首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
5-Fluorouracil (5-FU) is a classic chemotherapeutic drug that has been widely used for colorectal cancer treatment, but colorectal cancer cells are often resistant to primary or acquired 5-FU therapy. Several studies have shown that miR-21 is significantly elevated in colorectal cancer. This suggests that this miRNA might play a role in this resistance. In this study, we investigated this possibility and the possible mechanism underlying this role. We showed that forced expression of miR-21 significantly inhibited apoptosis, enhanced cell proliferation, invasion, and colony formation ability, promoted G1/S cell cycle transition and increased the resistance of tumor cells to 5-FU and X radiation in HT-29 colon cancer cells. Furthermore, knockdown of miR-21 reversed these effects on HT-29 cells and increased the sensitivity of HT-29/5-FU to 5-FU chemotherapy. Finally, we showed that miR-21 targeted the human mutS homolog2 (hMSH2), and indirectly regulated the expression of thymidine phosphorylase (TP) and dihydropyrimidine dehydrogenase (DPD). These results demonstrate that miR-21 may play an important role in the 5-FU resistance of colon cancer cells.  相似文献   

2.
摘要 目的:初步揭示miR-155通过靶向调节TP53INP1表达水平影响结直肠癌细胞对5-FU化疗敏感性。方法:将人结肠直肠癌细胞系HCT116进行培养,提取细胞总RNA后,采用miR-155逆转录特异性引物构建反转录体系进行PCR扩增,通过qRT-PCR检测miR-155在5-FU耐药细胞HCT116/FU及敏感细胞株HCT116中的表达情况;取对数生长期细胞,分别转染miR-155mimics、miR-155抑制剂、miR-155阴性对照后,采用CCK-8法检测miR-155对细胞5-FU药物敏感性的影响,双荧光素酶报告基因系统验证miR-155与TP53INP1的靶基因关系,Western blot检测miR-155对 TP53INP1表达的影响。结果:miR-155在HCT116 /Fu细胞中的表达量是HCT116细胞的7.25倍;在相同5-FU浓度时,HCT116+阴性对照的细胞生长抑制率均高于HCT116+mimics、半数抑制浓度显著低于HCT116+mimics,差异均具有统计学意义(P<0.05);TP53INP1是miR-155的靶基因,能显著降低野生型TP53INP1 3''-UTR的荧光素酶活性;转染miR-155 mimics后,TP53INP1的相对表达量显著下降,转染miR-155抑制剂后,TP53INP1的相对表达量显著升高,差异均具有统计学意义(P<0.05)。结论:miR-155水平升高使HCT116细胞对5-FU的敏感性降低,miR-155可能通过靶向调节TP53INP1的表达水平,从而影响结直肠癌细胞对5-FU的敏感性。  相似文献   

3.
Drug resistance in colorectal cancer is a great challenge in clinic. Elucidating the deep mechanism underlying drug resistance will bring much benefit to diagnosis, therapy and prognosis in patients with colorectal cancer. In this study, miR-29b-3p was shown to be involved in resistance to 5-fluorouracil (5-FU)-induced necroptosis of colorectal cancer. Further, miR-29b-3p was shown to target a regulatory subunit of necroptosis TRAF5. Rescue of TRAF5 could reverse the effect of miR-29b-3p on 5-FU-induced necroptosis, which was consistent with the role of necrostatin-1 (a specific necroptosis inhibitor). Then it was demonstrated that miR-29b-3p was positively correlated with chemoresistance in colorectal cancer while TRAF5 negatively. In conclusion, it is deduced that miR-29b-3p/TRAF5 signaling axis plays critical role in drug resistance in chemotherapy for colorectal cancer patients by regulating necroptosis. The findings in this study provide us a new target for interfere therapy in colorectal cancer.Key words: Colorectal cancer, miR-29b-3p, TRAF5, necroptosis, 5-fluorouracil resistance  相似文献   

4.
ABSTRACT

Oxaliplatin (L-OHP) is one of the effective chemotherapeutic drugs for colorectal cancer (CRC). Further investigation into the molecular mechanism of chemoresistance could improve outcomes for patients with colorectal cancer. Recently, microRNAs have been reported as a key in drug resistance of tumors. In this study, we aimed to investigate the effects of miR-153-5p in L-OHP-resistant CRC cells, and its underlying mechanism. Downregulation of miR-153-5p was observed in CRC cells, while upregulation of miR-153-5p enhances the chemosensitivity of CRC/L-OHP cells. The autophagy of CRC/L-OHP cells was markedly increased after exposure to L-OHP but abolished by the upregulation of miR-153-5p. Dual-luciferase reporter assays validated that Bcl-2 was a direct target of miR-153-5p. In conclusion, our data suggested that miR-153-5p was a mediator of cisplatin resistance in colorectal cancer by affecting Bcl-2-mediated autophagy, indicating a new therapeutic target for CRC treatment.  相似文献   

5.
We previously demonstrated that the epidermal growth factor receptor (EGFR) up-regulated miR-7 to promote tumor growth during lung cancer oncogenesis. Several lines of evidence have suggested that alterations in chromatin remodeling components contribute to cancer initiation and progression. In this study, we identified SMARCD1 (SWI/SNF-related, matrix-associated, actin-dependent regulator of chromatin, subfamily d, member 1) as a novel target gene of miR-7. miR-7 expression reduced SMARCD1 protein expression in lung cancer cell lines. We used luciferase reporters carrying wild type or mutated 3′UTR of SMARCD1 and found that miR-7 blocked SMARCD1 expression by binding to two seed regions in the 3′UTR of SMARCD1 and down-regulated SMARCD1 mRNA expression. Additionally, upon chemotherapy drug treatment, miR-7 down-regulated p53-dependent apoptosis-related gene BAX (BCL2-associated X protein) and p21 expression by interfering with the interaction between SMARCD1 and p53, thereby reducing caspase3 cleavage and the downstream apoptosis cascades. We found that although SMARCD1 sensitized lung cancer cells to chemotherapy drug-induced apoptosis, miR-7 enhanced the drug resistance potential of lung cancer cells against chemotherapy drugs. SMARCD1 was down-regulated in patients with non-small cell lung cancer and lung adenocarcinoma cell lines, and SMARCD1 and miR-7 expression levels were negatively correlated in clinical samples. Our investigation into the involvement of the EGFR-regulated microRNA pathway in the SWI/SNF chromatin remodeling complex suggests that EGFR-mediated miR-7 suppresses the coupling of the chromatin remodeling factor SMARCD1 with p53, resulting in increased chemo-resistance of lung cancer cells.  相似文献   

6.
Liver and kidney cancers are notorious for drug resistance. Due to the complexity, redundancy and interpatient heterogeneity of resistance mechanisms, most efforts targeting a single pathway were unsuccessful. Novel personalized therapies targeting multiple essential drug resistance pathways in parallel hold a promise for future cancer treatment. Exploiting the multitarget characteristic of microRNAs (miRNAs), we developed a new therapeutic strategy by the combinational use of miRNA and anticancer drugs to increase drug response. By a systems approach, we identified that miR-27b, a miRNA deleted in liver and kidney cancers, sensitizes cancer cells to a broad spectrum of anticancer drugs in vitro and in vivo. Functionally, miR-27b enhances drug response by activating p53-dependent apoptosis and reducing CYP1B1-mediated drug detoxification. Notably, miR-27b promotes drug response specifically in patients carrying p53-wild-type or CYP1B1-high signature. Together, we propose that miR-27b synergizes with anticancer drugs in a defined subgroup of liver and kidney cancer patients.  相似文献   

7.
8.
K-homology (KH)-type splicing regulatory protein (KHSRP) is an RNA binding protein that participates in RNA variable splicing and stability, and facilitates the biogenesis of miRNAs that target mRNA. However, to date, the role of KHSRP in colorectal cancer (CRC) progression has not been reported. In this study, the function of KHSRP in CRC proliferation and 5-fluoruracil (5-FU) resistance was investigated. The upregulation of KHSRP expression was confirmed in CRC patient tissues and two CRC cell lines. Manipulating KHSRP expression altered cell proliferation and 5-FU resistance in CRC cells. ERRFI1, a downstream effector of KHSRP in CRC cells, reduced CRC cell proliferation. Sensitivity to 5-FU mediated by KHSRP knockdown was reversed by ERRFI1 knockdown. We found that KHSRP decreased ERRFI1 mRNA expression indirectly. By screening KHSRP-regulated miRNAs, we further found that miR-501-5p directly combines with KHSRP in CRC cells. Mechanistically, the results of a luciferase assay suggested that miR-501-5p directly binds to the ERRFI1 3′-untranslated region. Taken together, our data indicated that modification of ERRFI1 by KHSRP occurs through miR-501-5p, an essential mechanism driving CRC proliferation and 5-FU resistance. Insight into this mechanism may provide novel targets for overcoming drug resistance in CRC.  相似文献   

9.
10.
Drug resistance is one of the major hurdles for cancer treatment. However, the underlying mechanisms are still largely unknown and therapeutic options remain limited. In this study, we show that microRNA (miR)-587 confers resistance to 5-fluorouracil (5-FU)-induced apoptosis in vitro and reduces the potency of 5-FU in the inhibition of tumor growth in a mouse xenograft model in vivo. Further studies indicate that miR-587 modulates drug resistance through downregulation of expression of PPP2R1B, a regulatory subunit of the PP2A complex, which negatively regulates AKT activation. Knockdown of PPP2R1B expression increases AKT phosphorylation, which leads to elevated XIAP expression and enhanced 5-FU resistance; whereas rescue of PPP2R1B expression in miR-587-expressing cells decreases AKT phosphorylation/XIAP expression, re-sensitizing colon cancer cells to 5-FU-induced apoptosis. Moreover, a specific and potent AKT inhibitor, MK2206, reverses miR-587-conferred 5-FU resistance. Importantly, studies of colorectal cancer specimens indicate that the expression of miR-587 and PPP2R1B positively and inversely correlates with chemoresistance, respectively, in colorectal cancer. These findings indicate that the miR-587/PPP2R1B/pAKT/XIAP signaling axis has an important role in mediating response to chemotherapy in colorectal cancer. A major implication of our study is that inhibition of miR-587 or restoration of PPP2R1B expression may have significant therapeutic potential to overcome drug resistance in colorectal cancer patients and that the combined use of an AKT inhibitor with 5-FU may increase efficacy in colorectal cancer treatment.Colorectal cancer is the third most common cancer and the second leading cause of cancer-related mortality in the US. 5-Fluorouracil (5-FU) is one of the chemotherapeutic drugs most widely used alone or combined with other drugs in colorectal cancer treatment.1 5-FU primarily interrupts synthesis of the pyrimidine thymidine, a nucleoside required for DNA replication, by blocking the activity of thymidylate synthase.2 Consequently, 5-FU induces cell cycle arrest and/or apoptosis in cancer cells. Although adjuvant 5-FU treatment has yielded a good success rate, the failure of treatment in over 90% of patients with metastatic cancer is due to drug resistance.3 Many mechanisms have been suggested to be responsible for drug resistance, including blocking apoptosis.2, 4, 5, 6 Although resistance to chemotherapy is one of the biggest obstacles for effective cancer therapy, no significant advance has been made to identify targets overcoming drug resistance.7MicroRNAs (miRNAs) are a class of small (about 22 bps) non-coding regulatory RNA molecules, which regulate gene expression primarily by binding to the 3′-UTRs of their target mRNAs to initiate sequence-specific mRNA cleavage or to inhibit translation.8 It is estimated that more than one-third of human genes and the majority of genetic pathways are regulated by miRNAs.9 MiRNAs have been virtually linked to all known biological processes as well as various pathological diseases including cancer.10 Alternations in miRNA expression have been associated with many human cancers.11, 12 The pleiotropic nature of gene regulation by miRNAs implies that some miRNAs may function as crucial mediators of drug resistance. In fact, miRNA-based anticancer therapies are being developed, either alone or in combination with targeted therapies, with the goal to improve disease response and increase patient survival.13The protein kinase B (AKT/PKB) kinases, including AKT1, AKT2 and AKT3, are essential regulators of various signaling pathways and cellular processes.14 Hyper-activation of AKT kinases have been frequently observed in human cancers.15 Activation of AKT requires both translocation to the plasma membrane and phosphorylation at Thr308 and Ser473.16, 17 Further studies have demonstrated that Thr308 phosphorylation is necessary and sufficient for AKT activation18 and that dephosphorylation at Thr308 alone leads to deactivation of AKT.19, 20 X-linked inhibitor of apoptosis protein (XIAP) is a member of the inhibitor of apoptosis proteins (IAPs) family and has a significant role in cell survival by modulating death-signaling pathways at a post-mitochondrial level.21, 22 Studies have shown that AKT activation can enhance the protein stability of XIAP, therefore elevating XIAP expression.23, 24, 25 Consequently, AKT has been shown to promote cell survival through the XIAP-mediated anti-apoptotic pathway.26The serine/threonine protein phosphatase 2 A (PP2A) holoenzyme is composed of a catalytic C subunit, a structural A subunit and a regulatory B subunit. PPP2R1B or PP2A A subunit beta isoform (PP2A-Aβ) is a constant regulatory subunit of PP2A required to activate PP2A. PPP2R1B was initially characterized as a tumor suppressor. It is located at a chromosomal region (11q23) frequently deleted in human cancers.27 Its mutations and alterations have been found in colorectal and other cancers.28, 29 Cancer-associated mutants of PPP2R1B have been shown to be incompetent to bind the B and/or C subunits in vitro, resulting in PP2A inactivation.30, 31 PP2A regulates numerous signaling pathways. Specifically, PP2A has an important role in regulating AKT activity by dephosphorylating AKT at Thr308 and Ser473, leading to AKT inactivation.19, 32, 33, 34In this study, we have discovered a novel miR-587/PPP2R1B (PP2A)/pAKT/XIAP signaling axis that mediates the response of colon cancer cells to 5-FU treatment. Our results show that miR-587 expression is suppressed by 5-FU treatment in the sensitive but not resistant colon cancer cells. MiR-587 confers resistance to 5-FU-induced apoptosis through the inhibition of PPP2R1B expression, which is a direct target of miR-587. Knockdown of PPP2R1B by siRNAs confers 5-FU resistance in colon cancer cells, mimicking miR-587 effect. Inhibition of miR-587 expression or rescue of PPP2R1B expression in colon cancer cells increases their sensitivity to 5-FU treatment. Additionally, an AKT inhibitor, MK-2206, re-sensitizes miR-587-expressing cells to 5-FU treatment. Moreover, experiments in tumor xenograft mouse models reveal that miR-587 significantly reduces the effectiveness of 5-FU in the inhibition of tumor growth in vivo. Importantly, studies of colorectal cancer specimens indicate a positive correlation between miR-587 expression and chemoresistance and an inverse correlation between PPP2R1B expression and drug resistance. Our studies have identified miR-587 as a potential target for drug resistance in colorectal cancer and suggested that modulating the PPP2R1B (PP2A)/pAKT/XIAP axis may have benefits against drug resistance.  相似文献   

11.
MicroRNAs (miRNAs) are predicted to regulate approximately 30% of all human genes; however, only a few miRNAs have been assigned their targets and specific functions. Here we demonstrate that miR-24, a ubiquitously expressed miRNA, has an anti-proliferative effect independent of p53 function. Cell lines with differential p53 status were used as a model to study the effects of miR-24 on cell proliferation, cell cycle control, gene regulation and cellular transformation. Overexpression of miR-24 in six different cell lines, independent of p53 function, inhibited cell proliferation and resulted in G2/S cell cycle arrest. MiR-24 over expression in cells with wt-p53 upregulated TP53 and p21 protein; however, in p53-null cells miR-24 still induced cell cycle arrest without the involvement of p21. We show that miR-24 regulates p53-independent cellular proliferation by regulating an S-phase enzyme, dihydrofolate reductase (DHFR) a target of the chemotherapeutic drug methotrexate (MTX). Of interest, we found that a miR-24 target site polymorphism in DHFR 3′ UTR that results in loss of miR-24-function and high DHFR levels in the cell imparts a growth advantage to immortalized cells and induces neoplastic transformation. Of clinical significance, we found that miR-24 is deregulated in human colorectal cancer tumors and a subset of tumors has reduced levels of miR-24. A novel function for miR-24 as a p53-independent cell cycle inhibitory miRNA is proposed.  相似文献   

12.
摘要 目的:本文旨在研究长链非编码RNA XIST-miR137-ATG5的相互作用,同时探讨其调节细胞自噬功能与肠癌细胞5-氟胞嘧啶敏感性的关系。方法:实时聚合酶链反应(real time PCR)检测XIST与miR-137在肠癌细胞中的表达;采用脂质体转染法将si-XIST,miR-137转染入肠癌SW480及HCT116细胞中。采用CCK-8检测瞬时转染si-XIST对肠癌细胞增殖及5-FU敏感性的影响;并利用双荧光素酶报告实验检测miR-137与XIST, miR-137与ATG5相互关系。Western blot方法检测XIST- miR137- ATG5对细胞自噬的影响。结果:与正常结肠细胞FHC比较, XIST在结肠癌细胞系明显高表达,miR-137在结肠癌细胞系明显低表达。与阴性对照组比较,转染si-XIST后,SW480及HCT116细胞增殖能力明显受到抑制,对F-5U的敏感性增强,且抑制自噬蛋白Beclin-1及LC3II/LC3 I的表达。miR-137可与XIST,ATG5 3''UTR结合,抑制XIST和ATG5的表达及功能。在结肠癌SW480细胞中共转染miR-137 inhibitor或过表达ATG5可逆转XIST沉默引起的5-FU耐药,同时可逆转因XIST沉默引起的自噬蛋白表达的抑制。结论:LncRNA XIST或可通过调控mir137-ATG促进结直肠癌细胞SW480自噬从而提高其对5-FU的耐药,针对其这一机制,可为将来针对结肠癌的靶向治疗提供一定的实验基础。  相似文献   

13.
MiR-139-5p down-regulation has frequently been implicated in colorectal carcinoma. However, there is little known about its biological function between inflammation and cancer in vivo. Here, a transgenic murine model of colorectal carcinoma was used to investigate pathogenetic role of miR-139-5p in colitis and colitis-associated tumorigenesis. We showed that miR-139-5p knockout mice were higher sensitive to DSS-induced colitis and enhanced formation of intestinal neoplasia was observed when mice were exposed to AOM/DSS treatment. MiR-139-5p knockout mice exhibited an increased expression of genes involved in Wnt pathway. Such genes are closely associated with cell proliferation and differentiation, promoting the β-catenin nuclear accumulation. Furthermore, biochemical studies in HCT-116 cells revealed that the over-expression of miR-139-5p inhibited the crosstalk between PI3K/AKT and Wnt pathway mediated by IGF-1R. Collectively, these findings indicate that miR-139-5p plays a crucial role in the development and progression of colitis-associated tumorigenesis and suggest that miR-139-5p may serve as a potential therapeutic target for the treatment of colitis-associated cancer in the future.  相似文献   

14.
Downregulation of microRNA-590-3p (miR-590-3p) is a frequently occurring, nonphysiological event which is observed in several human cancers, especially breast cancer. However, the significance of miR-590-3p still remain unclear in the progression of this disease. This study explored the role of miR-590-3p in apoptosis of breast cancer cells. Gene expression of miR-590-3p, Sirtuin-1 (SIRT1), Bcl-2 associated X protein (BAX), and p21 was evaluated with real-time polymerase chain reaction (PCR) and SIRT1 protein expression was assessed by Western blot analysis in breast cancer cell lines. Bioinformatics analysis and luciferase reporter assay were used to evaluate targeting of SIRT1 messenger RNA (mRNA) by miR-590-3p. Cells were transfected with miR-590-3p mimic and inhibitor and their effects on the expression and activity of SIRT1 were evaluated. The effects of miR-590-3p upregulation on the acetylation of p53 as well as cell viability and apoptosis were assessed by Western blot analysis, WST-1 assay, and flow cytometry, respectively. miR-590-3p expression was considerably downregulated in breast cancer cells which was accompanied by upregulation of SIRT1 expression. SIRT1 was recognized as a direct target for miR-590-3p in breast cancer cells and its protein expression and activity was dramatically inhibited by the miR-590-3p. In addition, there was an increase in p53 and its acetylated form that ultimately led to upregulation of BAX and p21 expression, suppression of cell survival, and considerable induction of apoptosis in breast cancer cells. These findings suggest that miR-590-3p exerts tumor-suppressing effects through targeting SIRT1 in breast cancer cells, which makes it a potential therapeutic target for developing more efficient treatments for breast cancer.  相似文献   

15.
16.
Effectively targeting cancer stem cells to treat cancer has great therapeutic prospects. However, the effect of microRNA miR-17/MKL-1 on gastric cancer stem cells has not been studied yet. This study preliminarily explored the mechanism of miR-17/MKL-1 in gastric cancer stem cells. Many previous reports have indicated that microRNA and EMT regulated cancer stem cell characteristics, and miR-17 and MKL-1 were involved as a critical gene in migration and invasion in the EMT pathway. Through RT-PCR, Western Blot, flow cytometry, immunofluorescence, sphere formation xenograft tumor assays and drug resistance, the role of miR-17-5p and MKL-1 on promoting stem cell-like properties of gastric cancer were verified in vivo and vitro. Next, MKL-1 targets CD44, EpCAM, and miR -17-5p promoter verified by luciferase assay and ChIP. Besides, the TCGA database analysis found that both miR-17-5p and MKL-1 increased in gastric cancer, and the prognostic survival of the MKL-1 high expression group was reduced. It is found that MKL-1 promotes expression by targeting miR-17, CD44 and EpCAM promoters. Besides, the TCGA database analysis found that both miR-17-5p and MKL-1 increased in gastric cancer, and the prognostic survival of the MKL-1 high expression group was reduced. These findings reveal new regulatory signaling pathways for gastric cancer stem cells, thus it give new insights on potential early diagnosis and/or molecular therapy for gastric cancer.  相似文献   

17.
18.
We examined chemosensitivity to 5-fluorouracil (5-FU) in four human gastric cancer cell lines, by analyzing the expression of p53 and its related genes. Treatment with 1mM 5-FU induced variable degrees of apoptosis in the cultured cells. The apoptotic indices 72 h after treatment were approximately 14% in MKN-74 (wild-type p53 gene), 12% in MKN-45 (wild-type), 3% in MKN-28 (mutated) and 0.5% in KATO-III cells (deleted), respectively. On the other hand, 50 M 5-FU had little effect on the induction of apoptosis in MKN-74 cells, the value being approximately 2% after 72 h. Induction of P53 expression was noted 3 h after initiating the treatment, followed by the induction of P21/Waf1 after 6 h in both MKN-74 and MKN-45 cells. The same expression mode was noted in MKN-74 treated with 50 M 5-FU. Conversely, the level of P53 expression was constant in MKN-28 cells and absent in KATO-III cells, in which P21/Waf1 had never been induced. The Bax/Bcl-2 expression ratio was gradually elevated for up to 72 h in MKN-74 and MKN-45 cells treated with 1mM 5-FU; in contrast, it was unchanged in MKN-28 and KATO-III cells, and MKN-74 treated with 50 M 5-FU. These results might indicate that (1) 1mM 5-FU induces apoptosis in cultured gastric cancer cells carrying the wild-type p53 gene, but not those carrying the mutated type or a gene deletion, and (2) the elevated Bax/Bcl-2 expression ratio plays a more crucial role than the higher expression of P21/Waf1 in the induction of p53- gene dependent apoptosis.  相似文献   

19.
Recently, long noncoding RNAs (lncRNAs) have been reported as a new kind of controllers about cancer processes in biology. In spite of the dysregulation of lncRNAs in various kinds of cancers, only a little of the information was effective on the expression configuration and inner effects of lncRNAs in triple-negative breast cancer (TNBC). This study valued the expression of lncRNA SOX21-AS1 and the biological role it played in TNBC. In our research, SOX21-AS1 had a high expression in TNBC cell lines. The functional experiments showed that knockdown of SOX21-AS1 obviously restrained cell proliferation, migration, invasion, and epithelial-mesenchymal transition process and promoted cell apoptosis. Mechanistically, SOX21-AS1 was found to bind with miR-520a-5p. Besides, ORMDL3 was identified as a downstream target of miR-520a-5p, and the suppressed ORMDL3 expression induced by silenced SOX21-AS1 could be restored by miR-520a-5p inhibition. Further, data from rescue assays revealed that SOX21-AS1 could regulate the malignancy of TNBC via miR-520a-5p/ORMDL3 axis. All in all, we identified that SOX21-AS1 regulated the cellular process of TNBC cells via antagonizing miR-520a-5p availability to upregulate ORMDL3 expression.  相似文献   

20.
MicroRNA-30e-5p (miR-30e-5p) is a tumor suppressor that is known to be downregulated in non-small cell lung cancer (NSCLC). However, how miR-30e-5p inhibits NSCLC tumorigenesis is not known. Ubiquitin-specific peptidase 22 (USP22) is upregulated in NSCLC and promotes tumorigenesis via a Sirt1-JAK-STAT3 pathway. In this study, we investigated whether miR-30e-5p inhibits tumor growth by targeting USP22 in NSCLC. Our results reveal that miR-30e-5p expression was correlated negatively with USP22 in NSCLC tissues. Luciferase reporter assays showed that miR-30e-5p negatively regulated USP22 expression by binding to a specific sequence in the 3?UTR. MiR-30e-5p overexpression and USP22 knockdown significantly inhibited tumor growth in vivo and induced cell cycle arrest and apoptosis in NSCLC cells in vitro. The effects of miR-30e-5p inhibition were prevented by USP22 knockdown. MiR-30e-5p inhibited SIRT1 expression and increased expression of p53 and the phosphorylated form of STAT3 (pSTAT3). Furthermore, miR-30e-5p prevented USP22-mediated regulation of SIRT1, pSTAT3, and p53 expression. Taken together, these findings suggest that miR-30e-5p suppresses NSCLC tumorigenesis by downregulatingUSP22-mediated Sirt1/JAK/STAT3 signaling. Our study has identified miR-30e-5p as a potential therapeutic target for the treatment of NSCLC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号