首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A UDP-Gal:Gal beta 1----4GlcNAc-R alpha 1----3- and a UDP-Gal:GlcNAc-R beta 1----4-galactosyltransferase have been purified 44,000- and 101,000-fold, respectively, from a Triton X-100 extract of calf thymus by affinity chromatography on UDP-hexanolamine-Sepharose and alpha-lactalbumin-Sepharose in a yield of 25-40%. Sodium dodecyl sulfate gel electrophoresis under reducing conditions revealed a major polypeptide species with a molecular weight of 40,000 and a minor form at Mr 42,000 for the alpha 1----3-galactosyltransferase and a major polypeptide with Mr 51,000 for the beta 1----4-galactosyltransferase. Analytical gel filtration on Sephadex G-100 yielded a monomeric form for each of the galactosyltransferases with Mr 43,000 and 59,000 respectively, in addition to peaks of activity at higher molecular weights. Isoelectric focussing of the alpha 1----3-galactosyltransferase revealed a significant charge heterogeneity with forms varying in pI values between 5.0 and 6.5. Acceptor specificity studies indicated that the purified alpha 1----3-galactosyltransferase was free from contaminating galactosyltransferase activities such as those involved in the synthesis of Gal beta 1----4GlcNAc-R and Gal beta 1----3GalNAc-R sequences, the blood group B determinant, the Pk antigen, trihexosylceramide, and ganglioside GM1. The alpha 1----3-galactosyltransferase appeared to be highly active with glycoproteins, oligosaccharides, and glycolipids having a terminal Gal beta 1----4GlcNAc beta 1----unit such as asialo-alpha 1-acid glycoprotein (Km = 1.25 mM), Gal beta 1----4GlcNAc beta 1----2Man alpha 1----3Man beta 1----4GlcNAc (Km = 0.57 mM), and paragloboside. The action of the alpha 1----3-galactosyltransferase was found to be mutually exclusive with that of the NeuAc:Gal beta 1----4GlcNAc-R alpha 2----6-sialyltransferase from bovine colostrum. In addition alpha 1----3-fucosylation of the N-acetylglucosamine residue in the preferred disaccharide acceptor structure completely blocked galactosylation of the alpha 1----3-galactosyltransferase.  相似文献   

2.
Using 500-MHz 1H NMR spectroscopy we have investigated the branch specificity that bovine colostrum CMP-NeuAc:Gal beta 1----4GlcNAc-R alpha 2----6-sialyltransferase shows in its sialylation of bi-, tri-, and tetraantennary glycopeptides and oligosaccharides of the N-acetyllactosamine type. The enzyme appears to highly prefer the galactose residue at the Gal beta 1----4GlcNAc beta 1----2Man alpha 1----3 branch for attachment of the 1st mol of sialic acid in all the acceptors tested. The 2nd mol of sialic acid becomes linked mainly to the Gal beta 1----4GlcNAc beta 1----2Man alpha 1----6 branch in bi- and triantennary substrates, but this reaction invariably proceeds at a much lower rate. Under the conditions employed, the Gal beta 1----4GlcNAc beta 1----6Man alpha 1----6 branch is extremely resistant to alpha 2----6-sialylation. A higher degree of branching of the acceptors leads to a decrease in the rate of sialylation. In particular, the presence of the Gal beta 1----4GlcNAc beta 1----6Man alpha 1----6 branch strongly inhibits the rate of transfer of both the 1st and the 2nd mol of sialic acid. In addition, it directs the incorporation of the 2nd mol into tetraantennary structures toward the Gal beta 1----4GlcNAc beta 1----4Man alpha 1----3 branch. In contrast, the presence of the Gal beta 1----4GlcNAc beta 1----4Man alpha 1----3 branch has only minor effects on the rates of sialylation and, consequently, on the branch preference of sialic acid attachment. Results obtained with partial structures of tetraantennary acceptors indicate that the Man beta 1----4GlcNAc part of the core is essential for the expression of branch specificity of the sialyltransferase. The sialylation patterns observed in vivo in glycoproteins of different origin are consistent with the in vitro preference of alpha 2----6-sialyltransferase for the Gal beta 1----4GlcNAc beta 1----2Man alpha 1----3 branch. Our findings suggest that the terminal structures of branched glycans of the N-acetyllactosamine type are the result of the complementary branch specificity of the various glycosyltransferases that are specific for the acceptor sequence Gal beta 1----4GlcNAc-R.  相似文献   

3.
Nonspecific cross-reacting antigen-2 (NCA-2) is a glycoprotein purified from meconium as a closely correlated entity with carcinoembryonic antigen (CEA). As in the case of CEA, only asparagine-linked sugar chains are included in NCA-2. In order to elucidate the structural characteristics of the sugar chains of NCA-2, they were quantitatively released from the polypeptide backbone by hydrazinolysis and reduced with NaB3H4 after N-acetylation. The radioactive oligosaccharides were fractionated by paper electrophoresis, serial chromatography on immobilized lectin columns, and Bio-Gel P-4 (under 400 mesh) column chromatography. Structures of the oligosaccharides were estimated from the data of the binding specificities of immobilized lectin columns and the effective size of each oligosaccharide determined by passing through a Bio-Gel P-4 column and were then confirmed by endo-beta-galactosidase digestion, sequential digestion with exoglycosidases with different aglycon specificities, and methylation analysis. NCA-2 contains a similar number (27 mol) of sugar chains in one molecule compared with CEA (24-26 mol). However, all sugar chains of NCA-2 were complex-type in contrast to CEA, approximately 8% of the sugar chains of which were high mannose-type (Yamashita, K., Totani, K., Kuroki, M., Matsuoka, Y., Ueda, I., and Kobata, A. (1987) Cancer Res. 47, 3451-3459). About 80% of the oligosaccharides from NCA-2 contain bisecting N-acetylglucosamine residues, and the percent molar ratio of mono-, bi, tri, and tetraantennary oligosaccharides was 2:14:57:27. (+/- Fuc alpha 1----2)Gal beta 1----4(+/- Fuc alpha 1----3)GlcNAc, (+/- Fuc alpha 1----2)Gal beta 1----3(+/- Fuc alpha 1----4)GlcNAc, (+/- Fuc alpha 1----2)Gal beta 1----4(+/- Fuc alpha 1----3)GlcNAc beta 1---- 3Gal beta 1----4GlcNAc, (+/- Fuc alpha 1----2)Gal beta 1----3(+/- Fuc alpha 1----4)GlcNAc beta 1---- 3Gal beta 1----4GlcNAc, and GalNAc beta 1----3Gal beta 1----3GlcNAc beta 1----3Gal beta 1----4GlcNAc were found as their outer chain moieties. Approximately 60% of the oligosaccharides from NCA-2 contain the Gal beta 1----4 or 3GlcNAc beta 1----3Gal beta 1----4GlcNAc beta 1----group in their outer chains.  相似文献   

4.
S Takasaki  A Kobata 《Biochemistry》1986,25(19):5709-5715
Asparagine-linked sugar chains were quantitatively released from fetuin by hydrazinolysis. Structural analysis of the sugar chains by sequential exoglycosidase digestion in combination with methylation analysis and Smith degradation revealed that most of them have typical biantennary (8%) and triantennary (74%) structures containing different amounts of N-acetylneuraminic acid residues. In addition, an unusual tetrasialyl triantennary sugar chain (17%) containing the Gal beta 1----3GlcNAc sequence in the outer chain moiety was detected, and its structure was elucidated as NeuAc alpha 2----3Gal beta 1----3(NeuAc alpha 2----6)-GlcNAc beta 1----4(NeuAc alpha 2----6Gal beta 1----4GlcNAc beta 1----2)Man alpha 1----3(NeuAc alpha 2----3Gal beta 1----4GlcNAc beta 1----2Man alpha 1----6)Man beta 1----4GlcNAc beta 1----4GlcNAc.  相似文献   

5.
Anti-Gal is a natural antibody present in unusually high concentrations in human sera. It constitutes as much as 1% of circulating IgG and displays a distinct specificity for the Gal alpha 1----3Gal carbohydrate epitope. In the present study, we have found in the sera of patients with Chagas' disease and Leishmania infection anti-Gal titers 10- and 16-fold higher than that of healthy or bacteria-infected individuals. This increase in anti-Gal titer seemed to be the result of a specific immune response toward parasitic Gal alpha 1----3Gal epitopes. Binding studies of affinity chromatography-purified anti-Gal antibodies to Trypanosoma cruzi and American Leishmania parasites indeed demonstrated the presence of Gal alpha 1----3Gal epitopes on these parasites. This finding was supported by the observed binding to the parasites of two additional Gal alpha 1----3Gal recognizing molecules: the mAb Gal-13, and the lectin, Bandeiraea simplicifolia I B4. Furthermore, the binding of both anti-Gal antibody and of the B. simplicifolia I B4 lectin could be inhibited by galactose, and not glucose. In addition, removal of the terminal alpha-galactosyl residues from the parasites by pretreatment with alpha-galactosidase, or the oxidation of the binding epitopes by periodate prevented the subsequent binding of both the antibody and the lectin. A crude leishmanial lipid extract readily bound these three reagents, suggesting that at least part of these epitopes are of a glycolipid nature. These Gal alpha 1----3Gal epitopes may thus serve as an antigenic source for the excess production of anti-Gal. In view of the naturally high level of anti-Gal in humans and its binding to T. cruzi and Leishmania, it is argued that these antibodies may contribute to the natural defense against the invasion of such parasites.  相似文献   

6.
The structure of sialylated carbohydrate units of bronchial mucins obtained from cystic fibrosis patients was investigated by 500-MHz 1H NMR spectroscopy in conjunction with sugar analysis. After subjecting the mucins to alkaline borohydride degradation, sialylated oligosaccharide-alditols were isolated by anion-exchange chromatography and fractionated by high performance liquid chromatography. Five compounds could be obtained in a rather pure state; their structures were established as the following: A-1, NeuAc alpha(2----3)Gal beta(1----4) [Fuc alpha(1----3)]GlcNAc beta(1----3)Gal-NAc-ol; A-2, NeuAc alpha(2----3)Gal beta(1----4)GlcNAc beta(1----6)-[GlcNAc beta (1----3)]GalNAc-o1; A-3, NeuAc alpha(2----3)Gal beta-(1----4)[Fuc alpha(1----3)]GlcNAc beta(1----3)Gal beta(1----3) GalNAc-o1; A-4, NeuAc alpha(2----3)Gal beta(1----4)[Fuc alpha(1----3)]Glc-NAc NAc beta(1----6)[GlcNAc beta(1----3)]GalNAc-o1; A-6,NeuAc alpha-(2----3) Gal beta(1----4)[Fuc alpha(1----3)]GlcNAc beta(1----6)[Gal beta-(1----4) GlcNAc beta(1----3)]GalNAc-o1. The simultaneous presence of sialic acid in alpha(2----3)-linkage to Gal and fucose in alpha(1----3)-linkage to GlcNAc of the same N-acetyllactosamine unit could be adequately proved by high resolution 1H NMR spectroscopy. This sequence constitutes a novel structural element for mucins.  相似文献   

7.
GalNAc beta 1----3 terminated glycosphingolipids of human erythrocytes   总被引:4,自引:0,他引:4  
Nonacid glycosphingolipids with 4 to 10 sugar residues isolated from pooled erythrocytes of blood group O donors have been efficiently separated as peracetylated derivatives on silicic acid. This procedure enabled a quantitative estimate of individual compounds and also revealed several GalNAc beta 1----3 terminated structures. The structural characterization of these glycolipids with 1H-NMR spectroscopy, direct inlet mass spectrometry, gas chromatography, and gas chromatography-mass spectrometry identified the compounds as GalNAc beta 1----3Gal alpha 1----4Gal beta 1----4Glc beta 1----1-N-acetyl sphingosine and GalNAc beta 1----3Gal alpha 1----4Gal beta 1----4Glc beta 1----1-N-acetyl phytosphingosine, GalNAc beta 1----3GalNAc beta 1----3Gal alpha 1----4Gal beta 1----4Glc beta 1----1 ceramide, and GalNAc beta 1----3Gal beta 1----4GlcNAc beta 1----3Gal beta 1----4Glc beta 1----1 ceramide.  相似文献   

8.
Previous studies (Galili, U., Clark, M. R., Shohet, S. B., Buehler, J., and Macher, B. A. (1987) Proc. Natl. Acad. Sci. U. S. A. 84, 1369-1373; Galili, U., Shohet, S. B., Korbrin, E., Stults, C. L. M., and Macher, B. A. (1988) J. Biol. Chem. 263, 17755-17762) have established that there is a unique evolutionary distribution of glycoconjugates carrying the Gal alpha 1-3Gal beta 1-4GlcNAc epitope. These glycoconjugates are expressed by cells from New World monkeys and non-primate mammals, but not by cells from humans, Old World monkeys, or apes. The lack of expression of this epitope in the latter species appears to result from the suppression of gene expression for the enzyme UDP-galactose:nLc4Cer alpha 1-3-galactosyltransferase (alpha 1-3GalT) (Joziasse, D. H., Shaper, J. H., Van den Eijnden, D. H., Van Tunen, A. J., and Shaper, N. L. (1989) J. Biol. Chem. 264, 14290-14297). Although many non-primate species are known to express this carbohydrate epitope, the nature (i.e. glycoprotein or glycosphingolipid) of the glycoconjugate carrying this epitope is only known for a few tissues in a few animal species. Furthermore, it is not known whether all animal species express this epitope in the same tissues. We have investigated these questions by analyzing the glycosphingolipids in kidney from several non-primate animal species. Immunostained thin layer chromatograms of glycosphingolipids from sheep, pig, rabbit, cow, and rat kidney with the Gal alpha 1-3Gal beta 1-4GlcNAc glycosphingolipid-specific monoclonal antibody, Gal-13, demonstrated that kidney from all of these species except rat contained Gal alpha 1-3Gal beta 1-4GlcNAc neutral glycosphingolipids. A lack of expression of Gal alpha 1-3Gal beta 1-4GlcNAc glycosphingolipids in rat may be due to the lack of expression of the enzyme (alpha 1-3GalT) which catalyzes the formation of the Gal alpha 1-3Gal nonreducing terminal sequence of these compounds or to the lack of expression of glycosyltransferases which are necessary for the synthesis of the neolacto core structure of these compounds. These possibilities were evaluated in two ways. First, the three enzymes (UDP-N-acetylglucosamine:LacCer beta 1-3-N-acetyl-glucosaminyltransferase, UDP-galactose:Lc3Cer beta 1-4-galactosyltransferase, and alpha 1-3GalT) involved in the synthesis of the Gal alpha 1-3Gal beta 1-4GlcNAc glycosphingolipids were assayed using an enzyme-linked immunosorbent assay-based assay system and carbohydrate sequence-specific monoclonal antibodies. Second, TLC immunostaining was done to determine if the glycosphingolipid precursors (i.e. Lc3Cer and nLc4Cer) are expressed in rat kidney. Interestingly, rat kidney had a relatively high level of alpha 1-3GalT activity compared with the other animals tested.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

9.
The combining site of the nontoxic carbohydrate binding protein (Abrus precatorius agglutinin, APA) purified from the needs of Abrus precatorius (Jequirity bean), was studied by quantitative precipitin and precipitin-inhibition assays. Of 26 glycoproteins and polysaccharides tested, all, except sialic acid-containing glycoproteins and desialized ovine salivary glycoproteins, reacted strongly with the lectin, and precipitated over 70% of the lectin added, indicating that APA has a broad range of affinity and recognizes (internal) Gal beta 1----sequences of carbohydrate chains. The strong reaction with desialized porcine and rat salivary glycoproteins as well as pneumococcus type XIV polysaccharide suggests that APA has affinity for one or more of the following carbohydrate sequences: Thomsen-Friedenreich (T, Gal beta 1----3GalNAc), blood group precursor type I and/or type II (Gal beta 1----3/4GlcNAc) disaccharide determinants of complex carbohydrates. Among the oligosaccharides tested, the T structure was the best inhibitor; it was 2.4 and 3.2 times more active than type II and type I sequences, respectively. The blood group I Ma-active trisaccharide, Gal beta 1----4GlcNAc beta 1----6Gal, was about as active as the corresponding disaccharide (II). From the above results, we conclude that the size of the combining site of the A. precatorius agglutinin is probably as large as a disaccharide and most strongly complementary to the Gal beta 1----3GalNAc (T determinant) sequence. The carbohydrate specificities of this lectin will be further investigated once the related oligosaccharide structures become available.  相似文献   

10.
Fucosyl residues in the alpha 1----3 linkage to N-acetylglucosamine (Fuc alpha 1----3GlcNAc) on oligosaccharides of glycoproteins and glycolipids have been detected in certain human tumors and are developmentally expressed (reviewed in Foster, C. S., and Glick, M. C. (1988) Adv. Neuroblastoma Res. 2, 421-432). In order to understand control mechanisms for the biosynthesis of these fucosylated glycoconjugates, GDP-L-Fuc-N-acetyl-beta-D-glucosaminide alpha 1----3fucosyltransferase was purified from human neuroblastoma cells, CHP 134, utilizing either the immobilized oligosaccharide or disaccharide substrates. The enzyme, extracted from CHP 134 cells, was purified by DEAE- and SP-Sephadex chromatography and then by either immobilized substrate. alpha 1----3Fucosyltransferase was obtained in approximately 10% yield and was purified 45,000-fold from the cell extract. The kinetic properties of the enzyme showed an apparent KGDP-Fuc 43 microM, KGal beta 1----4GlcNAc 0.4 mM, KGal beta 1----4Glc 8.1 mM, and KFuc alpha 1----2Gal beta 1----4Glc 1.0 mM. Polyacrylamide gel electrophoresis of the affinity-purified enzyme showed two proteins which migrated, Mr = 45,000-40,000. The enzyme differed in substrate specificity, pH optimum, response to N-ethylmaleimide and ion requirements from the enzymes purified from human milk or serum. The inability of alpha 1----3fucosyltransferase to transfer to substrates containing NeuAc alpha 2----3 or alpha 2----6Gal is in contrast to the reports for the enzyme in other human tumors. This substrate specificity correlates with the oligosaccharide residues thus far defined on glycoproteins of CHP 134 cells since NeuAc and Fuc alpha 1----3GlcNAc have yet to be detected on the same oligosaccharide antenna. However, the enzyme transfers to Fuc alpha 1----2Gal beta 1----4GlcNAc/Glc with higher activity than the unfucosylated disaccharides, although neither alpha 1----2fucosyltransferase nor Fuc alpha 1----2 residues have been detected in CHP 134 cells. The different substrate specificities of alpha 1----3fucosyltransferase isolated from human tumors and normal sources leads to the suggestion that a family of alpha 1----3fucosyltransferases may exist and that they may be differentially expressed in human tumors.  相似文献   

11.
The Gal alpha 1-3Gal structural determinant has been found to have a unique distribution in mammals. Although this determinant is abundantly expressed by erythrocytes and nucleated cells of many mammals, it has not been detected in human cells. However, our previous studies (Galili, U., Rachmilewitz, E. A., Peleg, A., and Flechner, I. (1984) J. Exp. Med. 160, 1519-1531; Galili, U., Clark, M. R., and Shohet, S. B. (1986) J. Clin. Invest. 77, 27-33) have suggested that this epitope is present in small amounts and may be involved in immune-mediated destruction of senescent human erythrocytes. To have a means for exploring this possibility and for studying the species and tissue distribution of this epitope we have raised a monoclonal antibody (Gal-13) which specifically binds to glycoconjugates with a nonreducing terminal Gal alpha 1-3Gal disaccharide. Mice were immunized with rabbit erythrocytes, which express an abundance of glycoconjugates with Gal alpha 1-3Gal epitopes. Clones were screened with a solid-phase binding assay (enzyme-linked immunosorbent assay) for antibodies which bound to ceramide pentahexoside (Gal alpha 1-3Gal beta 1-4GlcNAc beta 1-3-Gal beta Gal beta 1-4Glc1-1Cer) but not to ceramide trihexoside (Gal alpha 1-4Gal beta 1-4Glc1-1Cer). Gal-13 bound to a number of neutral glycosphingolipids from rabbit and bovine erythrocytes. These glycosphingolipids have previously been shown to be a family of linear and branched polylactosamine structures, which have non-reducing terminal Gal alpha 1-3Gal epitopes. The antibody did not bind to the human blood group B glycolipid, Gal alpha 1-3(Fuc alpha 1-2)Gal beta 1-4GlcNAc beta 1-3Gal beta 1-4Glc1-1Cer, and, therefore, branching at the penultimate galactose blocks Gal-13 binding. However, after removal of the fucose from the B antigen Gal-13 recognized the resulting derivative. Other Gal alpha 1-3Gal glycosphingolipids with an isogloboside or globoside core structure were not recognized by Gal-13 suggesting that the antibody binds to Gal alpha 1-3Gal carried by a lactosamine core structure. Gal-13 has been used to demonstrate that the Gal alpha 1-3Gal ceramide pentahexoside has been evolutionarily conserved in red cells of animals up to the stage of New World monkeys but is not found in Old World monkey red cells.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

12.
The carbohydrate-binding specificity of Aleuria aurantia lectin was investigated by analyzing the behavior of a variety of fucose-containing oligosaccharides on an A. aurantia lectin-Sepharose column. Studies with complex-type oligosaccharides obtained from various glycoproteins by hydrazinolysis and their partial degradation fragments indicated that the presence of the alpha-fucosyl residue linked at the C-6 position of the proximal N-acetylglucosamine moiety is indispensable for binding to the lectin column. Binding was not affected by the structures of the outer chain moieties nor by the presence of the bisecting N-acetylglucosamine residue. These results indicated that A. aurantia lectin-Sepharose is useful for the group separation of mixtures of complex-type asparagine-linked sugar chains. Studies of glycosylated Bence Jones proteins indicated that this procedure is also applicable to intact glycoproteins. The behavior of oligosaccharides isolated from human milk and the urine of patients with fucosidosis indicated that the oligosaccharides with Fuc alpha 1----2Gal beta 1----4GlcNAc and Gal beta 1----4(Fuc alpha 1----3)GlcNAc groups interact with the lectin, but less strongly than complex-type sugar chains with a fucosylated core. Lacto-N-fucopentaitol II, which has a Gal beta 1----3(Fuc alpha 1----4)GlcNAc group, interacts less strongly than the above two groups with the matrix. Oligosaccharides with Fuc alpha 1----2Gal beta 1----3GlcNAc and Gal beta 1----4GlcNAc beta 1----3Gal beta 1----4(Fuc alpha 1----3)GlcNAc groups showed almost no interaction with the matrix.  相似文献   

13.
Rat liver Golgi apparatus are shown to have a CMP-N-acetylneuraminate: N-acetylglucosaminide (alpha 2----6)-sialyltransferase which catalyzes the conversion of the human milk oligosaccharide LS-tetrasaccharide-a (NeuAc alpha 2----3Gal beta 1---- 3GlcNAc beta 1----3Gal beta 1----4Glc) to disialyllacto -N- tetraose containing the terminal sequence: (formula: see text) found in N-linked oligosaccharides of glycoproteins. The N-acetylglucosaminide (alpha 2----6)-sialyltransferase has a marked preference for the sequence NeuAc alpha 2----3-Gal beta 1---- 3GlcNAc as an acceptor substrate. Thus, the order of addition of the two sialic acids in the disialylated structure shown above is proposed to be first the terminal sialic acid in the NeuAc alpha 2----3Gal linkage followed by the internal sialic acid in the NeuAc alpha 2---- 6GlcNAc linkage. Sialylation in vitro of the type 1 branches (Gal beta 1---- 3GlcNAc -) of the N-linked oligosaccharides of asialo prothrombin to produce the same disialylated sequence is also demonstrated.  相似文献   

14.
Structures of the sugar chains of mouse immunoglobulin G   总被引:2,自引:0,他引:2  
The asparagine-linked sugar chains of mouse immunoglobulin G (IgG) were quantitatively liberated as radioactive oligosaccharides from the polypeptide portions by hydrazinolysis followed by N-acetylation, and NaB3H4 reduction. After fractionation by paper electrophoresis, lectin (RCA120) affinity high-performance liquid chromatography, and gel filtration, their structures were studied by sequential exoglycosidase digestion in combination with methylation analysis. Mouse IgG was shown to contain the biantennary complex type sugar chains. Eight neutral oligosaccharide structures, viz, +/- Gal beta 1----4GlcNAc beta 1----2Man alpha 1----6(+/- Gal beta 1---- 4GlcNAc beta 1----2Man alpha 1----3)Man beta 1----4GlcNAc beta 1----4(+/- Fuc alpha 1----6)GlcNAc, were found after the sialidase treatment. The molar ratio of the sugar chains with 2,1, and 0 galactose residues was 2:5:3. The galactose residue in the monogalactosylated sugar chains was distributed on Man alpha 1----3 and Man alpha 1----6 sides in the ratio of 1:3. The oligosaccharides were almost wholly fucosylated and contained no bisecting N-acetylglucosamine which is present in human, rabbit, and bovine IgGs.  相似文献   

15.
Murine monoclonal antibodies, TE-1 and TE-3, generated by immunization with a biosynthetic reaction product containing a terminal Gal beta 1----3GlcNAc structure have been produced and found to react specifically with underivatized type 1 chain lacto-series carbohydrate structures. Detailed analysis of these antibodies, both IgM, indicates two differing classes of epitope specificity. Antibody TE-1 was found to bind preferentially to longer chain carbohydrate structures containing a terminal Gal beta 1----3GlcNAc disaccharide, indicating that optimal antibody binding involved more than recognition of this disaccharide. In contrast, antibody TE-3 was found to bind strongly carbohydrate structures containing terminal Gal beta 1----3GlcNAc structures irrespective of chain length. Modification of core chain structures by addition of fucose and/or sialic acid residues completely abolished antibody binding with either antibody. TLC immunostaining of neutral glycolipids isolated from a variety of human colonic adenocarcinoma cell lines indicated intensely stained bands, particularly with antibody TE-3, which correlated with the level of expression of type 1 chain based glycolipid derivatives. These antibodies are applied to the detailed study of the regulation of synthesis of lacto-series type 1 chain based carbohydrate structures.  相似文献   

16.
The asparagine-linked sugar chains of natural interferon-beta 1 secreted from human foreskin fibroblasts by poly I:poly C induction and of three recombinant human interferon-beta 1 produced by Chinese hamster ovary cells, mouse epithelial cells (C127), and human lung adenocarcinoma cells (PC8) were released quantitatively as oligosaccharides by hydrazinolysis followed by N-acetylation. After being reduced with either NaB3H4 or NaB2H4, their structures were comparatively analyzed. More than 80% of the sugar chains of natural interferon-beta 1 occur as biantennary complex-type sugar chains, approximately 10% of which contain N-acetyllactosamine repeating structure in their outer chain moieties. The remainders are 2,4- and 2,6-branched triantennary complex-type sugar chains. The sugar chains of the recombinant interferon-beta 1 derived from Chinese hamster ovary cells were very similar to those of its natural counterpart. In contrast, two other recombinant proteins contain quite different sugar chains. The protein derived from C127 cells contains complex-type sugar chains with the Gal alpha 1----3Gal beta 1----4GlcNAc group in their outer chain moieties. Their sialic acid residues occur solely as the Sia alpha 2----6Gal group, where Sia is sialic acid. In contrast, the sialic acid residues of other interferon-beta 1 occur as the Sia alpha 2----3Gal group only. A part of the sugar chains of the protein derived from PC8 cells contains bisecting N-acetylglucosamine residue in addition to the Gal alpha 1----3Gal beta 1----4GlcNAc group.  相似文献   

17.
We have identified a mannosidase in rat liver that releases alpha 1----2, alpha 1----3 and alpha 1----6 linked manose residues from oligosaccharide substrates, MannGlcNAc where n = 4-9. The end product of the reaction is Man alpha 1----3[Man alpha 1----6]Man beta 1----4GlcNAc. The mannosidase has been purified to homogeneity from a rat liver microsomal fraction, after solubilization into the aqueous phase of Triton X-114, by anion-exchange, hydrophobic and hydroxyapatite chromatography followed by chromatofocusing. The purified enzyme is a dimer of a 110-kDa subunit, has a pH optimum between 6.1 and 6.5 and a Km of 65 microM and 110 microM for the Man5GlcNAc-oligosaccharide or Man9GlcNAc-oligosaccharide substrates, respectively. Enzyme activity is inhibited by EDTA, by Zn2+ and Cu2+, and to lesser extent by Fe2+ and is stabilized by Co2+. The pattern of release of mannose residues from a Man6GlcNAc substrate shows an ordered hydrolysis of the alpha 1----2 linked residue followed by hydrolysis of alpha 1----3 and alpha 1----6 linked residues. The purified enzyme shows no activity against p-nitrophenyl-alpha-mannoside nor the hybrid GlcNAc Man5GlcNAc oligosaccharide. The enzyme activity is inhibited by swainsonine and 1-deoxymannojirimycin at concentrations 50-500-fold higher than required for complete inhibition of Golgi-mannosidase II and mannosidase I, respectively. The data indicate strongly that the enzyme has novel activity and is distinct from previously described mannosidases.  相似文献   

18.
The conformation is described of the sialyl alpha(2----3/6)N-acetyllactosamine structural element, frequently occurring in glycoproteins. NOE spectroscopy of NeuAc alpha(2----3)Gal beta(1----4)GlcNAc beta(1----N)Asn and NeuAc alpha(2----6)Gal beta(1----4)GlcNAc beta(1----N)Asn is presented and for each glycosidic linkage, except for the alpha(2----6)-linkage, a number of interglycosidic NOEs are measured. The analysis of these effects is performed using a full relaxation matrix. Analysis of intraresidue NOEs provides a calibration of the calculation method. Hard-sphere exo-anomeric (HSEA) energy calculations indicate a single conformation for the beta(1----4)-linkage in both compounds, both being consistent with the NOE data. HSEA and molecular-mechanics force-field with hydrogen-bonding potential energy calculations both indicate the existence of three preferred conformations for the alpha(2----3)-linkage. The analysis of the NOE spectra are consistent with a distribution over two or three of these conformations; by combination with the energy diagram for this linkage the existence of onyl a single conformation can be excluded. The NOE spectrum of the compound with the alpha(2----6)-linkage indicates a gt orientation for the Gal C-6 hydroxymethyl group. On this basis, the HSEA energy calculations for the alpha(2----6)-linkage indicate an extended low-energy surface with a number of preferred conformations. The absence of NOEs across this linkage is interpreted in terms of a non-rigid, but overall folded conformation of the NeuAc alpha(2----6)Gal beta(1----4)GlcNAc beta structural element. This provides an explanation for the shift effects induced by alpha(2----6) attachment of NeuAc to the N-acetyllactosamine unit.  相似文献   

19.
The carbohydrate chains linked to human kappa-casein from mature milk were released by alkaline borohydride treatment as reduced oligosaccharides. The neutral oligosaccharides of lower molecular weight were fractionated and purified by gel filtration and preparative thin layer chromatographies. Seven neutral oligosaccharides (a di- (0.5%), two tetra- (30.5%), two penta- (5.4%) and two hexasaccharide alditols (10.9%] were obtained in homogeneity, and followed by methylation analysis with gas-liquid chromatography-mass spectrometry and by anomer analysis with 13C nuclear magnetic resonance. Their chemical structures were identified to be Gal beta 1----3GalNAc-ol (I), Gal beta 1----3[Gal beta 1----4GlcNAc beta 1----6]GalNAc-ol (II), Gal beta 1----3[Fuc alpha 1----4GlcNAc beta 1----6]GalNAc-ol (III), GlcNAc beta 1----3/6Gal beta 1----3[Gal beta 1----4GlcNAc beta 1----6]GalNAc-ol (IV), GlcNAc beta 1----3/6Gal beta 1----3[Fuc alpha 1----4GlcNAc beta 1----6]GalNAc-ol (V), Fuc alpha 1----4GlcNAc beta 1----3/6Gal beta 1----3[Gal beta 1----4GlcNAc beta 1----6]GalNAc-ol (VI) and Fuc alpha 1----4GlcNAc beta 1----3/6Gal beta 1----3[Fuc alpha 1----4GlcNAc beta 1----6]GalNAc-ol (VII). Five oligosaccharide alditols (III-VII) were the novel carbohydrate chains of kappa-casein from mammalian milk.  相似文献   

20.
E Berman 《Biochemistry》1984,23(16):3754-3759
The analysis of the carbon-13 chemical shift data of NeuAc alpha (2----3)Gal beta (1----4)Glc and NeuAc alpha (2----3)Gla beta-(1----4)GlcNAc and their respective NeuAc alpha (2----6) isomers established distinct and different conformations of the sialic acid residue, depending on the type of anomeric linkage [alpha-(2----3) vs. alpha (2----6)]. Interactions between the NeuAc residue and the Glc or GlcNAc residue are particularly strong in the case of the alpha (2----6) isomers. Similar effects are observed for the larger oligosaccharides [II3(NeuAc)2Lac and IV6NeuAcLcOse4] and even in intact glycoproteins and polysaccharides. It is proposed that the NeuAc alpha (2----3) isomers assume an extended conformation with the sialic residue at the end (terminal) of the oligosaccharide chain or branch. The NeuAc alpha (2----6) isomers are assumed to be folded back toward the inner core sugar residues.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号