首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Serum amyloid A (SAA) is an acute phase protein whose expression is markedly up-regulated during inflammation and infection. The physiological function of SAA is unclear. In this study, we reported that SAA promotes cellular cholesterol efflux mediated by scavenger receptor B-I (SR-BI). In Chinese hamster ovary cells, SAA promoted cellular cholesterol efflux in an SR-BI-dependent manner, whereas apoA-I did not. Similarly, SAA, but not apoA-I, promoted cholesterol efflux from HepG2 cells in an SR-BI-dependent manner as shown by using the SR-BI inhibitor BLT-1. When SAA was overexpressed in HepG2 cells using adenovirus-mediated gene transfer, the endogenously expressed SAA promoted SR-BI-dependent efflux. To assess the effect of SAA on SR-BI-mediated efflux to high density lipoprotein (HDL), we compared normal HDL, acute phase HDL (AP-HDL, prepared from mice injected with lipopolysaccharide), and AdSAA-HDL (HDL prepared from mice overexpressing SAA). Both AP-HDL and AdSAA-HDL promoted 2-fold greater cholesterol efflux than normal HDL. Lipid-free SAA was shown to also stimulate ABCA1-dependent cholesterol efflux in fibroblasts, in line with an earlier report (Stonik, J. A., Remaley, A. T., Demosky, S. J., Neufeld, E. B., Bocharov, A., and Brewer, H. B. (2004) Biochem. Biophys. Res. Commun. 321, 936-941). When added to cells together, SAA and HDL exerted a synergistic effect in promoting ABCA1-dependent efflux, suggesting that SAA may remodel HDL in a manner that releases apoA-I or other efficient ABCA1 ligands from HDL. SAA also facilitated efflux by a process that was independent of SR-BI and ABCA1. We conclude that the acute phase protein SAA plays an important role in HDL cholesterol metabolism by promoting cellular cholesterol efflux through a number of different efflux pathways.  相似文献   

2.
The capacity of HDL to induce cell cholesterol efflux is considered one of its main antiatherogenic properties. Little is known about the impact of such HDL function on vascular physiology. We investigated the relationship between ABCA1-dependent serum cholesterol efflux capacity (CEC), an HDL functionality indicator, and pulse wave velocity (PWV), an indicator of arterial stiffness. Serum of 167 healthy subjects was used to conduct CEC measurement, and carotid-femoral PWV was measured with a high-fidelity tonometer. J774 macrophages, labeled with [3H]cholesterol and stimulated to express ABCA1, were exposed to sera; the difference between cholesterol efflux from stimulated and unstimulated cells provided specific ABCA1-mediated CEC. PWV is inversely correlated with ABCA1-dependent CEC (r = −0.183; P = 0.018). Moreover, controlling for age, sex, body mass index, mean arterial pressure, serum LDL, HDL-cholesterol, and fasting plasma glucose, PWV displays a significant negative regression on ABCA1-dependent CEC (β = −0.204; 95% confidence interval, −0.371 to −0.037). The finding that ABCA1-dependent CEC, but not serum HDL cholesterol level (r = −0.002; P = 0.985), is a significant predictor of PWV in healthy subjects points to the relevance of HDL function in vascular physiology and arterial stiffness prevention.  相似文献   

3.
During the acute-phase reaction, SAA (serum amyloid A) replaces apoA-I (apolipoprotein A-I) as the major HDL (high-density lipoprotein)-associated apolipoprotein. A remarkable portion of SAA exists in a lipid-free/lipid-poor form and promotes ABCA1 (ATP-binding cassette transporter A1)-dependent cellular cholesterol efflux. In contrast with lipid-free apoA-I and apoE, lipid-free SAA was recently reported to mobilize SR-BI (scavenger receptor class B, type I)-dependent cellular cholesterol efflux [Van der Westhuyzen, Cai, de Beer and de Beer (2005) J. Biol. Chem. 280, 35890-35895]. This unique property could strongly affect cellular cholesterol mobilization during inflammation. However, in the present study, we show that overexpression of SR-BI in HEK-293 cells (human embryonic kidney cells) (devoid of ABCA1) failed to mobilize cholesterol to lipid-free or lipid-poor SAA. Only reconstituted vesicles containing phospholipids and SAA promoted SR-BI-mediated cholesterol efflux. Cholesterol efflux from HEK-293 and HEK-293[SR-BI] cells to lipid-free and lipid-poor SAA was minimal, while efficient efflux was observed from fibroblasts and CHO cells (Chinese-hamster ovary cells) both expressing functional ABCA1. Overexpression of SR-BI in CHO cells strongly attenuated cholesterol efflux to lipid-free SAA even in the presence of an SR-BI-blocking IgG. This implies that SR-BI attenuates ABCA1-mediated cholesterol efflux in a way that is not dependent on SR-BI-mediated re-uptake of cholesterol. The present in vitro experiments demonstrate that the lipidation status of SAA is a critical factor governing cholesterol acceptor properties of this amphipathic apolipoprotein. In addition, we demonstrate that SAA mediates cellular cholesterol efflux via the ABCA1 and/or SR-BI pathway in a similar way to apoA-I.  相似文献   

4.
Stearoyl-coenzyme A desaturase 1 (SCD1) is the rate-limiting enzyme in the synthesis of monounsaturated fatty acids. However, the impact of SCD1 on atherosclerosis remains unclear. The aim of this study was to determine whether SCD1 affects macrophage reverse cholesterol transport (RCT) in mice. Compared to the control, adenoviral-mediated SCD1 overexpression in RAW264.7 macrophages increased cholesterol efflux to HDL, but not to apoA-I, without clear changes in ABCA1, ABCG1 and SR-BI expressions. While knockdown of ABCG1 and SR-BI did not affect the SCD1-induced cholesterol efflux to HDL, SCD1-overexpressing macrophages promoted the formation of both normal- and large-sized HDL in media, accompanying increased apolipoprotein A-I levels in HDL fractions. Transformation to larger particles of HDL was independently confirmed by nuclear magnetic resonance-based lipoprotein analysis. Interestingly, media transfer assays revealed that HDL generated by SCD1 had enhanced cholesterol efflux potential, indicating that SCD1 transformed HDL to a more anti-atherogenic phenotype. To study macrophage RCT in vivo, 3H-cholesterol-labeled RAW264.7 cells overexpressing SCD1 or the control were intraperitoneally injected into mice. Supporting the in vitro data, injection of SCD1-macrophages resulted in significant increases in 3H-tracer in plasma, liver, and feces compared to the control. Moreover, there was a shift towards larger particles in the 3H-tracer distribution of HDL fractions obtained from the mice.  相似文献   

5.
Lipid and cholesterol metabolism in the postprandial phase is associated with both quantitative and qualitative remodeling of HDL particle subspecies that may influence their anti-atherogenic functions in the reverse cholesterol transport pathway. We evaluated the capacity of whole plasma or isolated HDL particles to mediate cellular free cholesterol (FC) efflux, cholesteryl ester transfer protein (CETP)-mediated cholesteryl ester (CE) transfer, and selective hepatic CE uptake during the postprandial phase in subjects displaying type IIB hyperlipidemia (n = 16). Postprandial, large HDL2 displayed an enhanced capacity to mediate FC efflux via both scavenger receptor class B type I (SR-BI)-dependent (+12%; P < 0.02) and ATP binding cassette transporter G1 (ABCG1)-dependent (+31%; P < 0.008) pathways in in vitro cell systems. In addition, the capacity of whole postprandial plasma (4 h and 8 h postprandially) to mediate cellular FC efflux via the ABCA1-dependent pathway was significantly increased (+19%; P < 0.0003). Concomitantly, postprandial lipemia was associated with elevated endogenous CE transfer rates from HDL2 to apoB lipoproteins and with attenuated capacity (−17%; P < 0.02) of total HDL to deliver CE to hepatic cells. Postprandial lipemia enhanced SR-BI and ABCG1-dependent efflux to large HDL2 particles. However, postprandial lipemia is equally associated with deleterious features by enhancing formation of CE-enriched, triglyceride-rich lipoprotein particles through the action of CETP and by reducing the direct return of HDL-CE to the liver.  相似文献   

6.
To study the mechanisms of hepatic HDL formation, we investigated the roles of ABCA1, ABCG1, and SR-BI in nascent HDL formation in primary hepatocytes isolated from mice deficient in ABCA1, ABCG1, or SR-BI and from wild-type (WT) mice. Under basal conditions, in WT hepatocytes, cholesterol efflux to exogenous apoA-I was accompanied by conversion of apoA-I to HDL-sized particles. LXR activation by T0901317 markedly enhanced the formation of larger HDL-sized particles as well as cellular cholesterol efflux to apoA-I. Glyburide treatment completely abolished the formation of 7.4 nm diameter and greater particles but led to the formation of novel 7.2 nm-sized particles. However, cells lacking ABCA1 failed to form such particles. ABCG1-deficient cells showed similar capacity to efflux cholesterol to apoA-I and to form nascent HDL particles compared with WT cells. Cholesterol efflux to apoA-I and nascent HDL formation were slightly but significantly enhanced in SR-BI-deficient cells compared with WT cells under basal but not LXR activated conditions. As in WT but not in ABCA1-deficient hepatocytes, 7.2 nm-sized particles generated by glyburide treatment were also detected in ABCG1-deficient and SR-BI-deficient hepatocytes. Our data indicate that hepatic nascent HDL formation is highly dependent on ABCA1 but not on ABCG1 or SR-BI.  相似文献   

7.
Our objective was to evaluate the associations of individual apolipoprotein A-I (apoA-I)-containing HDL subpopulation levels with ABCA1- and scavenger receptor class B type I (SR-BI)-mediated cellular cholesterol efflux. HDL subpopulations were measured by nondenaturing two-dimensional gel electrophoresis from 105 male subjects selected with various levels of apoA-I in pre-beta-1, alpha-1, and alpha-3 HDL particles. ApoB-containing lipoprotein-depleted serum was incubated with [(3)H]cholesterol-labeled cells to measure efflux. The difference in efflux between control and ABCA1-upregulated J774 macrophages was taken as a measure of ABCA1-mediated efflux. SR-BI-mediated efflux was determined using cholesterol-labeled Fu5AH hepatoma cells. Fractional efflux values obtained from these two cell systems were correlated with the levels of individual HDL subpopulations. A multivariate analysis showed that two HDL subspecies correlated significantly with ABCA1-mediated efflux: small, lipid-poor pre-beta-1 particles (P=0.0022) and intermediate-sized alpha-2 particles (P=0.0477). With regard to SR-BI-mediated efflux, multivariate analysis revealed significant correlations with alpha-2 (P=0.0004), alpha-1 (P=0.0030), pre-beta-1 (P=0.0056), and alpha-3 (P=0.0127) HDL particles. These data demonstrate that the small, lipid-poor pre-beta-1 HDL has the strongest association with ABCA1-mediated cholesterol even in the presence of all other HDL subpopulations. Cholesterol efflux via the SR-BI pathway is associated with several HDL subpopulations with different apolipoprotein composition, lipid content, and size.  相似文献   

8.
Modulation of the reverse cholesterol transport (RCT) pathway may provide a therapeutic target for the prevention and treatment of atherosclerotic cardiovascular disease (CVD). In the present study, we evaluated a novel 26-amino acid apolipoprotein mimetic peptide (ATI-5261) designed from the carboxyl terminal of apoE, in its ability to mimic apoA-I functionality in RCT in vitro. Our data shows that nascent HDL-like (nHDL) particles generated by incubating cells over-expressing ABCA1 with ATI-5261 increase the rate of specific ABCA1 dependent lipid efflux, with high affinity interactions with ABCA1. We also show that these nHDL particles interact with membrane micro-domains in a manner similar to nHDL apoA-I. These nHDL particles then interact with the ABCG1 transporter and are remodeled by plasma HDL-modulating enzymes. Finally, we show that these mature HDL-like particles are taken up by SR-BI for cholesterol delivery to liver cells. This ATI-5621-mediated process mimics apoA-I and may provide a means to prevent cholesterol accumulation in the artery wall. In this study, we propose an integrative physiology approach of HDL biogenesis with the synthetic peptide ATI-5261. These experiments provide new insights for potential therapeutic use of apolipoprotein mimetic peptides.  相似文献   

9.
The effects of in vivo modulation of HDL phospholipid (PL) on scavenger receptor class BI (SR-BI)- and ATP binding cassette transporter 1 (ABCA1)-mediated efflux were examined by overexpressing either endothelial lipase (EL) or phosphatidylserine phospholipase (PS-PLA1) in human apolipoprotein A-I (apoA-I) transgenic mice. Overexpression of EL led to large reductions in the serum PL/apoA-I ratio (-60%), total cholesterol (TC; -89%), and HDL cholesterol (-91%). Relative to the serum before overexpression of EL, the efflux potential of the serum via SR-BI decreased by 90% and ABCA1-mediated efflux increased by 63%. In contrast to overexpression of EL, overexpression of PS-PLA1 led to increases in the PL/apoA-I ratio (88%), TC (78%), HDL cholesterol (57%), and HDL size. The efflux potential of the serum increased by 60% via SR-BI and decreased by 57% via ABCA1. There were significant positive correlations between SR-BI-mediated efflux and a number of serum parameters, including PL/apoA-I ratio, PL, TC, free cholesterol (FC), and HDL cholesterol. In striking contrast, the same correlations were seen with ABCA1-mediated efflux, but the relationships were inverse. In summary, in vivo modulation of HDL PL content affects ABCA1- and SR-BI-mediated efflux in a reciprocal manner. These findings indicate that the type of lipase acting on HDL in vivo will determine which FC efflux pathway the HDL serves. Additionally, the extent of lipolysis will determine the efficiency of FC removal via this pathway.  相似文献   

10.
High LDL-cholesterol (LDL-C) characterizes familial hypercholesterolemia (FH) and familial combined hyperlipidemia (FCH). LDL-apheresis, used in these patients to reduce LDL-C levels, has been shown to also affect HDL levels and composition. We studied LDL-apheresis effects on six FH and nine FCH subjects' serum capacity to modulate cellular cholesterol efflux, an index of HDL functionality, and to load macrophages with cholesterol. Serum cholesterol efflux capacity (CEC) and macrophage cholesterol loading capacity (CLC) were measured before, immediately after, and two days after LDL-apheresis. The procedure reduced total cholesterol (TC), LDL-C, and apoB plasma levels (-69%, -80% and -74%, respectively), parameters only partially restored two days later. HDL-C and apoA-I plasma levels, reduced after LDL-apheresis (-27% and -16%, respectively), were restored to almost normal levels two days later. LDL-apheresis reduced serum aqueous diffusion (AD) CEC, SR-BI-CEC, and ABCA1-CEC. AD and SR-BI were fully restored whereas ABCA1-CEC remained low two days later. Sera immediately and two days after LDL-apheresis had a lower CLC than pre-LDL-apheresis sera. In conclusion, LDL-apheresis transiently reduces HDL-C levels and serum CEC, but it also reduces also serum capacity to deliver cholesterol to macrophages. Despite a potentially negative effect on HDL levels and composition, LDL-apheresis may counteract foam cells formation.  相似文献   

11.
We evaluated the impact of gender differences in both the quantitative and qualitative features of HDL subspecies on cellular free cholesterol efflux through the scavenger receptor class B type I (SR-BI), ABCA1, and ABCG1 pathways. For that purpose, healthy subjects (30 men and 26 women) matched for age, body mass index, triglyceride, apolipoprotein A-I, and high density lipoprotein-cholesterol (HDL-C) levels were recruited. We observed a significant increase (+14%; P < 0.03) in the capacity of whole sera from women to mediate cellular free cholesterol efflux via the SR-BI-dependent pathway compared with sera from men. Such enhanced efflux capacity resulted from a significant increase in plasma levels of large cholesteryl ester-rich HDL2 particles (+20%; P < 0.04) as well as from an enhanced capacity (+14%; P < 0.03) of these particles to mediate cellular free cholesterol efflux via SR-BI. By contrast, plasma from men displayed an enhanced free cholesterol efflux capacity (+31%; P < 0.001) via the ABCA1 transporter pathway compared with that from women, which resulted from a 2.4-fold increase in the plasma level of prebeta particles (P < 0.008). Moreover, in women, SR-BI-mediated cellular free cholesterol efflux was significantly correlated with plasma HDL-C (r = 0.72, P < 0.0001), whereas this relationship was not observed in men. In conclusion, HDL-C level may not represent the absolute indicator of the efficiency of the initial step of the reverse cholesterol transport.  相似文献   

12.
This study compares the roles of ABCG1 and scavenger receptor class B type I (SR-BI) singly or together in promoting net cellular cholesterol efflux to plasma HDL containing active LCAT. In transfected cells, SR-BI promoted free cholesterol efflux to HDL, but this was offset by an increased uptake of HDL cholesteryl ester (CE) into cells, resulting in no net efflux. Coexpression of SR-BI with ABCG1 inhibited the ABCG1-mediated net cholesterol efflux to HDL, apparently by promoting the reuptake of CE from medium. However, ABCG1-mediated cholesterol efflux was not altered in cholesterol-loaded, SR-BI-deficient (SR-BI(-/-)) macrophages. Briefly cultured macrophages collected from SR-BI(-/-) mice loaded with acetylated LDL in the peritoneal cavity did exhibit reduced efflux to HDL. However, this was attributable to reduced expression of ABCG1 and ABCA1, likely reflecting increased macrophage cholesterol efflux to apolipoprotein E-enriched HDL during loading in SR-BI(-/-) mice. In conclusion, cellular SR-BI does not promote net cholesterol efflux from cells to plasma HDL containing active LCAT as a result of the reuptake of HDL-CE into cells. Previous findings of increased atherosclerosis in mice transplanted with SR-BI(-/-) bone marrow probably cannot be explained by a defect in macrophage cholesterol efflux.  相似文献   

13.
The objective of this study was to establish the role of apoA-IV, ABCA1, and LCAT in the biogenesis of apoA-IV-containing HDL (HDL-A-IV) using different mouse models. Adenovirus-mediated gene transfer of apoA-IV in apoA-I−/− mice did not change plasma lipid levels. ApoA-IV floated in the HDL2/HDL3 region, promoted the formation of spherical HDL particles as determined by electron microscopy, and generated mostly α- and a few pre-β-like HDL subpopulations. Gene transfer of apoA-IV in apoA-I−/− × apoE−/− mice increased plasma cholesterol and triglyceride levels, and 80% of the protein was distributed in the VLDL/IDL/LDL region. This treatment likewise generated α- and pre-β-like HDL subpopulations. Spherical and α-migrating HDL particles were not detectable following gene transfer of apoA-IV in ABCA1−/− or LCAT−/− mice. Coexpression of apoA-IV and LCAT in apoA-I−/− mice restored the formation of HDL-A-IV. Lipid-free apoA-IV and reconstituted HDL-A-IV promoted ABCA1 and scavenger receptor BI (SR-BI)-mediated cholesterol efflux, respectively, as efficiently as apoA-I and apoE. Our findings are consistent with a novel function of apoA-IV in the biogenesis of discrete HDL-A-IV particles with the participation of ABCA1 and LCAT, and may explain previously reported anti-inflammatory and atheroprotective properties of apoA-IV.  相似文献   

14.
In Tangier disease, absence of ATP binding cassette transporter A1 (ABCA1) results in reduced plasma HDL and elevated triglyceride (TG) levels. We hypothesized that hepatocyte ABCA1 regulates VLDL TG secretion through nascent HDL production. Silencing of ABCA1 expression in oleate-stimulated rat hepatoma cells resulted in: 1) decreased large nascent HDL (>10 nm diameter) and increased small nascent HDL (<10 nm) formation, 2) increased large buoyant VLDL1 particle secretion, and 3) decreased phosphatidylinositol-3 (PI3) kinase activation. Nascent HDL-containing conditioned medium from rat hepatoma cells or HEK293 cells transfected with ABCA1 was effective in increasing PI3 kinase activation and reducing VLDL TG secretion in ABCA1-silenced hepatoma cells. Addition of isolated large nascent HDL particles to ABCA1-silenced hepatoma cells inhibited VLDL TG secretion to a greater extent than small nascent HDL. Similarly, addition of recombinant HDL, but not human plasma HDL, was effective in attenuating TG secretion and increasing PI3 kinase activation in ABCA1-silenced cells. Collectively, these data suggest that large nascent HDL particles, assembled by hepatic ABCA1, generate a PI3 kinase-mediated autocrine signal that attenuates VLDL maturation and TG secretion. This pathway may explain the elevated plasma TG concentration that occurs in most Tangier subjects and may also account, in part, for the inverse relationship between plasma HDL and TG concentrations in individuals with compromised ABCA1 function.  相似文献   

15.
Alagille syndrome is associated with bile duct paucity resulting in liver disease. Patients can be divided into mildly and severely icteric groups, with both groups having altered lipoproteins. The incidence of ischemic heart disease is rare in severely cholestatic children despite increased total cholesterol and decreased high density lipoprotein cholesterol (HDL-C). The present studies examine the impact of altered lipid and lipoproteins on scavenger receptor class B type I (SR-BI)- and ABCA1-mediated efflux to serum from both groups. Efflux was compared with serum from 29 patients (15 with normal plasma cholesteryl ester, 14 with low cholesteryl ester). Efflux via SR-BI and ABCA1 was studied using cell systems having either low or high expression levels of these receptors. SR-BI efflux was lower (P = 0.04) with serum from severely icteric patients (3.9 +/- 1.4%) compared with serum from mildly icteric patients (5.1 +/- 1.4%) and was positively correlated with HDL-C and its apolipoproteins. SR-BI-mediated efflux was not correlated with any particular mature HDL but was negatively correlated with small lipid-poor prebeta-1 HDL. Consistent with severely icteric patients having high prebeta-1 HDL levels, the ABCA1 efflux was significantly higher with their serum (4.8 +/- 2.2%) compared with serum from mildly icteric patients (2.0 +/- 0.6%) and was positively correlated with prebeta-1 HDL. These studies demonstrated that prebeta-1 HDL is the preferred acceptor for ABCA1 efflux, whereas many particles mediate SR-BI efflux.  相似文献   

16.
Scavenger receptor class B type I (SR-BI) and ABCA1 are structurally dissimilar cell surface proteins that play key roles in HDL metabolism. SR-BI is a receptor that binds HDL with high affinity and mediates both the selective lipid uptake of cholesteryl esters from lipid-rich HDL to cells and the efflux of unesterified cholesterol from cells to HDL. ABCA1 mediates the efflux of unesterified cholesterol and phospholipids from cells to lipid-poor apolipoprotein A-I (apoA-I). The activities of ABCA1 and other ATP binding cassette superfamily members are inhibited by the drug glyburide, and SR-BI-mediated lipid transport is blocked by small molecule inhibitors called BLTs. Here, we show that one BLT, [1-(2-methoxy-phenyl)-3-naphthalen-2-yl-urea] (BLT-4), blocked ABCA1-mediated cholesterol efflux to lipid-poor apoA-I at a potency similar to that for its inhibition of SR-BI (IC(50) approximately 55-60 microM). Reciprocally, glyburide blocked SR-BI-mediated selective lipid uptake and efflux at a potency similar to that for its inhibition of ABCA1 (IC(50) approximately 275-300 microM). As is the case with BLTs, glyburide increased the apparent affinity of HDL binding to SR-BI. The reciprocal inhibition of SR-BI and ABCA1 by BLT-4 and glyburide raises the possibility that these proteins may share similar or common steps in their mechanisms of lipid transport.  相似文献   

17.
The ATP-binding cassette transporter A1 (ABCA1) mediates the efflux of cellular unesterified cholesterol and phospholipid to lipid-poor apolipoprotein A-I. Chymase, a protease secreted by mast cells, selectively cleaves pre-beta-migrating particles from high density lipoprotein (HDL)(3) and reduces the efflux of cholesterol from macrophages. To evaluate whether this effect is the result of reduction of ABCA1-dependent or -independent pathways of cholesterol efflux, in this study we examined the efflux of cholesterol to preparations of chymase-treated HDL(3) in two types of cell: 1) in J774 murine macrophages endogenously expressing low levels of scavenger receptor class B, type I (SR-BI), and high levels of ABCA1 upon treatment with cAMP; and 2) in Fu5AH rat hepatoma cells endogenously expressing high levels of the SR-BI and low levels of ABCA1. Treatment of HDL(3) with the human chymase resulted in rapid depletion of pre-beta-HDL and a concomitant decrease in the efflux of cholesterol and phospholipid (2-fold and 3-fold, respectively) from the ABCA1-expressing J774 cells. In contrast, efflux of free cholesterol from Fu5AH to chymase-treated and to untreated HDL(3) was similar. Incubation of HDL(3) with phospholipid transfer protein led to an increase in pre-beta-HDL contents as well as in ABCA1-mediated cholesterol efflux. A decreased cholesterol efflux to untreated HDL(3) but not to chymase-treated HDL(3) was observed in ABCA1-expressing J774 with probucol, an inhibitor of cholesterol efflux to lipid-poor apoA-I. Similar results were obtained using brefeldin and gliburide, two inhibitors of ABCA1-mediated efflux. These results indicate that chymase treatment of HDL(3) specifically impairs the ABCA1-dependent pathway without influencing either aqueous or SR-BI-facilitated diffusion and that this effect is caused by depletion of lipid-poor pre-beta-migrating particles in HDL(3). Our results are compatible with the view that HDL(3) promotes ABCA1-mediated lipid efflux entirely through its lipid-poor fraction with pre-beta mobility.  相似文献   

18.
19.
The mechanisms that deprive HDL of its cardioprotective properties are poorly understood. One potential pathway involves oxidative damage of HDL proteins by myeloperoxidase (MPO) a heme enzyme secreted by human artery wall macrophages. Mass spectrometric analysis demonstrated that levels of 3-chlorotyrosine and 3-nitrotyrosine - two characteristic products of MPO - are elevated in HDL isolated from patients with established cardiovascular disease. When apolipoprotein A-I (apoA-I), the major HDL protein, is oxidized by MPO, its ability to promote cellular cholesterol efflux by the membrane-associated ATP-binding cassette transporter A1 (ABCA1) pathway is diminished. Biochemical studies revealed that oxidation of specific tyrosine and methionine residues in apoA-I contributes to this loss of ABCA1 activity. Another potential mechanism for generating dysfunctional HDL involves covalent modification of apoA-I by reactive carbonyls, which have been implicated in atherogenesis and diabetic vascular disease. Indeed, modification of apoA-I by malondialdehyde (MDA) or acrolein also markedly impaired the lipoprotein's ability to promote cellular cholesterol efflux by the ABCA1 pathway. Tandem mass spectrometric analyses revealed that these reactive carbonyls target specific Lys residues in the C-terminus of apoA-I. Importantly, immunochemical analyses showed that levels of MDA-protein adducts are elevated in HDL isolated from human atherosclerotic lesions. Also, apoA-I co-localized with acrolein adducts in such lesions. Thus, lipid peroxidation products might specifically modify HDL in vivo. Our observations support the hypotheses that MPO and reactive carbonyls might generate dysfunctional HDL in humans. This article is part of a Special Issue entitled Advances in High Density Lipoprotein Formation and Metabolism: A Tribute to John F. Oram (1945-2010).  相似文献   

20.
The contribution of ABCA1-mediated efflux of cellular phospholipid (PL) and cholesterol to human apolipoprotein A-I (apoA-I) to the formation of pre beta 1-HDL (or lipid-poor apoA-I) is not well defined. To explore this issue, we characterized the nascent HDL particles formed when lipid-free apoA-I was incubated with fibroblasts in which expression of the ABCA1 was upregulated. After a 2 h incubation, the extracellular medium contained small apoA-I/PL particles (pre beta 1-HDL; diameter = 7.5 +/- 0.4 nm). The pre beta 1-HDL (or lipid-poor apoA-I) particles contained a single apoA-I molecule and three to four PL molecules and one to two cholesterol molecules. An apoA-I variant lacking the C-terminal alpha-helix did not form such particles when incubated with the cell, indicating that this helix is critical for the formation of lipid-poor apoA-I particles. These pre beta 1-HDL particles were as effective as lipid-free apoA-I molecules in mediating both the efflux of cellular lipids via ABCA1 and the formation of larger, discoidal HDL particles. In conclusion, pre beta 1-HDL is both a product and a substrate in the ABCA1-mediated reaction to efflux cellular PL and cholesterol to apoA-I. A monomeric apoA-I molecule associated with three to four PL molecules (i.e., lipid-poor apoA-I) has similar properties to the lipid-free apoA-I molecule.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号