首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
In this study, we investigated the effects of eccentric cleavage products of β-carotene, i.e. β-apocarotenoids (BACs), on retinoid X receptor alpha (RXRα) signaling. Transactivation assays were performed to test whether BACs activate or antagonize RXRα. Reporter gene constructs (RXRE-Luc, pRL-tk) and RXRα were transfected into Cos-1 cells and used to perform these assays. None of the BACs tested activated RXRα. Among the compounds tested, β-apo-13-carotenone was found to antagonize the activation of RXRα by 9-cis-retinoic acid and was effective at concentrations as low as 1 nM. Molecular modeling studies revealed that β-apo-13-carotenone makes molecular interactions like an antagonist of RXRα. The results suggest a possible function of BACs on RXRα signaling.  相似文献   

3.
4.
A putative carotenoid oxygenase from Novosphingobium aromaticivorans was purified with a specific activity of 0.8?U/mg by His-Trap affinity chromatography. The native enzyme was estimated to be a 52?kDa monomer. Enzyme activity for β-apo-8′-carotenal was maximal at pH 8.0 and 45?°C, with a half life of 15.3?h, K m of 21?μM, and k cat of 25?l/min. The enzyme exhibited cleavage activity only for carotenoids containing one β-ionone ring and its catalytic efficiency (k cat/K m) followed the order β-apo-8′-carotenal?>?β-apo-4′-carotenal?>?γ-carotene. The enzyme converted these carotenoids to β-apo-13-carotenones by cleaving their C13–C14 double bonds. The oxygen atom of β-apo-13-carotenone originated not from water but from molecular oxygen. Thus, the enzyme was an apo-carotenoid 13,14-dioxygenase.  相似文献   

5.
Mycobacterium tuberculosis, the causative agent of tuberculosis, is assumed to lack carotenoids, which are widespread pigments fulfilling important functions as radical scavengers and as a source of apocarotenoids. In mammals, the synthesis of apocarotenoids, including retinoic acid, is initiated by the β-carotene cleavage oxygenases I and II catalyzing either a central or an excentric cleavage of β-carotene, respectively. The M. tuberculosis ORF Rv0654 codes for a putative carotenoid oxygenase conserved in other mycobacteria. In the present study, we investigated the corresponding enzyme, here named M. tuberculosis carotenoid cleavage oxygenase (MtCCO). Using heterologously expressed and purified protein, we show that MtCCO converts several carotenoids and apocarotenoids in vitro. Moreover, the identification of the products suggests that, in contrast to other carotenoid oxygenases, MtCCO cleaves the central C15-C15' and an excentric double bond at the C13-C14 position, leading to retinal (C(20)), β-apo-14'-carotenal (C(22)) and β-apo-13-carotenone (C(18)) from β-carotene, as well as the corresponding hydroxylated products from zeaxanthin and lutein. Moreover, the enzyme cleaves also 3,3'-dihydroxy-isorenieratene representing aromatic carotenoids synthesized by other mycobacteria. Quantification of the products from different substrates indicates that the preference for each of the cleavage positions is determined by the hydroxylation and the nature of the ionone ring. The data obtained in the present study reveal MtCCO to be a novel carotenoid oxygenase and indicate that M. tuberculosis may utilize carotenoids from host cells and interfere with their retinoid metabolism.  相似文献   

6.
Previous studies have shown that beta-carotene 15,15'-monooxygenase catalyzes the cleavage of beta-carotene at the central carbon 15,15'-double bond but cleaves lycopene with much lower activity. However, expressing the mouse carotene 9',10'-monooxygenase (CMO2) in beta-carotene/lycopene-synthesizing and -accumulating Escherichia coli strains leads to both a color shift and formation of apo-10'-carotenoids, suggesting the oxidative cleavage of both carotenoids at their 9',10'-double bond. Here we provide information on the biochemical characterization of CMO2 of the ferret, a model for human carotenoid metabolism, in terms of the kinetic analysis of beta-carotene/lycopene cleavage into beta-apo-10'-carotenal/apo-10'-lycopenal in vitro and the formation of apo-10'-lycopenoids in ferrets in vivo. We demonstrate that the recombinant ferret CMO2 catalyzes the excentric cleavage of both all-trans-beta-carotene and the 5-cis- and 13-cis-isomers of lycopene at the 9',10'-double bond but not all-trans-lycopene. The cleavage activity of ferret CMO2 was higher toward lycopene cis-isomers as compared with beta-carotene as substrate. Iron was an essential co-factor for the reaction. Furthermore, all-trans-lycopene supplementation in ferrets resulted in significant accumulation of cis-isomers of lycopene and the formation of apo-10'-lycopenol, as well as up-regulation of the CMO2 expression in lung tissues. In addition, in vitro incubation of apo-10'-lycopenal with the post-nuclear fraction of hepatic homogenates of ferrets resulted in the production of both apo-10'-lycopenoic acid and apo-10'-lycopenol, respectively, depending upon the presence of NAD+ or NADH as cofactors. Our finding of bioconversion of cis-isomers of lycopene into apo-10'-lycopenoids by CMO2 is significant because cis-isomers of lycopene are a predominant form of lycopene in mammalian tissues and apo-lycopenoids may have specific biological activities related to human health.  相似文献   

7.
Mammals and higher vertebrates including humans have only three members of the carotenoid cleavage dioxygenase family of enzymes. This review focuses on the two that function as carotenoid oxygenases. β-Carotene 15,15′-dioxygenase (BCO1) catalyzes the oxidative cleavage of the central 15,15′ carbon-carbon double of β-carotene bond by addition of molecular oxygen. The product of the reaction is retinaldehyde (retinal or β-apo-15-carotenal). Thus, BCO1 is the enzyme responsible for the conversion of provitamin A carotenoids to vitamin A. It also cleaves the 15,15′ bond of β-apocarotenals to yield retinal and of lycopene to yield apo-15-lycopenal. β-Carotene 9′,10′-dioxygenase (BCO2) catalyzes the cleavage of the 9,10 and 9′,10′ double bonds of a wider variety of carotenoids, including both provitamin A and non-provitamin A carotenoids, as well as the xanthophylls, lutein and zeaxanthin. Indeed, the enzyme shows a marked preference for utilization of these xanthophylls and other substrates with hydroxylated terminal rings. Studies of the phenotypes of BCO1 null, BCO2 null, and BCO1/2 double knockout mice and of humans with polymorphisms in the enzymes, has clarified the role of these enzymes in whole body carotenoid and vitamin A homeostasis. These studies also demonstrate the relationship between enzyme expression and whole body lipid and energy metabolism and oxidative stress.In addition, relationships between BCO1 and BCO2 and the development or risk of metabolic diseases, eye diseases and cancer have been observed. While the precise roles of the enzymes in the pathophysiology of most of these diseases is not presently clear, these gaps in knowledge provide fertile ground for rigorous future investigations.This article is part of a Special Issue entitled Carotenoids: Recent Advances in Cell and Molecular Biology edited by Johannes von Lintig and Loredana Quadro.  相似文献   

8.
A new minor carotenoid, β-citraurin epoxide (3-hydroxy-5,6-epoxy-5,6-dihydro-8′-apo-β-caroten-8′-al) and several isomers of violaxanthin (5,6,5′,6′-diepoxy-5,6,5′,6′-tetrahydro-β,β-caroten-3,3′-diol) have been identified in Valencia orange peel. The previously reported occurrence of apo-10′-violaxanthal (3-hydroxy- 5,6-epoxy-5,6-dihydro-10′-apo-β-caroten-10′-al) and apo-12′-violaxanthal (3-hydroxy-5,6-epoxy-5,6-dihydro- 12′-apo-β-caroten-12′-al) has been confirmed, and their syntheses are described. The quantitative determination of the carotenoids has also been performed.  相似文献   

9.
A series of oxygenated carotenoids has been isolated from tomatoes. Two of these compounds have been identified, by comparison of their chromatographic and spectroscopic properties with those of semisynthetic samples, as epoxides of lycopene (1,2-epoxy-1,2-dihydro-ψ,ψ-carotene and 5,6-epoxy-5,6-dihydro-ψ,ψ-carotene). The other related compounds have been identified by their chromatographic, spectroscopic and chemical properties as mutatochrome (5,8-epoxy-5,8-dihydro-β,β-carotene) and epoxides of phytoene (1,2-epoxy-1,2,7,8,11,12,7′,8′,11′,12′-decahydro-ψ, ψ-carotene), phytofluene (1,2-epoxy-1,2,7,8, 11,12,7′,8′-octahydro-ψ,ψ-carotene and 1,2-epoxy-1,2,7,8,7′,8′,11′,12′-octahydro-ψ,ψ-carotene) and ξ-carotene (1,2-epoxy-1,2,7,8,7′,8′-hexahydro-ψ,ψ-carotene). The presence in tomatoes of apo-6′-lycopenal (6′-apo-ψ-caroten-6′-al), 8′-apo-lycopenal (8′-apo-ψ-caroten-8′-al) and lycoxanthin (ψ,ψ-caroten-16-ol) has been confirmed by comparison with authentic samples.  相似文献   

10.
DNA hypermethylation and silencing of tumor-suppressor genes are commonly seen in human cancers, and likely contribute to the process of carcinogenesis. A growing body of evidence suggests that dietary compounds may alter cancer risk through epigenetic modifications. Glutathione S-transferase P1 (GSTP1) is hypermethylated in >90% of prostate cancer cases making it one of the most common genome alterations in prostate cancer. LNCaP cells were treated either with lycopene or apo-10′-lycopenal for 7 days, and mRNA expression and DNA methylation of GSTP1 were evaluated. Neither compound significantly altered expression nor methylation of GSTP1 while treatment with 5-azacytidine decreased methylation by 78%. These findings demonstrate that lycopene and apo-10′-lycopenal are not effective demethylating agents of GSTP1 in the human LNCaP cell line.  相似文献   

11.
12.
Humans cannot synthesize vitamin A and thus must obtain it from their diet. β-Carotene 15,15′-oxygenase (BCO1) catalyzes the oxidative cleavage of provitamin A carotenoids at the central 15–15′ double bond to yield retinal (vitamin A). In this work, we quantitatively describe the substrate specificity of purified recombinant human BCO1 in terms of catalytic efficiency values (kcat/Km). The full-length open reading frame of human BCO1 was cloned into the pET-28b expression vector with a C-terminal polyhistidine tag, and the protein was expressed in the Escherichia coli strain BL21-Gold(DE3). The enzyme was purified using cobalt ion affinity chromatography. The purified enzyme preparation catalyzed the oxidative cleavage of β-carotene with a Vmax = 197.2 nmol retinal/mg BCO1 × h, Km = 17.2 μm and catalytic efficiency kcat/Km = 6098 m−1 min−1. The enzyme also catalyzed the oxidative cleavage of α-carotene, β-cryptoxanthin, and β-apo-8′-carotenal to yield retinal. The catalytic efficiency values of these substrates are lower than that of β-carotene. Surprisingly, BCO1 catalyzed the oxidative cleavage of lycopene to yield acycloretinal with a catalytic efficiency similar to that of β-carotene. The shorter β-apocarotenals (β-apo-10′-carotenal, β-apo-12′-carotenal, β-apo-14′-carotenal) do not show Michaelis-Menten behavior under the conditions tested. We did not detect any activity with lutein, zeaxanthin, and 9-cis-β-carotene. Our results show that BCO1 favors full-length provitamin A carotenoids as substrates, with the notable exception of lycopene. Lycopene has previously been reported to be unreactive with BCO1, and our findings warrant a fresh look at acycloretinal and its alcohol and acid forms as metabolites of lycopene in future studies.  相似文献   

13.
Using the post-mitochondrial fraction of rat intestinal mucosa, we have investigated lycopene metabolism. The incubation media was composed of NAD(+), KCl, and DTT with or without added lipoxygenase. The addition of lipoxygenase into the incubation significantly increased the production of lycopene metabolites. The enzymatic incubation products of (2)H(10) lycopene were separated using high-performance liquid chromatography and analyzed by UV/Vis spectrophotometer and atmospheric pressure chemical ionization-mass spectroscopy. We have identified two types of products: cleavage products and oxidation products. The cleavage products are likely: (1) 3-keto-apo-13-lycopenone (C(18)H(24)O(2) or 6,10,14-trimethyl-12-one-3,5,7,9,13-pentadecapentaen-2-one) with lambdamax = 365 nm and m/z = 272 and (2) 3,4-dehydro-5,6-dihydro-15,15'-apo-lycopenal (C(20)H(28)O or 3,7,11,15-tetramethyl-2,4,6,8,12,14-hexadecahexaen-1-al) with lambdamax = 380 nm and m/z = 284. The oxidative metabolites are likely: (3) 2-apo-5,8-lycopenal-furanoxide (C(37)H(50)O) with lambdamax = 415 nm, 435 nm, and 470 nm, and m/z = 510; (4) lycopene-5, 6, 5', 6'-diepoxide (C(40)H(56)O(2)) with lambdamax = 415 nm, 440 nm, and 470 nm, and m/z = 568; (5) lycopene-5,8-furanoxide isomer (I) (C(40)H(56)O) with lambdamax = 410 nm, 440nm, and 470 nm, and m/z = 552; (6) lycopene-5,8-epoxide isomer (II) (C(40)H(56)O) with lambdamax = 410, 440, 470 nm, and m/z = 552; and (7) 3-keto-lycopene-5',8'-furanoxide (C(40)H(54)O(2)) with lambdamax = 400 nm, 420 nm, and 450 nm, and m/z = 566. These results demonstrate that both central and excentric cleavage of lycopene occurs in the rat intestinal mucosa in the presence of soy lipoxygenase.  相似文献   

14.
The biochemical mechanisms underlying the inhibitory effects of lycopene, the main tomato carotenoid, on the growth of cancer cells are largely unknown. It has been hypothesized that lycopene derivatives may act as ligands for a nuclear receptor in analogy to retinoic acid, the hormone derived from beta-carotene. The inhibition of human mammary cancer (MCF-7) cell growth and the transactivation of the retinoic acid receptor (RAR) reporter gene by synthetic acyclo-retinoic acid, the open chain analog of retinoic acid, was compared to the effects of lycopene and retinoic acid in the same systems. Acyclo-retinoic acid activated the DR-5 retinoic acid response element with a approximately 100-fold lower potency than retinoic acid. This effect was independent of cotransfection with the RARalpha receptor. Lycopene exhibited only very modest activity in this system. In contrast to the results from the transactivation studies, acyclo-retinoic acid, retinoic acid, and lycopene inhibited cell growth with a similar potency. Preincubation with each of the three compounds slowed down cell cycle progression from G1 to S phase. In summary, acyclo-retinoic acid inhibited cancer cell growth and interacted with RAR. However, it exhibited low affinity for RAR and a correspondingly low efficacy in activating this receptor, indicating that RAR does not mediate the growth inhibitory effect of the compound. In addition, the concentrations of acyclo-retinoic acid and of lycopene required for inducing inhibition of cell growth were similar, suggesting that acyclo-retinoic acid is unlikely to be the active metabolite of lycopene.  相似文献   

15.
Xanthophyll carotenoids, such as lutein, zeaxanthin and β-cryptoxanthin, may provide potential health benefits against chronic and degenerative diseases. Investigating pathways of xanthophyll metabolism are important to understanding their biological functions. Carotene-15,15′-monooxygenase (CMO1) has been shown to be involved in vitamin A formation, while recent studies suggest that carotene-9′,10′-monooxygenase (CMO2) may have a broader substrate specificity than previously recognized. In this in vitro study, we investigated baculovirus-generated recombinant ferret CMO2 cleavage activity towards the carotenoid substrates zeaxanthin, lutein and β-cryptoxanthin. Utilizing HPLC, LC–MS and GC–MS, we identified both volatile and non-volatile apo-carotenoid products including 3-OH-β-ionone, 3-OH-α-ionone, β-ionone, 3-OH-α-apo-10′-carotenal, 3-OH-β-apo-10′-carotenal, and β-apo-10′-carotenal, indicating cleavage at both the 9,10 and 9′,10′ carbon–carbon double bond. Enzyme kinetic analysis indicated the xanthophylls zeaxanthin and lutein are preferentially cleaved over β-cryptoxanthin, indicating a key role of CMO2 in non-provitamin A carotenoid metabolism. Furthermore, incubation of 3-OH-β-apo-10′-carotenal with CMO2 lysate resulted in the formation of 3-OH-β-ionone. In the presence of NAD+, in vitro incubation of 3-OH-β-apo-10′-carotenal with ferret hepatic homogenates formed 3-OH-β-apo-10′-carotenoic acid. Since apo-carotenoids serve as important signaling molecules in a variety of biological processes, enzymatic cleavage of xanthophylls by mammalian CMO2 represents a new avenue of research regarding vertebrate carotenoid metabolism and biological function.  相似文献   

16.
《FEBS letters》2014,588(9):1802-1807
Strigolactones are phytohormones synthesized from carotenoids via a stereospecific pathway involving the carotenoid cleavage dioxygenases 7 (CCD7) and 8. CCD7 cleaves 9-cis-β-carotene to form a supposedly 9-cis-configured β-apo-10′-carotenal. CCD8 converts this intermediate through a combination of yet undetermined reactions into the strigolactone-like compound carlactone. Here, we investigated the substrate and stereo-specificity of the Arabidopsis and pea CCD7 and determined the stereo-configuration of the β-apo-10′-carotenal intermediate by using Nuclear Magnetic Resonance Spectroscopy. Our data unequivocally demonstrate the 9-cis-configuration of the intermediate. Both CCD7s cleave different 9-cis-carotenoids, yielding hydroxylated 9-cis-apo-10′-carotenals that may lead to hydroxylated carlactones, but show highest affinity for 9-cis-β-carotene.  相似文献   

17.
Neurosporaxanthin (β-apo-4'-carotenoic acid) biosynthesis has been studied in detail in the fungus Fusarium fujikuroi. The genes and enzymes for this biosynthetic pathway are known until the last enzymatic step, the oxidation of the aldehyde group of its precursor, β-apo-4'-carotenal. On the basis of sequence homology to Neurospora crassa YLO-1, which mediates the formation of apo-4'-lycopenoic acid from the corresponding aldehyde substrate, we cloned the carD gene of F. fujikuroi and investigated the activity of the encoded enzyme. In vitro assays performed with heterologously expressed protein showed the formation of neurosporaxanthin and other apocarotenoid acids from the corresponding apocarotenals. To confirm this function in vivo, we generated an Escherichia coli strain producing β-apo-4'-carotenal, which was converted into neurosporaxanthin upon expression of carD. Moreover, the carD function was substantiated by its targeted disruption in a F. fujikuroi carotenoid-overproducing strain, which resulted in the loss of neurosporaxanthin and the accumulation of β-apo-4'-carotenal, its derivative β-apo-4'-carotenol, and minor amounts of other carotenoids. Intermediates accumulated in the ΔcarD mutant suggest that the reactions leading to neurosporaxanthin in Neurospora and Fusarium are different in their order. In contrast to ylo-1 in N. crassa, carD mRNA content is enhanced by light, but to a lesser extent than other enzymatic genes of the F. fujikuroi carotenoid pathway. Furthermore, carD mRNA levels were higher in carotenoid-overproducing mutants, supporting a functional role for CarD in F. fujikuroi carotenogenesis. With the genetic and biochemical characterization of CarD, the whole neurosporaxanthin biosynthetic pathway of F. fujikuroi has been established.  相似文献   

18.
Using the post-mitochondrial fraction of rat intestinal mucosa, we have investigated lycopene metabolism. The incubation media was composed of NAD+, KCI, and DTT with or without added lipoxygenase. The addition of lipoxygenase into the incubation significantly increased the production of lycopene metabolites. The enzymatic incubation products of 2H10 lycopene were separated using high-performance liquid chromatography and analyzed by UV/Vis spectrophotometer and atmospheric pressure chemical ionization-mass spectroscopy. We have identified two types of products: cleavage products and oxidation products. The cleavage products are likely: (1) 3-keto-apo-13-lycopenone (C18H24O2 or 6,10,14-trimethyl-12-one-3,5,7,9,13-pentadecapentaen-2-one) with lambdamax = 365 nm and m/z =272 and (2) 3,4-dehydro-5,6-dihydro-15-apo-lycopenal (C20H28O or 3,7,11,15-tetramethyl-2,4,6,8,12,14-hexadecahexaen-l-al) with lambdamax= 380 nm and m/z = 284. The oxidative metabolites are likely: (3) 2-ene-5,8-lycopenal-furanoxide (C37H50O) with lambdamax = 415 nm, 435 nm, and 470 nm, and m/z = 510; (4) lycopene-5, 6, 5', 6'-diepoxide (C40H56O2) with lambdamax = 415 nm, 440 nm, and 470 nm, and m/z =568; (5) lycopene-5,8-furanoxide isomer (I) (C40H56O2) with lambdamax = 410 nm, 440 nm, and 470 nm, and m/z = 552; (6) lycopene-5,8-epoxide isomer (II) (C40H56O) with lambdamax = 410, 440, 470 nm, and m/z = 552; and (7) 3-keto-lycopene-5',8'-furanoxide (C40H54O2) with lambdamax = 400 nm, 420 nm, and 450 nm, and m/z = 566. These results demonstrate that both central and excentric cleavage of lycopene occurs in the rat intestinal mucosa in the presence of soy lipoxygenase.  相似文献   

19.
Two new products from the incubation of beta-carotene with intestinal mucosa homogenates of human, monkey, ferret, and rat were isolated using high-performance liquid chromatography (HPLC). Identification by comparing retention times in HPLC, by monitoring ultraviolet/visible spectra, by reduction to corresponding alcohol, by oxime formation, and by mass spectrometry demonstrated that they are beta-apo-13-carotenone and beta-apo-14'-carotenal. These compounds were not found in incubations done without intestinal homogenates or with disulfiram as an inhibitor. Under standard incubation conditions, these products increased linearly for 60 min and up to a protein concentration of 1.5 mg/mL and increased along with increasing concentrations of beta-carotene. Therefore, they are enzymatic cleavage products from beta-carotene. The formation of the beta-apo-13-carotenone and beta-apo-14'-carotenal provides direct evidence for an enzymatic excentric cleavage mechanism.  相似文献   

20.
Mycobacterium marinum produces carotenoids when exposed to light or when antimycin A is added. Although the major pigment synthesized is β-carotene, lycopene is accumulated when the induced bacteria are incubated in the presence of nicotine (5 mM) or 2-(4-chlorophenylthio)-triethylamine hydrochloride (CPTA) (50 μM). Both of these compounds inhibit β-carotene synthesis by blocking the cyclization of lycopene. When nicotine is removed by washing the cells, the accumulated lycopene is cyclized to form β-carotene. The cyclization of lycopene is not an energy-requiring reaction and, furthermore, does not require oxygen or any other electron acceptor. Chloramphenicol addition also does not inhibit the conversion of lycopene to β-carotene indicating that no de novo protein synthesis is involved. Nicotine appears to act by inhibiting the activity of the enzyme required for the cyclization of lycopene.Although the mode of action of CPTA is similar to nicotine, it cannot be removed by washing once the cells have been incubated in its presence, suggesting that the molecule is tightly bound to the enzyme. The possible active molecular sites of nicotine and CPTA are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号