首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Because of the magnitude of land use currently occurring in tropical regions, the local loss of animal species due to habitat fragmentation has been widely studied, particularly in the case of vertebrates. Many invertebrate groups and the ichneumonid wasps in particular, however, have been poorly studied in this context, despite the fact that they are one of the most species-rich groups and play an important role as regulators of other insect populations. Here, we recorded the taxonomic composition of ichneumonid parasitoids and assessed their species richness, abundance, similarity, and dominance in the Los Tuxtlas tropical rain forest, Mexico. We compared two forest types: a continuous forest (640 ha) and a forest fragment (19 ha). We sampled ichneumonids using four malaise traps in both forest types during the dry (September–October) and rainy (March–April) seasons. A total of 104 individuals of Ichneumonidae belonging to 11 subfamilies, 18 genera, and 42 species were collected in the continuous forest and 11 subfamilies, 15 genera, and 24 species were collected in the forest fragment. Species richness, abundance, and diversity of ichneumonids were greater in the continuous forest than in the forest fragment. We did not detect differences between seasons. Species rank/abundance curves showed that the ichneumonid community between the forest types was different. Species similarity between forest types was low. The most dominant species in continuous forest was Neotheronia sp., whereas in the forest fragment, it was Orthocentrus sp. Changes in the ichneumonid wasp community may compromise important tropical ecosystem processes.  相似文献   

3.
4.
Despite the importance of the soil seed bank in tropical forest regeneration, little is known about spatial variability in species composition and abundance of seeds stored in the soil. To develop sampling methods for comparative studies, we examined species richness, spatial variation, and abundance of germinants from the soil seed bank in a 16 year old secondary, tropical wet forest at La Selva Biological Station, Costa Rica. Surface soil (10 cm deep, 4.7 cm diameter) was collected at the intersection points of a gridded 1 ha plot (10 × 10-m grid, 121 samples) and in a nested 100 m2 subplot (2 × 2-m grid, 36 samples). The 1 ha plot had a density of 4535 seeds/m2 with 34 species observed. Based on a series of 100 randomized species accumulation curves, a Michaelis-Menten fit predicted a mean species richness of 36.3 species; the number of observed species was close to the predicted asymptote. A nonparametric, first-order jackknife species richness estimator predicted a species richness of 37.0 species. Eighty-five and 95 percent of the observed species richness is contained, on average, within 41 and 74 pooled samples, respectively. Within the 100 m2 nested subplot, a density of 5476 seeds/m2 was observed, comprising 26 species with an estimated species richness (Michaelis-Menten fit) of 29.1 species. The jackknife species richness estimator predicted a species richness of 36.7 species. For species richness and abundance of both plots, spatial autocorrelation statistics (Moran's I) were not significantly different from zero at lag distances from 2 to 100 m, indicating a random distribution at these spatial scales. For this site, accurate estimates of species composition depend upon the number of samples collected as well as the spatial distribution of sampling effort. Many small samples distributed over a large area provide greater accuracy and precision for estimating species richness of the soil seed bank.  相似文献   

5.
Rodents affect the post-dispersal fate of seeds by acting either as on-site seed predators or as secondary dispersers when they scatter-hoard seeds. The tropical forests of north-east India harbour a high diversity of little-studied terrestrial murid and hystricid rodents. We examined the role played by these rodents in determining the seed fates of tropical evergreen tree species in a forest site in north-east India. We selected ten tree species (3 mammal-dispersed and 7 bird-dispersed) that varied in seed size and followed the fates of 10,777 tagged seeds. We used camera traps to determine the identity of rodent visitors, visitation rates and their seed-handling behavior. Seeds of all tree species were handled by at least one rodent taxon. Overall rates of seed removal (44.5%) were much higher than direct on-site seed predation (9.9%), but seed-handling behavior differed between the terrestrial rodent groups: two species of murid rodents removed and cached seeds, and two species of porcupines were on-site seed predators. In addition, a true cricket, Brachytrupes sp., cached seeds of three species underground. We found 309 caches formed by the rodents and the cricket; most were single-seeded (79%) and seeds were moved up to 19 m. Over 40% of seeds were re-cached from primary cache locations, while about 12% germinated in the primary caches. Seed removal rates varied widely amongst tree species, from 3% in Beilschmiedia assamica to 97% in Actinodaphne obovata. Seed predation was observed in nine species. Chisocheton cumingianus (57%) and Prunus ceylanica (25%) had moderate levels of seed predation while the remaining species had less than 10% seed predation. We hypothesized that seed traits that provide information on resource quantity would influence rodent choice of a seed, while traits that determine resource accessibility would influence whether seeds are removed or eaten. Removal rates significantly decreased (p < 0.001) while predation rates increased (p = 0.06) with seed size. Removal rates were significantly lower for soft seeds (p = 0.002), whereas predation rates were significantly higher on soft seeds (p = 0.01). Our results show that murid rodents play a very important role in affecting the seed fates of tropical trees in the Eastern Himalayas. We also found that the different rodent groups differed in their seed handling behavior and responses to changes in seed characteristics.  相似文献   

6.
We examined the interaction between a palm and two bruchid beetles along with several mammal species to explore how poachers and habitat fragmentation may indirectly alter the spatial pattern of seed dispersal, seed predation, and seedling recruitment in central Panama. The large, stony endocarps of Attalea butyraceae decay slowly and bear distinctive scars when opened by rodents or beetles. We determined the final distance between endocarps and reproductive trees (which we call an ecologically effective dispersal distance), the predation status of each endocarp, and the distance between seedlings and reproductive trees. The 68 focal trees were divided among 14 sites and four levels of anthropogenic disturbance. Levels of disturbance included full protection from poachers, light and heavy pressure from poachers, and small island habitat fragments. Ecologically effective seed dispersal distances were greatest for protected sites, intermediate for lightly poached sites, and shortest for heavily poached sites and habitat fragments. Seed predation by rodents increased with distance to the nearest reproductive Attalea and was greatest for fully protected sites, intermediate for lightly poached sites, and least for heavily poached sites and habitat fragments. Seed predation by beetles reversed the patterns described for seed predation by rodents. Total seed predation by beetles and rodents combined was independent of distance, greatest for fully protected sites, and lower for poached sites and habitat fragments. Seedling densities were always greatest close to reproductive trees; however, the increase in seedling densities close to reproductive trees was minimal for fully protected sites, clearly evident for poached sites, and pronounced for habitat fragments. Increased seedling recruitment near conspecific trees may in time reduce tree diversity where humans disrupt mammal communities.  相似文献   

7.
Plant communities differ in species composition and litter input. To examine the influence of plant species on the abundance and community structure of soil fauna, we sampled earthworms in areas close to and away from the bases of Dacryodes excelsa and Heliconia caribaea, two distinct plant communities within a tropical wet forest in Puerto Rico. We also carried out a litter manipulation experiment to examine the short–term responses of earthworms to litter removal and litter addition treatments. We found that: (1) the density and biomass of both soil–feeding endogeic and litter-feeding anccic worms did not differ between areas close to and away from Dacryodef trees (in contrast, the density and biomass of anecic worms was higher in areas away from Heliconia plants despite the lack of differences for endogeic worms); and (2) total dry weight of earthworms tended to be higher in the litter addition treatment than in the control within the Heliconia community. Our results suggest that Heliconia caribaea has a strong negative influence on anecic earthworms and that earthworms in the Heliconia community are more sensitive to litter input than in the Dacryodes community.  相似文献   

8.
Seed banks contribute to forest regeneration after disturbance, but less is known about fern spore banks, particularly in a paleotropical context. We sampled the buried seed and fern spore bank in Mabira Forest, a 300 km2 forest in central Uganda, to explore the effect of time since disturbance. Soil cores (5 cm depth) were taken from 39 plots across three different classes of ‘recovery’: (1) not disturbed since 1950; (2) logged between 1950 and 1980; and (3) cleared for agriculture between 1970 and 1990 but reforested since. Plant emergence was monitored in a glasshouse. We predicted that the seed bank would reflect time since disturbance, with more pioneer species in recently disturbed stands, and that the fern spore bank would reflect stand age less closely due to greater dispersal capacity. We recorded a median 752 seeds per square meter, most of which were trees; the most abundant species was the invasive tree Broussonetia papyrifera. The fern spore bank was twice as dense, but 95 percent of fern spores were of one species, Christella parasitica. Tree seed density was significantly affected by time since disturbance with fewer seeds in the older stands. Herb seed density, fern spore density, and species richness for all groups were not significantly affected by time since disturbance. Neither seed bank nor fern spore bank closely resembled the aboveground vegetation. We compared our results to existing literature on seed banks in tropical forests, finding that our densities are relatively high for African forests, but low compared to the Neotropics and Australia.  相似文献   

9.
This study applies a novel, vertically stratified fogging protocol to document arthropod abundance, density, and biomass across a vertical gradient in a primary, lowland dipterocarp forest canopy in Borneo. We fogged arthropods at 5 m vertical intervals and 20 m horizontal intervals along six full‐canopy transects and measured leaf surface areas along the same transects. The results show that arthropod biomass in the aboveground regions was 23.6 kg/ha, the abundance was 23.9 million individuals/ha, and the density on leaf surfaces was 280 individuals/m2 leaf area. All three numbers are five to ten times higher than estimated by previous surveys of tropical lowland rain forest canopies using mass‐collection techniques. Arthropod abundance and biomass were analyzed in relation to canopy structure, composition, vapor pressure deficit (VPD), photosynthetic photon flux density (PPFD), and height. Using stepwise regression we found that 13 of 14 arthropod groups had significant positive relationships with one‐sided leaf area, 11 had significant negative relationships with VPD, 3 had significant relationships with height, and none showed positive relationships with light. Classifying the 14 taxa based on their responses to leaf area and VPD created three groups that corresponded roughly to the biology of these taxa. This study suggests that the biomass and abundance, and perhaps therefore—by extrapolation—the biodiversity, of tropical canopy arthropods may be very much higher than previously estimated.  相似文献   

10.
Rapid deforestation has fragmented habitat across the landscape of Madagascar. To determine the effect of fragmentation on seed banks and the potential for forest regeneration, we sampled seed viability, density and diversity in 40 plots of 1 m2 in three habitat types: forest fragments, the near edge of continuous forest, and deforested savanna in a highly fragmented dry deciduous forest landscape in northwestern Madagascar. While seed species diversity was not different between forest fragments and continuous forest edge, the number of animal‐dispersed seeds was significantly higher in forest fragments than in continuous forest edge, and this pattern was driven by a single, small‐seeded species. In the savanna, seeds were absent from all but three of the 40 plots, indicating that regeneration potential is low in these areas. Several pre‐ and post‐dispersal biotic and abiotic factors, including variation in the seed predator communities and edge effects could explain these findings. Understanding the extent to which seed dispersal and seed banks influence the regeneration potential of fragmented landscapes is critical as these fragments are the potential sources of forest expansion and re‐connectivity.  相似文献   

11.
Hiroki Sato 《Biotropica》2012,44(4):479-488
In the Ankarafantsika tropical dry forest (northwestern Madagascar), the common brown lemur (Eulemur fulvus fulvus) is the largest frugivore and probably the sole disperser of large‐seeded plants (seed diameter > 10 mm). To investigate seed dispersal by this primate, I recorded the feeding activities of a troop; also conducted fecal analyses, germination trials on defecated seeds, and a vegetation survey over 1 yr (beginning Dec 2006). Brown lemurs mostly consumed fruit (68%). The fruit of Vitex beraviensis was the most exploited resource (21% of total feeding time). Among dung samples, 1126 contained intact seeds of 70 plant species, with a median of six seeds and two species per sample. These data indicate that the brown lemur population dispersed approximately 9854 seeds/km2/d. Although the number of annually defecated seeds was overwhelmingly the largest in Grewia triflora, many of the small seeds were often clumped in dung piles. In contrast, large seeds of V. beraviensis occurred in the largest number of dung samples. The rate and time of seed germination in V. beraviensis were improved by passage through brown lemur guts. Therefore, V. beraviensis may readily establish seedlings in sites of brown lemur fecal deposition. Vitex beraviensis and brown lemurs are probably involved in a strong mutualism. Twenty‐three large‐seeded plants were probably dependent on brown lemurs for seed dispersal and some of these species were common trees in the forest. Maintenance of these key plant–animal interactions will probably contribute to the conservation of species diversity and intact regeneration of the Ankarafantsika forest.  相似文献   

12.
We compared the seed fate of two animal‐dispersed, large‐seeded timber species (Dipteryx panamensis [Fabaceae] and Carapa guianensis [Meliaceae]) in logged and fragmented forests with that for continuous forest in northeastern Costa Rica. For both species, we quantified rates of seed removal (an index of vertebrate predation) and the fate of dispersed seeds (those carried away from their original location that either germinated or were not subsequently removed within three months). We predicted that (1) fewer seeds would be dispersed by vertebrates in fragmented forest than in continuous forest due to low population abundances after hunting and/or loss of suitable habitat, and (2) seed predation rates would be higher in forest fragments than in continuous forest due to high abundance of small‐bodied seed consumers. We compared three forest fragments currently managed for timber (140–350 ha) and a large reserve of continuous forest (La Selva, 1500 ha and connected to a national park). An exclusion experiment was performed (seeds placed in the open vs. seeds within semipermeable wire cages; 5 cm mesh size) to evaluate the relative roles of large and small animals on seed removal. Seed germination capacity did not differ among all four sites for both species. Removal of Dipteryx seeds was higher in forest fragments (50% removal within 10 days and related to the activity of small rodents) compared to La Selva (50% removal after 50 days). Also, more Dipteryx seeds were dispersed at La Selva than in fragmented forests. Contrary to our predictions, removal of Carapa seeds was equally high among all four sites, and there was a trend for more seeds of Carapa to be dispersed in fragments than in La Selva. Our results suggest that fragmentation effects on tree seed fate may be specific to species in question and contingent on the animal biota involved, and that management strategies for timber production based on regeneration from seed may differ between forest patches and extensive forests.  相似文献   

13.
Seed dispersal often limits tropical forest regeneration and animals disperse most rainforest tree seeds. This presents two important questions for restoration ecologists: (1) which animals are common seed dispersers? and (2) which restoration techniques attract them? Fourteen restoration sites were planted with four tree species in three designs, (1) controls (no planting, natural regeneration) (2) islands (trees planted in small patches), and (3) plantations (trees planted continuously over a large patch). We sampled birds in November, February, and April 2007–2008 with mist nets, in February and July 2009 with observations, and in July 2008 with both techniques. We documented 30 seed species from fecal samples of captured birds. All identified seed species were early‐successional forms. Four tanager species, three thrushes, two saltators, two flycatchers, and one finch were categorized as common seed dispersers, based on their high likelihood of dispersing seeds. Common dispersers were generalist species with small gape widths (<15 mm). Common dispersers were captured significantly more often in plantations than controls in most seasons and more often in plantations than islands during one season. Common disperser observations were significantly greater in plantations than controls during two periods and in plantations compared with islands in one period. Results indicate that plantation‐style planting is the conservative strategy to maximize attractiveness to common dispersers in tropical restoration sites. Island planting is an alternative when resources are limited although disperser activity may be lower in some seasons than in plantations. Additional research should investigate how to attract large, forest‐associated dispersers.  相似文献   

14.
15.
We evaluated the temporal and spatial patterns of abundance and the amount of damage caused by gall‐inducing insects (GII) in deciduous and riparian habitats in a seasonal tropical dry forest in Mexico. Plants occurring in these habitats differ in their phenology and moisture availability. Deciduous habitats are seasonal and xeric, while riparian habitats are aseasonal and mesic. We found 37 GII species and each one was associated with a specific plant species. In total, 19 species (51.3%) were present in deciduous habitats, 13 species (35.2%) in riparian habitats, and only 5 species (13.5%) occurred in both. Abundance and leaf damage by GII were greater in deciduous than in riparian habitats during the wet season. For each GII species that occurred in both habitats, host plant species supported greater abundance and leaf damage by GII in deciduous habitats during the wet season. These results indicate a greater association of GII species with host plants in deciduous than in riparian habitats during the wet season. In riparian habitats, 11 plant species (61.1%) had greater density of GII in the dry than in the wet season. Similarly, leaf damage by GII was significantly greater in the dry than in the wet season in riparian habitats for 12 plant species (66.7%). Dry forest plants of riparian habitats presented two peaks of leaf‐flushing: GII colonized leaves produced in the first peak at the beginning of the wet season, and accumulated or recolonized leaves in the second peak at the beginning of the dry season. The levels of leaf damage by GII detected in this study in the rainy season were considerably higher than those obtained for folivorous insects in other neotropical forests, suggesting that this GII guild might have an important impact on their host plant species in this tropical community.  相似文献   

16.
To determine if there were consistent differences in growth, mortality, and recruitment on slopes and ridge crests in tropical montane forests, which could explain the (frequent but not universal) low stature of trees in the ridgetop forests, we analyzed data from long‐term plots in Jamaica (1990–1994; sixteen 200‐m2 plots, six on ridge crests and five each on north and south slopes). Mortality was higher on north slopes, while growth and recruitment rates were not significantly different among positions. Soil pH and effects of recent disturbance by Hurricane Gilbert were positively correlated with growth and recruitment, while slope angle and disturbance effects were the best predictors of mortality. The patterns we found in Jamaica, that growth and recruitment were not higher on ridge crests than slopes, are different than those found by Herwitz and Young in Australia where growth and turnover were greater on a ridge crest. Therefore, it is not possible at present to make simple generalizations about dynamics of ridge crest versus slope forests in the montane tropics.  相似文献   

17.
Asplenium nidus is an abundant epiphytic fern of tropical rain forests in the Old World, where it plays an important ecological role in the forest canopy as host to diverse arthropod communities. We investigated the factors that determine the distribution and abundance of A. nidus in the canopy of an aseasonal lowland dipterocarp forest at Pasoh Forest Reserve, Malaysia. We found that A. nidus was more abundant in the understory, and on hosts with smooth bark and relatively flat branch angles. Ferns were found on a wide diversity and size range of host taxa. However, both host taxa and host diameter at breast height had a significant effect on A. nidus occupancy. Asplenium nidus had an aggregated spatial distribution at all scales within the study area. Spatial aggregation at larger scales appears to be driven by habitat preference, as A. nidus abundance was positively associated with swampy areas and negatively associated with hilly areas. At smaller scales, limited dispersal of their wind-dispersed spores most likely explains the aggregated distribution. Larger individuals occurred higher in the canopy and were more common in the hilly area. Thus, the distribution of A. nidus may represent a trade-off between the availability of suitable microsites for establishment in the understory and better growth conditions higher in the canopy. However, A. nidus is known to comprise a complex of cryptic species, and future studies should incorporate molecular techniques to elucidate the potential role of speciation in explaining these patterns.  相似文献   

18.
Understanding the impact of hunting on wildlife populations is crucial to achieving sustainability and requires knowledge of prey abundance responses to different levels of exploitation. While the abundance of primates has been shown to respond independently to hunting and habitat, habitat is rarely considered simultaneously when evaluating the impacts of hunting. Furthermore, the importance of these two factors in determining the abundance of other species has not been well investigated. We evaluate the independent effects of hunting and habitat on the abundance of a diverse assemblage of species, using a series of predictions and data from a study in Equatorial Guinea. Line transect surveys in sites of varying hunting intensity and habitat, and weekly interviews with hunters on current hunting effort in each site, were conducted. We also consider the role of past hunting, and discuss the interrelationships between hunting and habitat variables. We show that for primates, hunting is important in determining abundance, while for rodents and duikers, habitat is more important. Our findings show that the effects of hunting and habitat on abundance vary greatly between species, are often confounded and require an approach that isolates their independent effects to determine the true impact of hunting. Conservation managers must consider and incorporate habitat heterogeneity when managing hunting systems, taking into account the way in which the relative importance of these factors can vary between species.  相似文献   

19.
Recent evidence suggests that liana abundance and biomass are increasing in Neotropical forests, representing a major structural change to tropical ecosystems. Explanations for these increases, however, remain largely untested. Over an 8‐yr period (1999–2007), we censused lianas in nine, 24 × 36 m permanent plots in old‐growth and selectively logged forest at La Selva Biological Station, Costa Rica to test whether: (1) liana abundance and basal area are increasing in this forest; (2) the increase is being driven by increased recruitment, decreased mortality, or both; and (3) long‐distance clonal colonization explains the increase in liana abundance and basal area. We defined long‐distance clonal colonization as lianas that entered and rooted in the plots as vegetative propagules of stems that originated from outside or above the plot, and were present in 2007, but not in 1999 or 2002. Our hypotheses were supported in the old‐growth forest: mean liana abundance and BA (≥1 cm diameter) increased 15 and 20 percent, respectively, and clonal colonization from outside of the plots contributed 19 and 60 percent (respectively) to these increases. Lianas colonized clonally by falling vertically from the forest canopy above or growing horizontally along the forest floor and re‐rooting—common forms of colonization for many liana species. In the selectively logged forest, liana abundance and BA did not change, and thus the pattern of increasing lianas may be restricted to old‐growth forests. In summary, our data support the hypothesis that lianas are increasing in old‐growth forests, and that long‐distance clonal colonization is a major contributor.  相似文献   

20.
Logs and Fern Patches as Recruitment Sites in a Tropical Pasture   总被引:2,自引:0,他引:2  
Forest recovery in degraded pastures is often highly variable, possibly due to variation in the availability of adequate recruitment sites. In an actively grazed pasture in northeastern Costa Rica, this study examines how recruitment of woody species in patches of the fern Nephrolepsis sp. and near logs compares with recruitment in grassy areas. Fern patches and logs had five and eight times higher densities of woody recruits, respectively, as grassy areas. They also had more than twice the species richness and growth as grassy areas. Grass apparently presents a competitive barrier against invading woody recruits, and also attracts cattle that may trample and/or consume recruits. Both logs and patches of fern appeared to provide superior conditions for establishment and growth of woody species, and they did not attract cattle. This study suggests that fern patches and logs can be managed to accelerate forest succession.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号