistent colonization by non-pathogenic microorganisms. Various resident microorganisms provide a metabolic capability absent from the host, resulting in increased ecological amplitude and often evolutionary diversification of the host. Some microorganisms confer primary metabolic pathways, such as photosynthesis and cellulose degradation, and others expand the repertoire of secondary metabolism, including the synthesis of toxins that confer protection against natural enemies. A further route by which microorganisms affect host fitness arises from their modulation of the eukaryotic-signaling networks that regulate growth, development, behavior, and other functions. These effects are not necessarily based on interactions beneficial to the host, but can be a consequence of either eukaryotic utilization of microbial products as cues or host–microbial conflict. By these routes, eukaryote–microbial interactions play an integral role in the function and evolutionary diversification of eukaryotes.Eukaryotes do not live alone. They bear living cells of bacteria (Eubacteria and Archaea), and often eukaryotic microorganisms, on their surfaces and internally without any apparent ill effect. Furthermore, there is now persuasive evidence that all extant eukaryotes are derived from an association with intracellular bacteria within the Rickettsiales that evolved into mitochondria (Williams et al. 2007), with the implication that this propensity to form persistent associations has very ancient evolutionary roots. In this respect, the eukaryotes are different from the bacteria, among which only a subset associate with eukaryotes, specifically members of about 11 of an estimated 52 phyla of Eubacteria (Sachs et al. 2011) and a tiny minority of Archaea (Gill and Brinkman 2011).The current interest in the microbiota associated with eukaryotes stems from key technological advances for culture-independent analysis of microbial communities, especially high-throughput sequencing methods to identify and quantify microorganisms (Caporaso et al. 2011; Zaneveld et al. 2011). The Human Microbiome Project (commonfund.nih.gov), MetaHIT (metahit.eu), and other initiatives are yielding unprecedented information on the taxonomic diversity and functional capabilities of microorganisms associated with humans, other animals, and also plants, fungi, and unicellular eukaryotes (the protists), as well as abiotic habitats (Qin et al. 2010; Muegge et al. 2011; Human Microbiome Project 2012a; Lundberg et al. 2012; Bourne et al. 2013). Much of this research has focused on the Eubacteria, but eukaryotic members of the microbiota, especially the fungi, are increasingly being investigated (Iliev et al. 2012; Findley et al. 2013).Although driven by technological change, these culture-independent studies of the microbiota of humans and other eukaryotes are having profound consequences for our conceptual understanding. In particular, there is a growing appreciation that the germ theory of disease, which has played a crucial role in improving public health and food production through the 20th century, has also led to the widespread but erroneous belief that all microorganisms associated with animals and plants are pathogens. This outmoded perception is increasingly being replaced by the recognition that eukaryotes are chronically infected with benign and beneficial microorganisms, and that disease can result from disturbance to the composition or activities of the microbiota (McFall-Ngai et al. 2013; Stecher et al. 2013).This article reviews the pervasive impact of symbiosis with microorganisms on the traits of their eukaryotic hosts and the resultant consequences for the evolutionary history of eukaryotes. For the great majority of associations, the effects of symbiosis can be attributed to two types of interaction. The first interaction—“symbiosis as a source of novel capabilities”—is founded on metabolic or other traits possessed by the microbial partner but not the eukaryotic host. By gaining access to these capabilities, eukaryotes have repeatedly derived enhanced nutrition, defense against natural enemies, or other selectively important characteristics. The second interaction—“the symbiotic basis of health”—comprises the improved vigor and fitness that eukaryote hosts gain through microbial modulation of multiple traits, including growth rates, immune function, nutrient allocation, and behavior, even though the effects cannot be ascribed to specific microbial capabilities absent from the host. There is increasing evidence that the health benefits of symbiosis are commonly a consequence of microbial modulation of the signaling networks by which the growth and physiological function of eukaryote hosts are coordinated.This article comprises three sections: the two types of interaction are considered in turn, with the key patterns and processes illustrated by specific examples from a range of symbioses in animals, plants, and other eukaryotes; and the concluding comments address some key unanswered questions about symbiosis in eukaryotes. This article does not review the full diversity of associations made in this article on the general principles of symbiosis in eukaryotic evolution; interested readers are referred to Douglas (2010).  相似文献   

15.
《Journal of bacteriology》2009,191(8):2501-2511
The family Rhizobiaceae contains plant-associated bacteria with critical roles in ecology and agriculture. Within this family, many Rhizobium and Sinorhizobium strains are nitrogen-fixing plant mutualists, while many strains designated as Agrobacterium are plant pathogens. These contrasting lifestyles are primarily dependent on the transmissible plasmids each strain harbors. Members of the Rhizobiaceae also have diverse genome architectures that include single chromosomes, multiple chromosomes, and plasmids of various sizes. Agrobacterium strains have been divided into three biovars, based on physiological and biochemical properties. The genome of a biovar I strain, A. tumefaciens C58, has been previously sequenced. In this study, the genomes of the biovar II strain A. radiobacter K84, a commercially available biological control strain that inhibits certain pathogenic agrobacteria, and the biovar III strain A. vitis S4, a narrow-host-range strain that infects grapes and invokes a hypersensitive response on nonhost plants, were fully sequenced and annotated. Comparison with other sequenced members of the Alphaproteobacteria provides new data on the evolution of multipartite bacterial genomes. Primary chromosomes show extensive conservation of both gene content and order. In contrast, secondary chromosomes share smaller percentages of genes, and conserved gene order is restricted to short blocks. We propose that secondary chromosomes originated from an ancestral plasmid to which genes have been transferred from a progenitor primary chromosome. Similar patterns are observed in select Beta- and Gammaproteobacteria species. Together, these results define the evolution of chromosome architecture and gene content among the Rhizobiaceae and support a generalized mechanism for second-chromosome formation among bacteria.  相似文献   

16.
Toxinogenic endobacteria were isolated from a collection of Rhizopus spp. representing highly diverse geographic origins and ecological niches. All endosymbionts belonged to the Burkholderia rhizoxinica complex according to matrix-assisted laser desorption ionization-time of flight biotyping and multilocus sequence typing, suggesting a common ancestor. Comparison of host and symbiont phylogenies provides insights into possible cospeciation and horizontal-transmission events.Bacterial symbionts and their metabolic potential play essential roles for many organisms. They may benefit from improved fitness, survival, and even acquired virulence (7, 12, 22). In the course of our studies of the biosynthesis of rhizoxin, the causative agent of rice seedling blight (10), we found that the phytotoxin is produced not by the fungus Rhizopus microsporus but by symbiotic bacteria (Burkholderia rhizoxinica) that reside within the fungus cytosol (13, 15, 23). Furthermore, cloning and sequencing of the rhizoxin biosynthesis gene cluster revealed the molecular basis of bacterial toxin production (14). In sum, this represents an unparalleled example for a symbiosis in which a fungus harbors bacteria for the production of a virulence factor. In analogy, we found that the first reported “mycotoxins” from lower fungi, the highly toxic cyclopeptides rhizonin A and B (25, 28), are also produced by symbiotic bacteria (Burkholderia endofungorum) and not by the fungus (16). While both rhizoxins and rhizonins have been believed to promote zygomycoses (21), there is no indication for toxin-producing endosymbiotic bacteria in clinical isolates (18).In nature, toxin production plays a pivotal role in the development of the fungus-bacterium association. Studies of the evolution of host resistance indicate that the association resulted from a pathogenicity mutualism shift in insensitive zygomycetes (24). The fungus lost its ability to sporulate independently and became totally dependent on endobacteria for reproduction through spores, thus warranting the persistence of the symbiosis and its efficient distribution through vegetative spores (17).To gain a broader view of the occurrence, biosynthetic potential, and relationship of toxinogenic endofungal bacteria, we investigated a collection of Rhizopus spp. consisting of 20 isolates classified as R. microsporus (of which 13 belong to R. microsporus var. microsporus, four to R. microsporus var. chinensis, two to R. microsporus var. oligosporus, and one to R. microsporus var. rhizopodiformis), one isolate classified as Rhizopus sp., and one Rhizopus oryzae strain. We initially monitored the presence of bacterial symbionts by PCR using universal primers (16S rRNA genes) and rhizoxin production in all available Rhizopus strains. Liquid cultivation of fungi in production medium with and without antibiotic followed by organic solvent extraction yielded crude extracts that were analyzed by high-performance liquid chromatography (HPLC) and mass spectrometry (MS). In total, eight fungal strains were identified or confirmed as rhizoxin positive and thus expected to harbor endosymbionts. In all cases, this assumption was verified by PCR and confocal scanning microscopy. By means of an optimized protocol, we finally succeeded in the isolation and cultivation of all eight bacterial symbiont strains in pure cultures (isolates B1 to B8) (Table (Table11).

TABLE 1.

Fungal strains and their bacterial endosymbionts
TaxonStrain designationaOriginBacterial endosymbiont (isolate)
Rhizopus microsporus van TieghemATCC 62417Rice seedlings, JapanBurkholderia rhizoxinica HKI-0454 (B1)
Rhizopus sp. strain F-1360ATCC 20577Soil, JapanBurkholderia sp. strain HKI-0512 (B2)
Rhizopus microsporus Tieghem var. microsporusCBS 111563Sufu starter culture, rice wine tablet, VietnamBurkholderia sp. strain HKI-0455 (B3)
Rhizopus microsporus Tieghem var. microsporusCBS 699.68Soil, UkraineBurkholderia sp. strain HKI-402 (B4)
Rhizopus microsporus TieghemCBS 112285Ground nuts, MozambiqueBurkholderia endofungorum HKI-0456 (B5)
Rhizopus microsporus var. chinensis (Saito) Schipper & StalpersCBS 261.28Not specified, United States of AmericaBurkholderia sp. strain HKI-0513 (B6)
Rhizopus microsporus Tieghem var. microsporusCBS 700.68Forest soil, GeorgiaBurkholderia sp. strain HKI-0403 (B7)
Rhizopus microsporus Tieghem var. microsporusCBS 308.87Man, from deep necrotic tissue within the hand following a spider bite, AustraliaBurkholderia sp. strain HKI-0404 (B8)
Open in a separate windowaATCC, American Type Culture Collection, Manassas, VA; CBS, Centraalbureau voor Schimmelcultures, Utrecht, The Netherlands.Notably, the eight Rhizopus isolates are from geographically distinct collection sites, covering all five continents (Africa, America, Asia, Australia, and Europe) and representing diverse ecological niches of the host (plants, soil, food, and necrotic tissue) (Fig. (Fig.1;1; Table Table1).1). HPLC and MS analyses of the metabolic profiles and comparison with authentic references revealed that all endofungal bacterial strains are capable of producing considerable amounts of rhizoxin derivatives 1 to 7 (23) (Fig. (Fig.2).2). Among the rhizoxin derivatives, rhizoxin S2 (derivative 3) is the main product formed by all isolates, followed by compounds WF-1360F (derivative 6) (11), rhizoxin Z1 (derivative 4), and rhizoxin S1 (derivative 1) (23), while derivatives 2, 5, and 7 are formed only in minor amounts. Significant differences in production of rhizoxins were not found among the isolates (see Fig. S1 in the supplemental material). Only one isolate, Burkholderia endofungorum HKI-0456 (isolate B5), also produces the hepatotoxic cyclopeptides rhizonin A (derivative 8) and B (derivative 9) under laboratory conditions (16).Open in a separate windowFIG. 1.Survey of collection sites of toxinogenic R. microsporus strains used in this study.Open in a separate windowFIG. 2.Structures of the main rhizoxin derivatives (derivatives 1 to 7) produced by all eight fungal endosymbionts (isolates B1 to B8) and structures of rhizonin A and B (derivatives 8 and 9), produced by the symbiont B. endofungorum HKI-0456 (isolate B5).A preceding phylogenetic analysis of the 16S rRNA gene of the type strains B. rhizoxinica HKI-0454 (B1) and B. endofungorum HKI-0456 (B5) showed that both isolates belong to the genus Burkholderia (13). Although the two strains resemble each other in terms of endofungal lifestyle and physiology, DNA-DNA hybridization experiments enforced the division of the two isolates into two distinct species. To establish the taxonomic positions of all eight bacterial symbionts, we isolated genomic DNA from the recovered strains and obtained full-length 16S rRNA gene sequences by PCR using 16S universal primers (15). Sequence comparisons revealed that all isolated endosymbiotic bacteria are closely related to species of the genus Burkholderia.However, the close relationship of the symbionts is particularly intriguing considering the highly diverse collection localities of the host strains (Table (Table1).1). Despite the clear grouping of the bacteria associated with Rhizopus, the phylogenetic relationship within the endofungal symbiont complex could not be resolved by 16S rRNA gene data alone (see Fig. S2 in the supplemental material). Several computational methods failed to infer a statistically meaningful phylogeny. To overcome uncertainties in the 16S rRNA gene and biotyping analyses and to further characterize the genotypes of the eight isolates of the B. rhizoxinica complex, we performed a multilocus sequence typing (MLST) analysis. Seven conserved gene loci from all isolates were amplified by PCR, sequenced, and phylogenetically analyzed. To facilitate the comparison with an MLST study of the related bacterium Burkholderia pseudomallei (8), fragments of the following genes were chosen: ace (acetoacetyl-coenzyme A reductase), gltB (glutamate synthase, large subunit), gmhD (ADP-l-glycero-d-manno-heptose-6-epimerase), lepA (GTP-binding protein), lipA (lipoate synthase), and ndh (NADH:ubiquinone oxidoreductase). Shotgun sequencing of the genomes of two symbiont isolates indicated that the narK locus used in the B. pseudomallei study is obviously not present in the endofungal Burkholderia strains (G. Lackner, L. P. Partida-Martinez, and C. Hertweck, unpublished results). Therefore, as a characteristic feature of the ecotype, a locus from the rhizoxin biosynthesis gene cluster, rhiE (14), was sequenced in all isolates. The rhiE locus codes for a part of the polyketide synthase involved in rhizoxin biosynthesis in endofungal bacteria (14). It should be mentioned that a homologous rhizoxin biosynthesis gene cluster has been identified in the phylogenetically distant strain Pseudomonas fluorescens Pf-5 (3, 19).All loci were analyzed independently to test for incongruence between the data sets. The majority of the single-locus trees yielded a topology similar to that shown in Fig. S3 in the supplemental material. Only the ace locus resulted in a different tree: it showed a split (Eurasian, B8) (B5, others) different from the split (Eurasian, B5) (B8, others) found in the majority of single-locus trees (gltB, gmhD, and lipA) (see Fig. S3 in the supplemental material). The remaining loci (lepA, ndh, and rhiE) failed to infer statistically supported clades containing the strain B5 or B8. The phi test for recombination implemented in the program SplitsTree4 (5, 9a) indicated evidence for recombination, if the ace locus was included in the data set (P = 0.044). The removal of the ace locus abolished the signal. We conducted concatenated analyses including gltB, gmhD, lipA, lepA, ndh, and rhiE in the presence and absence of the ace locus. The resulting phylogenetic trees were recovered using distance matrix, maximum-parsimony, and Bayesian methods (see Fig. S3 and S4 in the supplemental material). We found that the tree topology is independent from the presence or absence of the ace locus. An alternative way to illustrate the phylogenetic groupings is in a network (9) (Fig. (Fig.3).3). The type strain B. rhizoxinica HKI-0454 (isolate B1) and isolate B6 share identical alleles in all sequenced loci and thus could be considered the same species. This high degree of similarity is supported by matrix-assisted laser desorption ionization protein profiling (see Fig. S5 in the supplemental material). However, it is remarkable that the geographic origins of isolates B1 and B6 (Japan and the United States, respectively) are different. Another member of this “Pacific group,” isolate B2 from Japan, is the closest relative. This observation strongly suggests that the Japanese and U.S. isolates have a common ancestor. Another highly supported clade, the “Eurasian group,” consists of the isolates B3 (Vietnam), B4 (Ukraine), and B7 (Georgia). Again, strain B3 and B7 are highly similar at the nucleotide level despite their geographic distance. Although related to this clade, the B. endofungorum type strain HKI-0456 (isolate B5), isolated from ground nuts in Mozambique, is unique in both genotypic and phenotypic aspects. Isolate B8 from Australia is related even more remotely to all other strains. The phylogenetic data obtained in this study suggest that all Burkholderia symbiont strains found in Rhizopus have a common ancestor.Open in a separate windowFIG. 3.Phylogenetic network of the endofungal symbiont complex (isolates B1 to B8) and B. pseudomallei (BPS), based on MLST. The graph was obtained by the neighbor-net method, implemented with the SplitsTree4 program. Uncertainties in the data are visualized by the network structure in the center.To test whether the phylogenetic data obtained from the MLST analysis contain further information about the evolution of the endofungal symbiosis, we analyzed the extent of detectable recombination in the data set. The presence of recombination could be explained by the exchange of genetic material between bacterial lineages that might have occurred during horizontal transmission of endosymbionts. Less likely, recombination could mean that the mutualistic association was established several times in some of the lineages.The number of incompatible splits in the center of the phylogenetic-network structure (Fig. (Fig.3)3) leaves some uncertainty about the correct placement of the strains B8 and B5, and the phi test for recombination indicated evidence for recombination if the ace locus was included. However, recombination does not appear to be a dominant factor in the evolution of the core genome of the known endosymbionts. Notably, the strong congruence between the trees retrieved from the symbiont data is in stark contrast to the recently reported high rate of recombination in free-living Burkholderia spp. (2, 6). Presumably, this is not due to a lack of recombination machinery, as homologous recombination works fine in at least three of the strains under laboratory conditions. Rather, we assume that the mainly vertically transmitted and geographically separated symbionts have evolved primarily separately from each other. Remaining traces of recombination might be hints of coinfection events in the early history of the symbiosis.Another genetic feature of the endosymbionts presented here is their relatively low GC content compared to that for related, but free-living Burkholderia species. The bacterial endosymbiont of aphids, Buchnera aphidicola, is known to have some mutational bias toward low GC content (26). Indeed, all of the endosymbionts have significantly lower GC contents than their sequenced free-living relatives, e.g., B. pseudomallei, Burkholderia thailandensis, and Burkholderia cenocepacia, in all conserved loci (see Fig. S6 in the supplemental material). Although the data obtained in this study are only preliminary evidence and future studies at the whole-genome level could certainly provide more insights into the nucleotide evolution of fungal endosymbionts, it is possible that mechanisms similar to those for Buchnera species are responsible for the reduced GC content in the fungal endosymbionts. The observation that the reduction in GC content is not as striking as that in Buchnera species is then well in accordance with the expectation that the fungus-bacterium endosymbiosis is young compared to the Buchnera-aphid mutualistic relationship.To obtain hints about possible cospeciation or horizontal-transmission events, we compared the phylogenetic relationships between the endobacteria and their fungal hosts. Nucleotide sequences of the 18S ribosomal DNA (rDNA), 28S rDNA, and internal transcribed spacer (ITS) regions were chosen to elucidate phylogenetic relationships between fungal hosts (1). These attempts were hampered since 18S rDNA sequences were highly conserved among the fungal isolates. The only variable site distinguished symbiotic from nonsymbiotic R. microsporus strains (see Fig. S7 in the supplemental material). 28S rDNA sequences are known to accumulate single nucleotide changes at a relatively low rate as well (27). Our 28S rDNA data set, with a total length of 604 nucleotides, contained only eight variable sites. With three of them being parsimony informative, no meaningful phylogram could be inferred from the 28S rDNA sequences. The ITS region is known to evolve more rapidly and is used to provide discrimination within species (27). The curated ITS alignments consisted of 621 sites, 14 being variable and 10 being parsimony informative. Four short insertions or deletions, which are mostly ignored by phylogeny inference software, were found. The phylogram based on both ITS data sets was juxtaposed with the endosymbiont tree determined by MLST (Fig. (Fig.4).4). The host strains of the Burkholderia sp. isolates B1, B2, and B6 (ATCC 62417, ATCC 20577, and CBS 261.28, respectively) were identical and reproduced the Pacific group of endobacteria. Strikingly, in contrast to their bacterial partners, the fungal host strains CBS 308.87 (Burkholderia sp. isolate B8) from Australia and CBS 111563 (Burkholderia sp. isolate B3) from Vietnam are members of the Pacific group as well. The strains CBS 700.08 (Burkholderia sp. isolate B7) from Georgia and ATCC 699.68 (Burkholderia sp. isolate B4) from Ukraine appeared to represent the Eurasian branch. This group was known from the bacterial phylogeny, but the fungal clade missed the close relationship to CBS 111563 (Burkholderia sp. isolate B3). Again, the African branch, consisting exclusively of CBS 112285 (Burkholderia sp. isolate B5), shared a common ancestor with the Eurasian group. These results are in accordance with cospeciation of some fungal hosts and their endosymbionts, especially for Burkholderia sp. isolates B1, B2, and B6 and B5, B4, and B7 (Fig. (Fig.4).4). However, there might be first evidence for some host switching events in the history of the endofungal bacteria (Burkholderia sp. isolates B3 and B8). Although this hypothesis is based mainly on a few informative sites within the ITS data set, three insertion or deletion events within the alignment support the extended Pacific group (Burkholderia sp. isolates B1, B2, B6, B3, and B8), indicating the horizontal transfer of symbionts and/or genetic material between strains. While it is possible that multiple events led to this unusual symbiosis, a scenario in which all symbiont strains are derived from an ancestral association seems to be more likely. The endosymbiont-dependent sporulation of the host strain indicates that the fungus-bacterium interaction is highly specialized. Furthermore, vertical transmission of the symbionts through spores is an efficient strategy for rapid distribution (4, 20). Nonetheless, our data suggest that the horizontal transmission of symbionts might also have played a role during the evolution of the endofungal bacteria.Open in a separate windowFIG. 4.Juxtaposition of phylogenetic trees derived from the MLST data of the endofungal symbiont complex (isolates B1 to B8) and the ITS sequence data of the fungal host (strain designations of fungal isolates of the genus Rhizopus are given). Dashed lines are representative of a symbiotic relationship. The numbers on top of the branches indicate the clade probability values. Shading designates similar clade affiliations for the bacterial symbiont and the fungal host.In conclusion, we have investigated eight bacterial endosymbiont strains isolated from toxinogenic R. microsporus strains in pure culture. All isolates are representatives of the same unique “endofungal” ecotype, albeit the hosts'' origins cover all five continents and occur in highly diverse niches. The bacterial endosymbionts share characteristic phenotypic traits, like secondary metabolite production and protein profile, as demonstrated by HPLC-MS and matrix-assisted laser desorption ionization-time of flight biotyping, respectively. Phylogenetic analyses (16S rRNA genes) provide strong evidence that all symbiont strains originate from a common ancestor and form a new complex within the genus Burkholderia. This observation is strongly supported by MLST, according to which all eight symbiont isolates can be grouped into continental branches. Results revealing both similar and deviating geographical groupings of fungal isolates in comparison to bacterial endosymbionts allow hypothesizing about the possible cospeciation of fungal and bacterial symbionts and some extent of horizontal-transmission events. All bacterial strains investigated seem to have evolved mainly separately from each other, not showing extensive recombination. In addition, we present preliminary evidence that there might be a mutational bias toward high AT contents, as is known for other endosymbiotic bacteria.  相似文献   

17.
18.
19.
Natural selection favors alleles that increase the number of offspring produced by their carriers. But in a world that is inherently uncertain within generations, selection also favors alleles that reduce the variance in the number of offspring produced. If previous studies have established this principle, they have largely ignored fundamental aspects of sexual reproduction and therefore how selection on sex-specific reproductive variance operates. To study the evolution and consequences of sex-specific reproductive variance, we present a population-genetic model of phenotypic evolution in a dioecious population that incorporates previously neglected components of reproductive variance. First, we derive the probability of fixation for mutations that affect male and/or female reproductive phenotypes under sex-specific selection. We find that even in the simplest scenarios, the direction of selection is altered when reproductive variance is taken into account. In particular, previously unaccounted for covariances between the reproductive outputs of different individuals are expected to play a significant role in determining the direction of selection. Then, the probability of fixation is used to develop a stochastic model of joint male and female phenotypic evolution. We find that sex-specific reproductive variance can be responsible for changes in the course of long-term evolution. Finally, the model is applied to an example of parental-care evolution. Overall, our model allows for the evolutionary analysis of social traits in finite and dioecious populations, where interactions can occur within and between sexes under a realistic scenario of reproduction.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号