首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The purpose of this study was to test whether chronically enhanced O2 delivery to tissues, without arterial hyperoxia, can change acute ventilatory responses to hypercapnia and hypoxia. The effects of decreased hemoglobin (Hb)-O2 affinity on ventilatory responses during hypercapnia (0, 5, 7, and 9% CO2 in O2) and hypoxia (10 and 15% O2 in N2) were assessed in mutant mice expressing Hb Presbyterian (mutation in the beta-globin gene, beta108 Asn --> Lys). O2 consumption during normoxia, measured via open-circuit methods, was significantly higher in the mutant mice than in wild-type mice. Respiratory measurements were conducted with a whole body, unrestrained, single-chamber plethysmograph under conscious conditions. During hypercapnia, there was no difference between the slopes of the hypercapnic ventilatory responses, whereas minute ventilation at the same levels of arterial PCO2 was lower in the Presbyterian mice than in the wild-type mice. During both hypoxic exposures, ventilatory responses were blunted in the mutant mice compared with responses in the wild-type mice. The effects of brief hyperoxia exposure (100% O2) after 10% hypoxia on ventilation were examined in anesthetized, spontaneously breathing mice with a double-chamber plethysmograph. No significant difference was found in ventilatory responses to brief hypoxia between both groups of mice, indicating possible involvement of central mechanisms in blunted ventilatory responses to hypoxia in Presbyterian mice. We conclude that chronically enhanced O2 delivery to peripheral tissues can reduce ventilation during acute hypercapnic and hypoxic exposures.  相似文献   

2.
Recent studies described the in vivo respiratory phenotype of mutant newborn mice with targeted deletions of genes involved in respiratory control development. Whole-body flow barometric plethysmography is the noninvasive method of choice for studying unrestrained newborn mice. The main characteristics of the early postnatal development of respiratory control in mice are reviewed, including available data on breathing patterns and on hypoxic and hypercapnic ventilatory responses. Mice are very immature at birth, and their instable breathing is similar to that of preterm infants. Breathing pattern abnormalities with prolonged apneas occur in newborn mice that lack genes involved in the development of rhythmogenesis. Some mutant newborn mice have blunted hypoxic and hypercapnic ventilatory responses whereas others exhibit impairments in responses to hypoxia or hypercapnia. Furthermore, combined studies in mutant newborn mice and in humans have helped to provide pathogenic information on genetically determined developmental disorders of respiratory control in humans.  相似文献   

3.
To clarify the diabetes mellitus (DM)-associated changes in the respiratory neuronal control system, acute ventilatory responses to progressively increasing hypercapnia (6%) and hypoxia (10%) were compared between normal (N) and streptozotocin (60 mg/kg, i.v.) -DM rats for a long period up to 28 weeks. The same comparison was conducted during the anesthetic state induced with pentobarbital (35 mg/kg, i.p.). During the conscious state, basic ventilatory parameters, such as respiratory rate, tidal volume and minute ventilation, were not impaired in DM rats, but ventilatory responses to hypercapnia and hypoxia were reduced significantly at 16 weeks and later after streptozotocin injection. The reduced responses in DM rats were not recovered by insulin treatment (5-6 U/body, s.c., daily). During the anesthetic state, both hypoxic and hypercapnic responses were depressed more intensely in N rats than in DM rats, resulting in an equivalent level of the response in the two groups. The present study demonstrated that ventilatory responses to hypercapnia and hypoxia were reduced in a long-term DM condition. This may be derived from the impairment of the peripheral and central chemosensitivity. The reduction in ventilatory responses was exaggerated during the anesthetic state.  相似文献   

4.
Subterranean rodents construct large and complex burrows and spend most of their lives underground, while fossorial species construct simpler burrows and are more active above ground. An important constraint faced by subterranean mammals is the chronic hypoxia and hypercapnia of the burrow atmosphere. The traits, regarded as “adaptations of rodents to hypoxia and hypercapnia”, have been evaluated in only a few subterranean species. In addition, well-studied subterranean taxa are very divergent to their sister groups, making it difficult to assess the adaptive path leading to subterranean life. The closely related sister genera Octodon and Spalacopus of Neotropical rodents offer a unique opportunity to trace the evolution of physiological mechanisms. We studied the ventilatory responses of selected octodontid rodents to selective pressures imposed by the subterranean niche under the working hypothesis that life underground, in hypoxic and hypercapnic conditions, promotes convergent physiological changes. To perform this study we used the following species: Spalacopus cyanus (the subterranean coruros) and Octodon degus (the fossorial degus) from central Chile. Ventilatory tidal volume and respiratory frequency were measured in non-anaesthetized spontaneously breathing animals. Acute hypoxic challenges (O2 1–15%) and hypercapnia (CO2 10%) were induced to study respiratory strategies using non-invasive whole body pletismography techniques. Our results show that coruros have a larger ventilatory response to acute hypoxia as than degus. On the other hand, hypercapnic respiratory responses in coruros seem to be attenuated when compared to those in degus. Our results suggest that coruros and degus have different respiratory strategies to survive in the hypoxic and hypercapnic atmospheres present in their burrows.  相似文献   

5.
Somatostatin inhibits the ventilatory response to hypoxia in humans   总被引:2,自引:0,他引:2  
The effects of a 90-min infusion of somatostatin (1 mg/h) on ventilation and the ventilatory responses to hypoxia and hypercapnia were studied in six normal adult males. Minute ventilation (VE) was measured with inductance plethysmography, arterial 02 saturation (SaO2) was measured with ear oximetry, and arterial PCO2 (Paco2) was estimated with a transcutaneous CO2 electrode. The steady-state ventilatory response to hypoxia (delta VE/delta SaO2) was measured in subjects breathing 10.5% O2 in an open circuit while isocapnia was maintained by the addition of CO2. The hypercapnic response (delta VE/delta PaCO2) was measured in subjects breathing first 5% and then 7.5% CO2 (in 52-55% O2). Somatostatin greatly attenuated the hypoxic response (control mean -790 ml x min-1.%SaO2 -1, somatostatin mean -120 ml x min-1.%SaO2 -1; P less than 0.01), caused a small fall in resting ventilation (mean % fall - 11%), but did not affect the hypercapnic response. In three of the subjects progressive ventilatory responses (using rebreathing techniques, dry gas meter, and end-tidal Pco2 analysis) and overall metabolism were measured. Somatostatin caused similar changes (mean fall in hypoxic response -73%; no change in hypercapnic response) and did not alter overall O2 consumption nor CO2 production. These results show an hitherto-unsuspected inhibitory potential of this neuropeptide on the control of breathing; the sparing of the hypercapnic response is suggestive of an action on the carotid body but does not exclude a central effect.  相似文献   

6.
We examined the effects of carotid body denervation on ventilatory responses to normoxia (21% O2 in N2 for 240 s), hypoxic hypoxia (10 and 15% O2 in N2 for 90 and 120 s, respectively), and hyperoxic hypercapnia (5% CO2 in O2 for 240 s) in the spontaneously breathing urethane-anesthetized mouse. Respiratory measurements were made with a whole body, single-chamber plethysmograph before and after cutting both carotid sinus nerves. Baseline measurements in air showed that carotid body denervation was accompanied by lower minute ventilation with a reduction in respiratory frequency. On the basis of measurements with an open-circuit system, no significant differences in O2 consumption or CO2 production before and after chemodenervation were found. During both levels of hypoxia, animals with intact sinus nerves had increased respiratory frequency, tidal volume, and minute ventilation; however, after chemodenervation, animals experienced a drop in respiratory frequency and ventilatory depression. Tidal volume responses during 15% hypoxia were similar before and after carotid body denervation; during 10% hypoxia in chemodenervated animals, there was a sudden increase in tidal volume with an increase in the rate of inspiration, suggesting that gasping occurred. During hyperoxic hypercapnia, ventilatory responses were lower with a smaller tidal volume after chemodenervation than before. We conclude that the carotid bodies are essential for maintaining ventilation during eupnea, hypoxia, and hypercapnia in the anesthetized mouse.  相似文献   

7.
We aimed to investigate whether newborn rats respond to acute hypoxia with a biphasic pattern as other newborn species, the characteristics of their ventilatory response to hypercapnia, and the ventilatory response to combined hypoxic and hypercapnic stimuli. First, we established that newborn unanesthetized rats (2-4 days old) exposed to 10% O2 respond as other species. Their ventilation (VE), measured by flow plethysmography, immediately increased by 30%, then dropped and remained around normoxic values within 5 min. The drop was due to a decrease in tidal volume, while frequency remained elevated. Hence, alveolar ventilation was about 10% below normoxic value. At the same time O2 consumption, measured manometrically, dropped (-23%), possibly indicating a mechanism to protect vital organs. Ten percent CO2 in O2 breathing determined a substantial increase in VE (+47%), indicating that the respiratory pump is capable of a marked sustained hyperventilation. When CO2 was added to the hypoxic mixture, VE increased by about 85%, significantly more than without the concurrent hypoxic stimulus. Thus, even during the drop in VE of the biphasic response to hypoxia, the respiratory control system can respond with excitation to a further increase in chemical drive. Analysis of the breathing patterns suggests that in the newborn rat in hypoxia the inspiratory drive is decreased but the inspiratory on-switch mechanism is stimulated, hypercapnia increases ventilation mainly through an increase in respiratory drive, and moderate asphyxia induces the most powerful ventilatory response by combining the stimulatory action of hypercapnia and hypoxia.  相似文献   

8.
Amphibious crabs, Cardisoma guanhumi, were acclimated to breathing either air or water and exposed to altered levels of oxygen and/or carbon dioxide in the medium. Hypercapnia (22, 36 and 73 torr CO(2)) stimulated a significant hypercapnic ventilatory response (HCVR) in both groups of crabs, with a much greater effect on scaphognathite frequency (Deltaf(SC)=+700%) in air-breathing crabs than water-breathing crabs (Deltaf(SC)=+100%). In contrast, hyperoxia induced significant hypoventilation in both sets of crabs. However, simultaneous hyperoxia and hypercapnia triggered a greater than 10-fold increase in f(SC) in air-breathing crabs but no change in water-breathing crabs. For water-breathing crabs hypoxia simultaneous with hypercapnia triggered the same response as hypoxia alone-bradycardia (-50%), and a significant increase in f(SC) at moderate exposures but not at the more extreme levels. The response of air-breathing crabs to hypoxia concurrent with hypercapnia was proportionally closer to the response to hypercapnia alone than to hypoxia. Thus, C. guanhumi were more sensitive to ambient CO(2) than O(2) when breathing air, characteristic of fully terrestrial species, and more sensitive to ambient O(2) when breathing water, characteristic of fully aquatic species. C. guanhumi possesses both an O(2)- and a CO(2)-based ventilatory drive whether breathing air or water, but the relative importance switches when the respiratory medium is altered.  相似文献   

9.
Ventilatory responses to hypoxia and hypercapnia were measured by indirect plethysmography in unanesthetized unrestrained adult rats injected neonatally with capsaicin (50 mg/kg) or vehicle. Such capsaicin treatment ablates a subpopulation of primary afferent fibers containing substance P and various other neuropeptides. Ventilation was measured while the rats breathed air, 12% O2 in N2, 8% O2 in N2, 5% CO2 in O2, or 8% CO2 in O2. Neonatal treatment with capsaicin caused marked alterations in both the magnitude and composition of the hypoxic but not hypercapnic ventilatory response. The increase in minute ventilation evoked by hypoxia in the vehicle-treated rats resulted entirely from an increase in respiratory frequency. In the capsaicin-treated rats the hypoxic ventilatory response was significantly reduced owing to an attenuation of the frequency response. Although both groups responded to hypoxia with a shortening in inspiratory and expiratory times, rats treated with capsaicin displayed less shortening of both respiratory phases. By contrast, hypercapnia induced a brisk ventilatory response in the capsaicin-treated group that was similar in magnitude and pattern to that observed in the vehicle-treated group. Analysis of the components of the hypercapnic ventilatory responses revealed no significant differences between the two groups. We, therefore, conclude that neuropeptide-containing C-fibers are essential for the tachypnic component of the ventilatory response to hypoxia but not hypercapnia.  相似文献   

10.
The effects of body position on ventilatory responses to chemical stimuli have rarely been studied in experimental animals, despite evidence that position may be a factor in respiratory results. The purpose of this study was to test whether body position could affect acute ventilatory responses to 4-min periods of moderate hypercapnia (5% CO(2) in O(2)) and poikilocapnic hypoxia (15% O(2) in N(2)) in the urethane-anaesthetised mouse. Respiratory measurements were conducted with mice in the prone and supine positions with a whole-body, single-chamber plethysmograph. During hypoxia, the time course of minute ventilation (V (E)) was similar in the two positions, but the breathing pattern was different. After the response peak, V (E) depended on respiratory frequency (f) and tidal volume (V(T)) in the prone position but mainly on V(T) in the supine position. In the supine position, f declined below the baseline values toward the end of hypoxic exposure. During hypercapnia, there were no ventilatory differences between the prone and supine positions. Brief hypoxic exposure elicited f depression in the supine position in the anaesthetised mouse. The depressive effect on f suggests that the supine position may not be optimal for sustaining ventilation, particularly during hypoxia.  相似文献   

11.
Although the influence of altitude acclimatization on respiration has been carefully studied, the associated changes in hypoxic and hypercapnic ventilatory responses are the subject of controversy with neither response being previously evaluated during sleep at altitude. Therefore, six healthy males were studied at sea level and on nights 1, 4, and 7 after arrival at altitude (14,110 ft). During wakefulness, ventilation and the ventilatory responses to hypoxia and hypercapnia were determined on each occasion. During both non-rapid-eye-movement and rapid-eye-movement sleep, ventilation, ventilatory pattern, and the hypercapnic ventilatory response (measured at ambient arterial O2 saturation) were determined. There were four primary observations from this study: 1) the hypoxic ventilatory response, although similar to sea level values on arrival at altitude, increased steadily with acclimatization up to 7 days; 2) the slope of the hypercapnic ventilatory response increased on initial exposure to a hypoxic environment (altitude) but did not increase further with acclimatization, although the position of this response shifted steadily to the left (lower PCO2 values); 3) the sleep-induced decrements in both ventilation and hypercapnic responsiveness at altitude were equivalent to those observed at sea level with similar acclimatization occurring during wakefulness and sleep; and 4) the quantity of periodic breathing during sleep at altitude was highly variable and tended to occur more frequently in individuals with higher ventilatory responses to both hypoxia and hypercapnia.  相似文献   

12.
The objective of the present study was to examine the impact of early stages of lung injury on ventilatory control by hypoxia and hypercapnia. Lung injury was induced with intratracheal instillation of bleomycin (BM; 1 unit) in adult, male Sprague-Dawley rats. Control animals underwent sham surgery with saline instillation. Five days after the injections, lung injury was present in BM-treated animals as evidenced by increased neutrophils and protein levels in bronchoalveolar lavage fluid, as well as by changes in lung histology and computed tomography images. There was no evidence of pulmonary fibrosis, as indicated by lung collagen content. Basal core body temperature, arterial Po(2), and arterial Pco(2) were comparable between both groups of animals. Ventilatory responses to hypoxia (12% O(2)) and hypercapnia (7% CO(2)) were measured by whole body plethysmography in unanesthetized animals. Baseline respiratory rate and the hypoxic ventilatory response were significantly higher in BM-injected compared with control animals (P = 0.003), whereas hypercapnic ventilatory response was not statistically different. In anesthetized, spontaneously breathing animals, response to brief hyperoxia (Dejours' test, an index of peripheral chemoreceptor sensitivity) and neural hypoxic ventilatory response were augmented in BM-exposed relative to control animals, as measured by diaphragmatic electromyelograms. The enhanced hypoxic sensitivity persisted following bilateral vagotomy, but was abolished by bilateral carotid sinus nerve transection. These data demonstrate that afferent sensory input from the carotid body contributes to a selective enhancement of hypoxic ventilatory drive in early lung injury in the absence of pulmonary fibrosis and arterial hypoxemia.  相似文献   

13.
Acetazolamide (Acz), a carbonic anhydrase inhibitor, is used to manage periodic breathing associated with altitude and with heart failure. We examined whether Acz would alter posthypoxic ventilatory behavior in the C57BL/6J (B6) mouse model of recurrent central apnea. Experiments were performed with unanesthetized, awake adult male B6 mice (n = 9), ventilatory behavior was measured using flow-through whole body plethysmography. Mice were given an intraperitoneal injection of either vehicle or Acz (40 mg/kg), and 1 h later they were exposed to 1 min of 8% O(2)-balance N(2) (poikilocapnic hypoxia) or 12% O(2)-3% CO(2)-balance N(2) (isocapnic hypoxia) followed by rapid reoxygenation (100% O(2)). Hypercapnic response (8% CO(2)-balance O(2)) was examined in six mice. With Acz, ventilation, including respiratory frequency, tidal volume, and minute ventilation, in room air was significantly higher and hyperoxic hypercapnic ventilatory responsiveness was generally lower compared with vehicle. Poikilocapnic and isocapnic hypoxic ventilatory responsiveness were similar among treatments. One minute after reoxygenation, animals given Acz exhibited posthypoxic frequency decline, a lower coefficient of variability for frequency, and no tendency toward periodic breathing, compared with vehicle treatment. We conclude that Acz improves unstable breathing in the B6 model, without altering hypoxic response or producing short-term potentiation, but with some blunting of hypercapnic responsiveness.  相似文献   

14.
Amyothrophic lateral sclerosis (ALS) is a progressive, lethal neuromuscular disease that is associated with the degeneration of cortical and spinal motoneurons, leading to atrophy of limb, axial, and respiratory muscles. Patients with ALS invariably develop respiratory muscle weakness and most die from pulmonary complications. Overexpression of superoxide dismutase 1 (SOD1) gene mutations in mice recapitulates several of the clinical and pathological characteristics of ALS and is therefore a valuable tool to study this disease. The present study is intended to evaluate an age-dependent progression of respiratory complications in SOD1(G93A) mutant mice. In each animal, baseline measurements of breathing pattern [i.e., breathing frequency and tidal volume (VT)], minute ventilation (VE), and metabolism (i.e., oxygen consumption and carbon dioxide production) were repeatedly sampled at variable time points between 10 and 20 wk of age with the use of whole-body plethysmographic chambers. To further characterize the neurodegeneration of breathing, VE was also measured during 5-min challenges of hypercapnia (5% CO(2)) and hypoxia (10% O(2)). At baseline, breathing characteristics and metabolism remained relatively unchanged from 10 to 14 wk of age. From 14 to 18 wk of age, there were significant (P < 0.05) increases in baseline VT, VE, and the ventilatory equivalent (VE/oxygen consumption). After 18 wk of age, there was a rapid decline in VE due to significant (P < 0.05) reductions in both breathing frequency and VT. Whereas little change in hypoxic VE responses occurred between 10 and 18 wk, hypercapnic VE responses were significantly (P < 0.05) elevated at 18 wk due to an augmented VT response. Like baseline breathing characteristics, hypercapnic VE responses also declined rapidly after 18 wk of age. The phenotypic profile of SOD1(G93A) mutant mice was apparently unique because similar changes in respiration and metabolism were not observed in SOD1 controls. The present results outline the magnitude and time course of respiratory complications in SOD1(G93A) mutant mice as the progression of disease occurs in this mouse model of ALS.  相似文献   

15.
Possible mechanisms of periodic breathing during sleep   总被引:3,自引:0,他引:3  
To determine the effect of respiratory control system loop gain on periodic breathing during sleep, 10 volunteers were studied during stage 1-2 non-rapid-eye-movement (NREM) sleep while breathing room air (room air control), while hypoxic (hypoxia control), and while wearing a tight-fitting mask that augmented control system gain by mechanically increasing the effect of ventilation on arterial O2 saturation (SaO2) (hypoxia increased gain). Ventilatory responses to progressive hypoxia at two steady-state end-tidal PCO2 levels and to progressive hypercapnia at two levels of oxygenation were measured during wakefulness as indexes of controller gain. Under increased gain conditions, five male subjects developed periodic breathing with recurrent cycles of hyperventilation and apnea; the remaining subjects had nonperiodic patterns of hyperventilation. Periodic breathers had greater ventilatory response slopes to hypercapnia under either hyperoxic or hypoxic conditions than nonperiodic breathers (2.98 +/- 0.72 vs. 1.50 +/- 0.39 l.min-1.Torr-1; 4.39 +/- 2.05 vs. 1.72 +/- 0.86 l.min-1.Torr-1; for both, P less than 0.04) and greater ventilatory responsiveness to hypoxia at a PCO2 of 46.5 Torr (2.07 +/- 0.91 vs. 0.87 +/- 0.38 l.min-1.% fall in SaO2(-1); P less than 0.04). To assess whether spontaneous oscillations in ventilation contributed to periodic breathing, power spectrum analysis was used to detect significant cyclic patterns in ventilation during NREM sleep. Oscillations occurred more frequently in periodic breathers, and hypercapnic responses were higher in subjects with oscillations than those without. The results suggest that spontaneous oscillations in ventilation are common during sleep and can be converted to periodic breathing with apnea when loop gain is increased.  相似文献   

16.
To test the hypothesis that stress alters the performance of the respiratory control system, we compared the acute (20 min) responses to moderate hypoxia and hypercapnia of rats previously subjected to immobilization stress (90 min/day) with responses of control animals. Ventilatory measurements were performed on awake rats using whole body plethysmography. Under baseline conditions, there were no differences in minute ventilation between stressed and unstressed groups. Rats previously exposed to immobilization stress had a 45% lower ventilatory response to hypercapnia (inspiratory CO(2) fraction = 0.05) than controls. In contrast, stress exposure had no statistically significant effect on the ventilatory response to hypoxia (inspiratory O(2) fraction = 0.12). Stress-induced attenuation of the hypercapnic response was associated with reduced tidal volume and inspiratory flow increases; the frequency and timing components of the response were not different between groups. We conclude that previous exposure to a stressful condition that does not constitute a direct challenge to respiratory homeostasis can elicit persistent (> or =24 h) functional plasticity in the ventilatory control system.  相似文献   

17.
Glia are thought to regulate ion homeostasis, including extracellular pH; however, their role in modulating central CO2 chemosensitivity is unclear. Using a push-pull cannula in chronically instrumented and conscious rats, we administered a glial toxin, fluorocitrate (FC; 1 mM) into the retrotrapezoid nucleus (RTN), a putative chemosensitive site, during normocapnia and hypercapnia. FC exposure significantly increased expired minute ventilation (VE) to a value 38% above the control level during normocapnia. During hypercapnia, FC also significantly increased both breathing frequency and expired VE. During FC administration, maximal ventilation was achieved at approximately 4% CO2, compared with 8-10% CO2 during control hypercapnic trials. RTN perfusion of control solutions had little effect on any ventilatory measures (VE, tidal volume, or breathing frequency) during normocapnic or hypercapnic conditions. We conclude that unilateral impairment of glial function in the RTN of the conscious rat results in stimulation of respiratory output.  相似文献   

18.
Anecdotal observations suggest that hypoxia does not elicit dyspnea. An opposing view is that any stimulus to medullary respiratory centers generates dyspnea via "corollary discharge" to higher centers; absence of dyspnea during low inspired Po(2) may result from increased ventilation and hypocapnia. We hypothesized that, with fixed ventilation, hypoxia and hypercapnia generate equal dyspnea when matched by ventilatory drive. Steady-state levels of hypoxic normocapnia (end-tidal Po(2) = 60-40 Torr) and hypercapnic hyperoxia (end-tidal Pco(2) = 40-50 Torr) were induced in naive subjects when they were free breathing and during fixed mechanical ventilation. In a separate experiment, normocapnic hypoxia and normoxic hypercapnia, "matched" by ventilation in free-breathing trials, were presented to experienced subjects breathing with constrained rate and tidal volume. "Air hunger" was rated every 30 s on a visual analog scale. Air hunger-Pet(O(2)) curves rose sharply at Pet(O(2)) <50 Torr. Air hunger was not different between matched stimuli (P > 0.05). Hypercapnia had unpleasant nonrespiratory effects but was otherwise perceptually indistinguishable from hypoxia. We conclude that hypoxia and hypercapnia have equal potency for air hunger when matched by ventilatory drive. Air hunger may, therefore, arise via brain stem respiratory drive.  相似文献   

19.
Burrowing mammals usually have low respiratory sensitivity to hypoxia and hypercapnia. However, the interaction between ventilation (V), metabolism and body temperature (Tb) during hypoxic-hypercapnia has never been addressed. We tested the hypothesis that Clyomys bishopi, a burrowing rodent of the Brazilian cerrado, shows a small ventilatory response to hypoxic-hypercapnia, accompanied by a marked drop in Tb and metabolism. V, Tb and O(2) consumption (V?O(2)) of C. bishopi were measured during exposure to air, hypoxia (10% and 7% O(2)), hypercapnia (3% and 5% CO(2)) and hypoxic-hypercapnia (10% O(2)+ 3% CO(2)). Hypoxia of 7% but not 10%, caused a significant increase in V, and a significant drop in Tb. Both hypoxic levels decreased V?O(2) and 7% O(2) significantly increased V/V?O(2). Hypercapnia of 5%, but not 3%, elicited a significant increase in V, although no significant change in Tb, V?O(2) or V/V?O(2) was detected. A combination of 10% O(2) and 3% CO(2) had minor effects on V and Tb, while V?O(2) decreased and V/V?O(2) tended to increase. We conclude that C. bishopi has a low sensitivity not only to hypoxia and hypercapnia, but also to hypoxic-hypercapnia, manifested by a biphasic ventilatory response, a drop in metabolism and a tendency to increase V/V?O(2). The effect of hypoxic-hypercapnia was the summation of the hypoxia and hypercapnia effects, with respiratory responses tending to have hypercapnic patterns while metabolic responses, hypoxic patterns.  相似文献   

20.
Typhlonectes natans empty their lungs in a single extended exhalation and subsequently fill their lungs by using a series of 10-20 inspiratory buccal oscillations. These animals always use this breathing pattern, which effectively separates inspiratory and expiratory airflows, unlike most urodele and anuran amphibians that may use one to many buccal oscillations for lung inflation and typically mix expired and inspired gases. Aquatic hypoxia had no significant effect on the breathing pattern or mechanics in these animals. Aerial hypoxia stimulated ventilatory frequency and increased the number of inspiratory oscillations but had little effect on inspiratory and expiratory tidal volume. Aquatic hypercapnia elicited a large significant increase in air-breathing frequency and minute ventilation compared to the small stimulation of minute ventilation seen during aerial hypercapnia. Some animals responded to aquatic hypercapnia with a series of three or four closely spaced breaths separated by long nonventilatory periods. Overall, T. natans showed little capacity to modulate expiratory or inspiratory tidal volumes and depended heavily on changing air-breathing frequency to meet hypoxic and hypercapnic challenges. These responses are different from those of anurans or urodeles studied to date, which modulate both the number of ventilatory oscillations in lung-inflation cycles and the degree of lung inflation when challenged with peripheral or central chemoreceptor stimulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号