首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The superior antimicrobial properties of silver nanoparticles (Ag NPs) are well-documented, but the exact mechanisms underlying Ag-NP microbial toxicity remain the subject of intense debate. Here, we show that Ag-NP concentrations as low as 10 ppm exert significant toxicity against Bacillus subtilis, a beneficial bacterium ubiquitous in the soil. Growth arrest and chromosomal DNA degradation were observed, and flow cytometric quantification of propidium iodide (PI) staining also revealed that Ag-NP concentrations of 25 ppm and above increased membrane permeability. RedoxSensor content analysis and Phag-GFP expression analysis further indicated that reductase activity and cytosolic protein expression decreased in B. subtilis cells treated with 10–50 ppm of Ag NPs. We conducted X-ray absorption near-edge structure (XANES) and extended X-ray absorption fine structure (EXAFS) analyses to directly clarify the valence and fine structure of Ag atoms in B. subtilis cells placed in contact with Ag NPs. The results confirmed the Ag species in Ag NP-treated B. subtilis cells as Ag2O, indicating that Ag-NP toxicity is likely mediated by released Ag+ ions from Ag NPs, which penetrate bacterial cells and are subsequently oxidized intracellularly to Ag2O. These findings provide conclusive evidence for the role of Ag+ ions in Ag-NP microbial toxicity, and suggest that the impact of inappropriately disposed Ag NPs to soil and water ecosystems may warrant further investigation.  相似文献   

2.
Cost-effective “green” methods of producing Ag nanoparticles (NPs) are being examined because of the potential of these NPs as antimicrobials. Ag NPs were generated from Ag ions using extracellular metabolites from a soil-borne Pythium species. The NPs were variable in size, but had one dimension less than 50 nm and were biocoated; aggregation and coating changed with acetone precipitation. They had dose-dependent lethal effects on a soil pseudomonad, Pseudomonas chlororaphis O6, and were about 30-fold more effective than Ag+ ions. A role of reactive oxygen species in cell death was demonstrated by use of fluorescent dyes responsive to superoxide anion and peroxide accumulation. Also mutants of the pseudomonad, defective in enzymes that protect against oxidative stress, were more sensitive than the wild type strain; mutant sensitivity differed between exposure to Ag NPs and Ag+ ions demonstrating a nano-effect. Imaging of bacterial cells treated with the biocoated Ag NPs revealed no cell lysis, but there were changes in surface properties and cell height. These findings support that biocoating the NPs results in limited Ag release and yet they retained potent antimicrobial activity.  相似文献   

3.
The target of our current work was designed to prepare titanium oxide doped silver nanoparticles (Ag/TiO2NPs) and their impact on the functionalization of cotton fabrics. Additionally, the effect of Ag/TiO2NPs was compared with the individually prepared silver nanoparticles (AgNPs) and titanium oxide nanoparticles (TiO2NPs). In this work, AgNPs were prepared in the solid state using arabic gum as efficient stabilizing and reducing agent. Then, two concentrations of the as-synthesized nanoparticles were used to functionalize the cotton fabrics by pad-dry-cure treatment in the presence of fixing agent to increase the durability of treated cotton fabrics against vigorous washing cycles. The findings implied that the as-prepared nanoparticles were successfully synthesized in nano-size with spherical shape and homogeneity. The efficacy of the functionalized cotton fabrics with those nanoparticles were evaluated in terms of multifunctional properties including antimicrobial and ultraviolet protection factor (UPF) and the mechanical features before and after many washing cycles; 10, 15 and 20 times. The resultant also proved that Ag/TiO2NPs-treated cotton fabrics exhibited the greater values of both antimicrobial and UPF properties with enhancement in the tensile strength and elongation features. Thus, the combination between these two nanoparticles through doping reaction is suitable for imparting superior antimicrobial properties against the four tested microbial species (Staphylococcus aureus, Escherichia coli, Candida albicans, and Aspergillus niger) and good UPF properties. Depending on the promising obtained results of the multi-finishing fabrics, these nanoparticles of Ag/TiO2NPs can be applied for the production of an efficient medical clothes for doctors, nurses and bed sheets for patients in order to kill and prevent the spread of bacteria and then, reduce the transmission of infection to others.  相似文献   

4.
Hybrid materials based on polyvinylpyrrolidone (PVP) with silver nanoparticles (AgNps) were synthesized applying two different strategies based on thermal or chemical reduction of silver ions to silver nanoparticles using PVP as a stabilizer. The formation of spherical silver nanoparticles with diameter ranging from 9 to 16 nm was confirmed by TEM analysis. UV-vis and FTIR spectroscopy were also applied to confirm the successful formation of AgNps. The antibacterial activity of the synthesized AgNPs/PVP against etalon strains of three different groups of bacteria—Staphylococcus aureus (S. aureus; gram-positive bacteria), Escherichia coli (E. coli; gram-negative bacteria), Pseudomonas aeruginosa (P. aeruginosa; non-ferment gram-negative bacteria), as well as against spores of Bacillus subtilis (B. subtilis) was studied. AgNps/PVP were tested for the presence of fungicidal activity against different yeasts and mold such as Candida albicans, Candida krusei, Candida tropicalis, Candida glabrata, and Aspergillus brasiliensis. The hybrid materials showed a strong antimicrobial effect against the tested bacterial and fungal strains and therefore have potential applications in biotechnology and biomedical science.  相似文献   

5.
This study reveals a green process for the production of multi-morphological silver (Ag NPs) and gold (Au NPs) nanoparticles, synthesized using an agro-industrial residue cashew nut shell liquid. Aqueous solutions of Ag+ ions for silver and chloroaurate ions for gold were treated with cashew nut shell extract for the formation of Ag and Au NPs. The nano metallic dispersions were characterized by measuring the surface plasmon absorbance at 440 and 546 nm for Ag and Au NPs. Transmission electron microscopy showed the formation of nanoparticles in the range of 5–20 nm for silver and gold with assorted morphologies such as round, triangular, spherical and irregular. Scanning electron microscopy with energy dispersive spectroscopy and X-ray diffraction analyses of the freeze-dried powder confirmed the formation of metallic Ag and Au NPs in crystalline form. Further analysis by Fourier transform infrared spectroscopy provided evidence for the presence of various biomolecules, which might be responsible for the reduction of silver and gold ions. The obtained Ag and Au NPs had significant antibacterial activity, minimum inhibitory concentration and minimum bactericidal concentration on bacteria associated with fish diseases.  相似文献   

6.
A novel series of indole based benzofuran derivatives has been synthesized under microwave irradiation and conventional conditions. The structures of the compounds were established on the basis of 1HNMR, 13C NMR, IR and mass spectral data. The analogues were evaluated for their in vitro antimicrobial activity against two gram-positive bacteria, two gram-negative bacteria and two fungal strains. The same series was screened for in vitro antioxidant activity against 2,2-diphenyl-1-picrylhydrazyl (DPPH). Most of the title compounds exhibited promising antimicrobial and antioxidant activities.  相似文献   

7.
Previous investigations indicate that α-melanocyte-stimulating hormone (α-MSH) and certain synthetic analogues of it exert antimicrobial effects against bacteria and yeasts. However, these molecules have weak activity in standard microbiology conditions and this hampers a realistic clinical use. The aim in the present study was to identify novel peptides with broad-spectrum antimicrobial activity in growth medium. To this purpose, the Gly10 residue in the [DNal(2′)-7, Phe-12]-MSH(6–13) sequence was replaced with conventional and unconventional amino acids with different degrees of conformational rigidity. Two derivatives in which Gly10 was replaced by the residues Aic and Cha, respectively, had substantial activity against Candida strains, including C. albicans, C. glabrata, and C. krusei and against gram-positive and gram-negative bacteria. Conformational analysis indicated that the helical structure along residues 8–13 is a key factor in antimicrobial activity. Synthetic analogues of α-MSH can be valuable agents to treat infections in humans. The structural preferences associated with antimicrobial activity identified in this research can help further development of synthetic melanocortins with enhanced biological activity.  相似文献   

8.
Growth and Bacteriolytic Activity of a Soil Amoeba, Hartmannella glebae   总被引:3,自引:1,他引:2  
A soil amoeba, Hartmannella glebae, could grow on a variety of gram-positive and gram-negative bacteria, although the rate of growth was faster in the presence of gram-negative bacteria. The amoeba, however, could not use yeasts, molds, or a green alga as a nutritional source. The extract prepared from amoebae grown in the presence of Aerobacter aerogenes and Alcaligenes faecalis could lyse intact cells and cell walls of many gram-positive bacteria at different rates. The spectrum of lytic activity was similar to that of egg-white lysozyme, with the exception that several species and strains of Bacillus, Micrococcus, and Staphylococcus were resistant to lysozyme and susceptible to the extract. The gram-negative bacteria tested were resistant.  相似文献   

9.
Antimicrobial properties of diacetyl.   总被引:5,自引:1,他引:4       下载免费PDF全文
Diacetyl preparations from three commercial sources were found to be essentially similar when tested primarily against a set of 40 cultures, including 10 of lactic acid bacteria, 4 of yeasts, 12 of gram-positive non-lactic acid bacteria, and 14 of gram-negative bacteria. The compound was effective at pH less than or equal to 7.0 and progressively ineffective at pH greater than 7.0. The lactic acid bacteria were essentially unaffected by concentrations between 100 and 350 micrograms/ml over the pH range of 5.0 to 7.0. Of the 12 gram-positive non-lactic acid bacteria, 11 were inhibited by 300 micrograms/ml at pH less than or equal to 7.0. The three yeasts and the 13 gram-negative bacteria that grew at pH 5.5 were inhibited by 200 micrograms/ml. Diacetyl was ineffective against four clostridia under anaerobic conditions. It was lethal for gram-negative bacteria and generally inhibitory for gram-positive bacteria. Nongrowing cells were not affected. The effectiveness of diacetyl was considerably less in brain heart infusion broth, Trypticase soy agar, and cooked-meat medium than in nutrient broth or plate count agar. The antimicrobial activity was antagonized by glucose, acetate, and Tween 80 but not by gluconic acid. As an antimicrobial agent, diacetyl was clearly more effective against gram-negative bacteria, yeasts, and molds than against gram-positive bacteria.  相似文献   

10.
Six unsymmetrical diorganyltellurium(IV) dichlorides RR'TeCl2 (where R= phenacyl-, 1-naphthacyl-, and styrylacyl- and R' = p-methoxyphenyl, p-hydroxyphenyl-, and 3-methyl-4-hydoxyphenyl-) were tested for their antibacterial activity against gram-positive (Bacillus subtilis ATCC 6633 and Staphylococcus aureus ATCC 25923) and gram-negative (Escherichia coli ATCC 25922. Pseudomonas aeruginosa ATCC 27853 and Salmonella sp.) bacteria. Antibacterial activity was measured by disk diffusion method. Inhibition zones demonstrated that all the compounds showed good activity against gram-negative strains. Phenacyl (3-methyl-4-hydroxyphenyl) tellurium(IV) dichloride and naphthacyl (3-methyl-4-hydroxyphenyl) tellurium(IV) dichloride showed significant activity against both gram-positive and gram-negative strains. Among the tested compounds, the former exhibited maximum activity against gram-positive bacteria, while the latter against all the bacteria under study and styrylacyl (p-methoxyphenyl) tellurium(IV) dichloride against all the three gram-negative bacteria.  相似文献   

11.
In the current investigation, we report the biosynthesis of silver nanoparticles (Ag NPs) employing extract of Alternaria alternata, which is an eco-friendly process for the synthesis of metallic nanoparticles. Ag NPs were synthesised through the reduction of aqueous Ag+ ion using the cell extract of fungus A. alternata in the dark conditions. The synthetic process was relatively fast and Ag NPs were formed within 24 h. UV–visible spectrum of the aqueous medium containing silver ion showed a peak at 435?nm corresponding to the plasmon absorbance of Ag NPs and another peak at 280?nm refers to tyrosine amino acid. The nanoparticles were characterised by scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FTIR). The morphology of nanoparticles is found to be spherical mostly, with ranging size of 27–79?nm; as revealed by SEM. The FTIR spectrum analysis indicated that biomolecules were involved in the synthesis of Ag NPs. The presence of the amino groups is expected to pack differently around the Ag NPs. This in turn will influence the self-assembly of nanoparticles on substrates as well as their stability. The present study demonstrates the possible use of biologically synthesised Ag NPs in the field of agriculture, when A. alternata could be used for simple, nonhazardous and efficient synthesis of Ag NPs.  相似文献   

12.

Background

Beta-defensins (hBDs) provide antimicrobial and chemotactic defense against bacterial, viral and fungal infections. Human β-defensin-2 (hBD-2) acts against gram-negative bacteria and chemoattracts immature dendritic cells, thus regulating innate and adaptive immunity. Immunosuppression due to hyperglycemia underlies chronic infection in Type 2 diabetes. Hyperglycemia also elevates production of dicarbonyls methylgloxal (MGO) and glyoxal (GO).

Methods

The effect of dicarbonyl on defensin peptide structure was tested by exposing recombinant hBD-2 (rhBD-2) to MGO or GO with subsequent analysis by MALDI-TOF MS and LC/MS/MS. Antimicrobial function of untreated rhBD-2 vs. rhBD-2 exposed to dicarbonyl against strains of both gram-negative and gram-positive bacteria in culture was determined by radial diffusion assay. The effect of dicarbonyl on rhBD-2 chemotactic function was determined by chemotaxis assay in CEM-SS cells.

Results

MGO or GO in vitro irreversibly adducts to the rhBD-2 peptide, and significantly reduces antimicrobial and chemotactic functions. Adducts derive from two arginine residues, Arg22 and Arg23 near the C-terminus, and the N-terminal glycine (Gly1). We show by radial diffusion testing on gram-negative E. coli and P. aeruginosa, and gram-positive S. aureus, and a chemotaxis assay for CEM-SS cells, that antimicrobial activity and chemotactic function of rhBD-2 are significantly reduced by MGO.

Conclusions

Dicarbonyl modification of cationic antimicrobial peptides represents a potential link between hyperglycemia and the clinical manifestation of increased susceptibility to infection, protracted wound healing, and chronic inflammation in undiagnosed and uncontrolled Type 2 diabetes.  相似文献   

13.
Several piperazine libraries were prepared using solution phase simultaneous addition of functionalities methodology as well as the "library from library" concept. The resulting piperazine libraries displayed antimicrobial activity against both gram-positive and gram-negative bacteria.  相似文献   

14.
15.
Twenty-five 2-phenyl-5,6-dihydro-2H-thieno[3,2-c]pyrazol-3-ol derivatives were synthesized for evaluation as new inhibitors of bacterial cell wall biosynthesis. Many of them demonstrated good inhibitory activity against Staphylococcus aureus MurB, MurC and MurD enzymes in vitro and antimicrobial activity against gram-positive bacteria including MRSA, VRE and PRSP. However, when they were tested in the presence of 4% bovine serum albumin, the MIC values increased to greater than 128 microg/mL against PRSP. None of the compounds demonstrated activity against gram-negative bacteria at MIC <32 microg/mL.  相似文献   

16.
E. Z. Gomaa 《Microbiology》2016,85(2):207-219
A green, simple and effective approach was performed to synthesize potent silver nanoparticles using bacterial exopolysaccharide as both a reducing and stabilizing agent. The formation of nanoparticles was first screened by measuring the surface plasmon resonance peak around 400 nm using UV-vis spectroscopy. The morphology of the synthesized AgNPs was determined using TEM, which indicated that the AgNPs were spherical in shape and with an average size of 11–25 nm. The presence of elemental silver of the AgNPs was confirmed by EDX analysis. The possible functional groups of EPS responsible for the reduction and stabilization of AgNPs were evaluated using FTIR. The EPS reduced AgNPs showed excellent antibacterial, and antibiofilm activities against various human pathogenic bacteria. In addition, the efficiency of AgNPs with various broad-spectrum antibiotics against the tested strains was evaluated. It is evident that, the antibacterial and antibiofilm activities of the selected antibiotics were increased in the presence of AgNPs. The increase in activity was more pronounced for gram-negative bacteria Pseudomonas aeruginosa and E. coli. Interestingly, the combination of antibiotics with AgNPs has significantly increased the membrane protein leakage and ROS generation than antibiotics or AgNPs alone. This work supports that AgNPs can be used to enhance the activity of existing antibiotics against gram-negative and gram-positive bacteria for the treatment of infectious diseases.  相似文献   

17.
Recently, the attention of researchers has been drawn toward the synthesis of chitosan derivatives and their nanoparticles with enhanced antimicrobial activities. In this study, chitosan derivatives with different azides and alkyne groups were synthesized using click chemistry, and these were further transformed into nanoparticles by using the ionotropic gelation method. A series of chitosan derivatives was successfully synthesized by regioselective modification of chitosan via an azide-alkyne click reaction. The amino moieties of chitosan were protected during derivatization by pthaloylation and subsequently unblocked at the end to restore their functionality. Nanoparticles of synthesized derivatives were fabricated by ionic gelation to form complexes of polyanionic penta-sodium tripolyphosphate (TPP) and cationic chitosan derivatives. Particle size analysis showed that nanoparticle size ranged from 181.03 ± 12.73 nm to 236.50 ± 14.32 nm and had narrow polydispersity index and positive surface charge. The derivatives and corresponding nanoparticles were evaluated in vitro for antibacterial and antifungal activities against three gram-positive and gram-negative bacteria and three fungal strains, respectively. The minimum inhibitory concentration (MIC) of all derivatives ranged from 31.3 to 250 µg/mL for bacteria and 188 to1500 µg/mL for fungi and was lower than that of native chitosan. The nanoparticles with MIC ranging from 1.56 to 25 µg/mLfor bacteria and 94 to 750 µg/mL for fungi exhibited higher activity than the chitosan derivatives. Chitosan O-(1-methylbenzene) triazolyl carbamate and chitosan O-(1-methyl phenyl sulfide) triazolyl carbamate were the most active against the tested bacterial and fungal strains. The hemolytic assay on erythrocytes and cell viability test on two different cell lines (Chinese hamster lung fibroblast cells V79 and Human hepatic cell line WRL68) demonstrated the safety; suggesting that these derivatives could be used in future medical applications. Chitosan derivatives with triazole functionality, synthesized by Huisgen 1,3-dipolar cycloaddition, and their nanoparticles showed significant enhancement in antibacterial and antifungal activities in comparison to those associated with native, non-altered chitosan.  相似文献   

18.
E M Powers 《Applied microbiology》1995,61(10):3756-3758
A simple and rapid (< 60 s) nonstaining technique with 3% potassium hydroxide to determine Gram reactions was tested with 495 food-borne and waterborne bacteria and yeasts. In KOH, suspensions of gram-negative bacteria become viscous and string out. Gram-positive bacteria are not affected. There was 100% correlation between the KOH string test results and gram-positive and gram-negative strains.  相似文献   

19.
This study investigated the antimicrobial and antioxidant activity of three Spirulina extracts (methanol, acetone, and hexane) and the biological selenium nanoparticles (SeNPs) fabricated by Bacillus subtilis AL43. The results showed that Spirulina extracts exhibited antimicrobial activity against tested pathogens. Besides, Spirulina extracts significantly scavenged ABTS and DPPH radicals in a dose-dependent manner. The methanolic extract had higher total phenolic content, antimicrobial activity, and antioxidant activity than other extracts. The selenium nanoparticles were synthesized by Bacillus subtilis AL43 under aerobic conditions and were characterized as spherical, crystalline with a size of 65.23 nm and a net negative charge of ?22.7. We evidenced that SeNPs possess considerable antimicrobial activity against three gram-positive, three gram-negative bacteria, and three strains from both Candida sp. and Aspergillus sp. Moreover, SeNPs were able to scavenge ABTS and DPPH radicals in a dose-dependent manner. An association was found between the total phenolic content of Spirulina and SeNPs and their biological activities. Our results indicate that Spirulina and SeNPs with significant antimicrobial and antioxidant activities seem to be successful candidates for safe and reliable medical applications.  相似文献   

20.
Highly resistant pathogens may be developed in patients with immune disorders after prolonged exposure to antibiotics, a growing threat worldwide. In order to overcome these problems, this study introduces a new class of engineered nanosystems comprising of tea tree oil nanoemulsion (TTO NE) loaded with Ag nanoparticles (NPs). Silver shows a strong toxicity towards a wide range of microorganisms. Also, TTO NE could be employed as a promising and safe antimicrobial agent for local therapies of bacterial infections. The nanosystem was prepared by low-energy method. Mean droplet size of the NE was found to be 17.7 nm. Results of the antibacterial assays showed promising ability of the designed nanosystem for eradication of Gram-positive and Gram-negative bacteria (95%). Also, it was shown that introducing colloidal Ag NPs to the TTO NE exerted a synergistic effect against Escherichia coli (FIC 0.48) while only an additive effect was observed against Staphylococcus aureus (FIC 0.75). The antibacterial effects of TTO NE+Ag NPs together with their compatibility with human cells can present them as a suitable candidate to fight against the antibacterial resistance threat.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号