首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
研究表明,脂质不但参与植物的信号转导、小泡运输、细胞骨架重组等多种细胞过程,而且在植物的生长发育和胁迫反应中具有重要作用.但是脂质本身的多样性、复杂性、以及分析手段的滞后限制了人们对脂质的深入认识.电喷雾电离串联质谱(ESI-MS/MS)技术作为一种直接进样的高通量分析技术,能够在短时间内对大多数脂质的不同分子种进行定量分析,极大地方便了人们了解植物因环境变化和生长发育引起的组织内脂质分子种的微量变化.近年来,该技术在植物上的成功应用,推动植物脂质组学研究取得了重要进展,揭示出脂质在植物的逆境胁迫反应、防御反应中的多种功能,促进了植物脂质代谢相关基因的鉴定.而且,该技术与其他脂质分析技术结合,促使人们在脂质的分布、运输、转化和新脂质种类的鉴定方面有新的进展.概要介绍了ESI-MS/MS技术的特点,重点综述了该技术在植物脂质组学研究中的应用进展,并展望了该技术今后的发展方向.  相似文献   

2.
Shotgun lipidomics, comprised of intrasource separation, multidimensional mass spectrometry and computer-assisted array analysis, is an emerging powerful technique in lipidomics. Through effective intrasource separation of predetermined groups of lipid classes based on their intrinsic electrical propensities, analyses of lipids from crude extracts of biologic samples can be directly and routinely performed. Appropriate multidimensional array analysis of lipid pseudomolecular ions and fragments can be performed leading to the identification and quantitation of targeted lipid molecular species. Since most biologic lipids are linear combinations of aliphatic chains, backbones and head groups, a rich repertoire of multiple lipid building blocks present in discrete combinations represent experimental observables that can be computer reconstructed in conjunction with their pseudomolecular ions to directly determine the lipid molecular structures from a lipid extract. Through this approach, dramatic increases in the accessible dynamic range for ratiometric quantitation and discrimination of isobaric molecular species can be achieved without any prior column chromatography or operator-dependent supervision. At its current state of development, shotgun lipidomics can analyze over 20 lipid classes, hundreds of lipid molecular species and more than 95% of the mass content of a cellular lipidome. Thus, understanding the biochemical mechanisms underlying lipid-mediated disease states will be greatly facilitated by the power of shotgun lipidomics.  相似文献   

3.
4.
重金属镉(Cd)一直是茶叶产品质量安全关注的重点。本研究基于电热蒸发-催化热解-原子吸收光谱仪(SS-ETV-AAS),使用镍材质样品舟,在300 mL/min空气条件下,350 ℃干燥20 s,350~725 ℃灰化55 s;引入300 mL/min氢气与空气反应形成氮氢混合气氛,在725~800 ℃(50 s)下完成Cd的蒸发;之后,在高岭土填料催化热解炉800 ℃和准直管700 ℃条件下,氮氢火焰原子吸收测定镉的含量。方法检出限(LOD)为0.3 ng/g、定量限(LOQ)为1.0 ng/g,R2>0.998,多次测定的相对标准偏差(RSD)为1.8%~8.6%,多种茶叶样品中Cd的测定值与微波消解石墨炉原子吸收光谱法(GFAAS)无显著性差异(P>0.05),Cd的回收率在92%~107%之间。试验结果表明,该方法灵敏度高、稳定性好、简单高效,且无需消解处理,样品分析时间仅为3min,适用于茶叶中Cd的快速检测。  相似文献   

5.
6.
Within recent years, ganglioside patterns have been increasingly analyzed by MS. However, internal standards for calibration are only available for gangliosides GM1, GM2, and GM3. For this reason, we prepared homologous internal standards bearing nonnatural fatty acids of the major mammalian brain gangliosides GM1, GD1a, GD1b, GT1b, and GQ1b, and of the tumor-associated gangliosides GM2 and GD2. The fatty acid moieties were incorporated after selective chemical or enzymatic deacylation of bovine brain gangliosides. For modification of the sphingoid bases, we developed a new synthetic method based on olefin cross metathesis. This method was used for the preparation of a lyso-GM1 and a lyso-GM2 standard. The total yield of this method was 8.7% for the synthesis of d17:1-lyso-GM1 from d20:1/18:0-GM1 in four steps. The title compounds are currently used as calibration substances for MS quantification and are also suitable for functional studies.  相似文献   

7.
Matrix-assisted laser desorption/ionization-mass spectrometry (MALDI-MS) has been applied primarily to the analysis of glycosphingolipids separated from other complex mixtures by TLC, but it is difficult to obtain quantitative profiling of each glycosphingolipid among the different spots on TLC by MALDI-MS. Thus, the development of a convenient approach that utilizes liquid chromatography/electrospray ionization (LC/ESI)-MS has received interest. However, previously reported methods have been insufficient to separate and distinguish each ganglioside class. Here we report an effective method for the targeted analysis of theoretically expected ganglioside molecular species by LC/ESI tandem mass spectrometry (LC/ESI-MS/MS) in combination with multiple reaction monitoring (MRM). MRM detection specific for sialic acid enabled us to analyze ganglioside standards such as GM1, GM2, GM3, GD1, and GT1 at picomolar to femtomolar levels. Furthermore, other gangliosides, such as GD2, GD3, GT2, GT3, and GQ1, were also detected in glycosphingolipid standard mixtures from porcine brain and acidic glycolipid extract from mouse brain by theoretically expanded MRM. We found that this approach was also applicable to sulfatides contained in the glycosphingolipid mixtures. In addition, we established a method to separate and distinguish regioisomeric gangliosides, such as GM1a and -1b, GD1a, -1b, and -1c, and GT1a, -1b, and -1c with diagnostic sugar chains in the MRM.  相似文献   

8.
脂质组学研究进展   总被引:4,自引:0,他引:4  
综述了脂质组学的研究现状和发展趋势.脂质组学是对生物体、组织或细胞中的脂质以及与其相互作用的分子进行系统分析的一门新兴学科.脂质具有多种重要的生物功能,脂质代谢异常可引发诸多人类疾病,包括糖尿病、肥胖症、癌症以及神经退行性疾病等.目前,脂质组学研究已成为一个前景广阔的热门领域,并广泛地应用到包括药物研发、分子生理学、分子病理学、功能基因组学、营养学以及环境与健康等重要领域.  相似文献   

9.
10.
The development of a new mass spectrometric lipid profiling methodology permits the identification of cellular phosphatidylinositol monophosphate/phosphatidylinositol bisphosphate/phosphatidylinositol trisphosphate (PIP/PIP2/PIP3) species that includes the fatty acyl composition. Using electrospray ionization mass spectrometry, we were able to resolve and identify 28 PIP and PIP2 compounds as well as 8 PIP3 compounds from RAW 264.7 or primary murine macrophage cell extracts. Analysis of PIP profiles after agonist stimulation of cells revealed the generation of differential PIP3 species and permitted us to propose a novel means for regulation and specificity in signaling through PIP3. This is the first reported identification of intact, cellular PIP3 by mass spectral analysis. The ability to analyze the fatty acyl chain composition of signaling lipids initiates new venues for investigation of the processes by which specific polyphosphoinositide species mediate.  相似文献   

11.
12.
Lipids, once thought to be mainly for energy-storage and structural purpose, have now gained immense recognition as a class of critical metabolites with versatile functions. The diversity and complexity of the cellular lipids are the main challenge for the comprehensive analysis of a lipidome. Lipidomics, which aims at mapping all of the lipids in a cell, is expanded rapidly in recent years, mainly attributed to recent advances in mass spectrometry (MS). MS-based lipidomic approaches developed recently allow the quick profiling of hundreds of lipids in a crude lipid extract. With the aid of latest computational tools/software (chemometrics), aberrant lipid metabolites or important signaling lipid(s) could be easily identified using unbiased lipid profiling approaches. Further tandem MS (MS/MS)-based lipidomic approaches, known as targeted approaches and able to convey structural information, hold the promise for high-throughput lipidome analysis. In this review, I discussed the basic strategy for systems level analysis of lipidome in biomedical study.  相似文献   

13.
14.
15.
Phospholipids, including ether phospholipids, are composed of numerous isomeric and isobaric species that have the same backbone and acyl chains. This structural resemblance results in similar fragmentation patterns by collision-induced dissociation of phospholipids regardless of class, yielding complicated MS/MS spectra when isobaric species are analyzed together. Furthermore, the presence of isobaric species can lead to misassignment of species when made solely based on their molecular weights. In this study, we used normal-phase HPLC for ESI-MS/MS analysis of phospholipids from bovine heart mitochondria. Class separation by HPLC eliminates chances for misidentification of isobaric species from different classes of phospholipids. Chromatography yields simple MS/MS spectra without interference from isobaric species, allowing clear identification of peaks corresponding to fragmented ions containing monoacylglycerol backbone derived from losing one acyl chain. Using these fragmented ions, we characterized individual and isomeric species in each class of mitochondrial phospholipids, including unusual species, such as PS, containing an ether linkage and species containing odd-numbered acyl chains in cardiolipin, PS, PI, and PG. We also characterized monolysocardiolipin and dilysocardiolipin, the least abundant but nevertheless important mitochondrial phospholipids. The results clearly show the power of HPLC-MS/MS for identification and characterization of phospholipids, including minor species.  相似文献   

16.
It is now apparent that each of the known, naturally occurring polyphosphoinositides, the phosphatidylinositol monophosphates (PtdIns3P, PtdIns4P, PtdIns5P), phosphatidylinositol bisphosphates [PtdIns(3,4)P(2), PtdIns(3,5)P(2), PtdIns(4,5)P(2)], and phosphatidylinositol trisphosphate [PtdIns(3,4,5)P(3)], have distinct roles in regulating many cellular events, including intracellular signaling, migration, and vesicular trafficking. Traditional identification techniques require [(32)P]inorganic phosphate or [(3)H]inositol radiolabeling, acidified lipid extraction, deacylation, and ion-exchange head group separation, which are time-consuming and not suitable for samples in which radiolabeling is impractical, thus greatly restricting the study of these lipids in many physiologically relevant systems. Thus, we have developed a novel, high-efficiency, buffered citrate extraction methodology to minimize acid-induced phosphoinositide degradation, together with a high-sensitivity liquid chromatography-mass spectrometry (LC-MS) protocol using an acetonitrile-chloroform-methanol-water-ethylamine gradient with a microbore silica column that enables the identification and quantification of all phosphoinositides in a sample. The liquid chromatograph is sufficient to resolve PtdInsP(3) and PtdInsP(2) regioisomers; however, the PtdInsP regioisomers require a combination of LC and diagnostic fragmentation to MS(3). Data are presented using this approach for the analysis of phosphoinositides in human platelet and yeast samples.  相似文献   

17.
18.
The ceramide (Cer) and sphingomyelin (SM) species of cultured differentiated rat cerebellar granule cells and human fibroblasts were characterized by electrospray ionization-mass spectrometry. We identified 35 different species of Cer and 18 species of SM in human fibroblasts, and 35 different species of Cer and 9 species of SM were characterized in rat neurons. The main Cer species of rat cerebellar granule cells contained d18:1 sphingosine linked with palmitic, stearic, or nervonic fatty acid, and the two main SM species were d18:1,16:0 and d18:1,18:0. Both sphingolipids were enriched in detergent-resistant membranes (DRMs; or lipid rafts), and significant differences were found in the sphingolipid patterns of DRMs and of detergent-soluble fractions (DSF) from these cells. In human fibroblasts, the main Cer species were d18:1,16:0, d18:2,16:0, d18:1,24:0, d18:2,24:0, d18:1,24:1, and d18:2,24:1; the most represented species of SM were d18:1,16:0, d18:1,24:0, and d18:1,24:1. In these cells, SM was highly enriched in DRMs and Cer was mainly associated with DSF, and the species found in DRMs were markedly different from those found in DSF.  相似文献   

19.
20.
Apoptosis is an intricately regulated cellular process that proceeds through different cell type- and signal-dependent pathways. In the mitochondrial apoptotic program, mitochondrial outer membrane permeabilization by BCL-2 proteins leads to the release of apoptogenic factors, caspase activation, and cell death. In addition to protein components of the mitochondrial apoptotic machinery, an interesting role for lipids and lipid metabolism in BCL-2 family-regulated apoptosis is also emerging. We used a comparative lipidomics approach to uncover alterations in lipid profile in the absence of the proapoptotic proteins BAX and BAK in mouse embryonic fibroblasts (MEFs). We detected over 1,000 ions in these experiments and found changes in an ion with an m/z of 534.49. Structural elucidation of this ion through tandem mass spectrometry revealed that this molecule is a ceramide with a 16-carbon N-acyl chain and sphingadiene backbone (d18:2/16:0 ceramide). Targeted LC/MS analysis revealed elevated levels of additional sphingadiene-containing ceramides (d18:2-Cers) in BAX, BAK-double knockout MEFs. Elevated d18:2-Cers are also found in immortalized baby mouse kidney epithelial cells lacking BAX and BAK. These results support the existence of a distinct biochemical pathway for regulating ceramides with different backbone structures and suggest that sphingadiene-containing ceramides may have functions that are distinct from the more common sphingosine-containing species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号