首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
足月分娩的新鲜胎盘组织制成匀浆后,经高速离心、超速离心,谷胱甘肽(GSH)Sepharose 6B亲合层析,Amicon pM-10膜超过滤及高效液相层析,最终经SDS-PAGE鉴定,结果呈现单一亚基区带,其亚基分子量为25000。 根据我们现有高效液相设备条件,用ODS柱代替RadulovicL等报道的特异阴离子柱,用磷酸盐洗脱液代替含谷胱甘肽、二硫苏糖醇及氯化钾的梯度洗脱液,从人胎盘组织成功地制备了谷胱甘肽硫转移酶(GST)纯酶,全过程在15min内完成,保留时间及主峰面积的重复性均较理想,7次实验结果的变异系数为0.2%,最终纯化578.9倍。本研究为各种形式GST的纯化制备提供了一个新的、重复性好、分辨率高及回收理想的简易方法。  相似文献   

2.
1. Previous studies have demonstrated the presence of glutathione S-transferases in the skin of rodents and humans. This study represents the first attempt to purify cytosolic glutathione S-transferases from skin of 3-day-old rats. 2. A partial purification of the enzyme was achieved by a two-step procedure: affinity chromatography followed by HPLC. Two peaks, one major (P-1) and one minor (P-2), were resolved by HPLC containing about 82% and 10% of the recovered activity, respectively. 3. The major form exhibited an overall purification of about 2270-fold with a specific activity of about 73 mumoles/min/mg protein towards 1-chloro-2,4-dinitrobenzene. 4. The kinetic data for P-1 yielded mean Km values of 2.39 mM for 1-chloro-2,4-dinitrobenzene and 0.72 mM for reduced glutathione, while the respective average Vmax values were found to be 212 and 101 mumoles/min/mg protein. 5. Significantly inhibition of enzyme activity was noted in the presence of 0.2 mM HgCl2, 0.63 microM 1.2-naphthoquinone, 1.0 microM triphenyltin chloride, and 12.5 microM 17 beta-estradiol-3-sulfate.  相似文献   

3.
Phosphoglucose isomerase has been purified from crude extracts of Escherichia coli K10. Two forms of the enzyme were separated during the purification procedure. The major species comprises more than 90% of the enzyme activity, has an apparent molecular weight of about 125,000 and consists of two 59,000 molecular weight subunits; the minor species has an apparent size of 230,000 and consists of (possibly four) subunits of 59,000 molecular weight. Both enzyme forms have the same N-terminal amino acid, the same pH optimum of reaction and the same kinetic constants for the substrate fructose-6-phosphate and the inhibitor 6-phosphogluconate. They differ in that the minor species has half the specific enzyme activity compared to the major one and that its subunit polypeptide carries a higher electronegative charge. Since they are both coded by the pgi gene and since they show full immunological identity it seems that the minor species is a dimer of the major enzyme form and that dimerisation is caused by subunit modification. No physiological role could be found for the existence of the two forms. — Formation of phosphoglucose isomerase is under respiratory control: under anaerobiosis the enzyme (both species) is derepressed parallely with other glycolytic enzymes.Dedicated to Professor Dr. O. Kandler on the occasion of his 60th birthday  相似文献   

4.
On purification, human fibroblast collagenase breaks down into two major forms (Mr22,000 and Mr 27,000) and one minor form (Mr 25,000). The most likely mechanism is autolysis, although the presence of contaminating enzymes cannot be excluded. From N-terminal sequencing studies, the 22,000-Mr fragment contains the active site; differential binding to concanavalin A shows the 25,000-Mr fragment is a glycosylated form of the 22,000-Mr fragment. These low-Mr forms can be separated by Zn2+-chelate chromatography. An activity profile of this column, combined with data from substrate gels, indicates no activity against collagen in the 22,000-Mr and 25,000-Mr forms, but rather, activity casein and gelatin. The 27,000-Mr form has no activity. The 22,000/25,000-Mr form can act as an activator for collagenase in a similar way to that reported for stromelysin. The activity of the 22,000/25,000-Mr form is not inhibited by the tissue inhibitor of metalloproteinases (TIMP). The 27,000-Mr C-terminal part of the collagenase molecule therefore appears to be important in maintaining the substrate-specificity of the enzyme, and also plays a role in the binding of TIMP.  相似文献   

5.
As relatively little information is available on the properties of aspartate aminotransferase from photosynthetic tissue, isolation and characterization of the two major electrophoretically distinct forms of this enzyme from seedling oat leaf homogenates were undertaken. These two forms are designated I for the more anionic form and II for the less anionic form. Form I, 80 to 90% of the total activity, has been purified to a specific activity of 120 mumol/min/mg of protein (1100-fold) and is estimated to be 90 to 95% homogeneous, as judged by analytical polyacrylamide gel electrophoresis. Form II, 10 to 20% of the total activity, has been purified to a specific activity of approximately 6 mumol/min/mg of protein (300-fold). Both forms exhibit optimal activity at pH 7.5. Michaelis constants do not differ greatly between forms I and II and are similar to those reported for the pig heart cytosolic enzyme as well as aspartate aminotransferase from other plant sources. A molecular weight of 130,000 for the purified aspartate aminotransferase I was estimated by sedimentation equilibrium centrifugation; molecular weights of the two forms are similar as estimated by sucrose density gradient centrifugation. No activation by pyridoxal phosphate has been observed during purification.  相似文献   

6.
An acetylcholinesterase (AChE, EC 3.1.1.7) was purified from the greenbug, Schizaphis graminum (Rondani). The maximum velocities (Vmax) for hydrolyzing acetylthiocholine (ATC), acetyl-(beta-methyl) thiocholine (AbetaMTC), propionylthiocholine, and S-butyrylthiocholine were 78.0, 67.0, 37.4, and 2.3 micromol/min/mg, and the Michaelis constants (Km) were 57.6, 60.6, 31.3, and 33.4 microM, respectively. More than 98% of AChE activity was inhibited by 10 microM eserine or BW284C51, but only 7% of the activity was inhibited by ethopropazine at the same concentration. Based on the substrate and inhibitor specificities, the purified enzyme appeared to be a true AChE. Nondenaturing polyacrylamide gel electrophoresis (PAGE) and isoelectric focusing of the purified AChE revealed three molecular forms. The isoelectric points were 7.3 for the major form and 6.3 and 7.1 for two minor forms. The major form of purified AChE showed molecular masses of 129 kDa for its native protein and 72 kDa for its subunits on SDS-PAGE. However, the purified AChE exhibited some distinctive characteristics including: (1) lack of affinity to the affinity ligand 3-(carboxyphenyl) ethyldimethyl ammonium, which has been used widely in purification of AChE from various insect species; and (2) 20-200-fold higher substrate-inhibition thresholds for ATC and AbetaMTC than AChE from other insect species. These biochemical properties may reflect structural differences of AChE purified from the greenbug compared with that from other insect species.  相似文献   

7.
A purified NADPH-cytochrome c reductase (NADPH: ferricytochrome oxidoreductase, EC 1.6.2.4) was prepared from swine testis microsomes by detergent solubilization followed by a procedure including chromatofocusing. The reductase was eluted at an isoelectric point of 4.8 from the chromatofocusing column. 730-fold purification was achieved with an overall yield of 1.2%. The preparation was found to be homogeneous upon polyacrylamide gel electrophoresis in the absence of sodium dodecyl sulfate (SDS). Upon SDS-polyacrylamide gel electrophoresis, however, the purified preparation resolved into one major band (Mr 78 000) and two minor bands (Mr 60 000 and 15 000). The enzyme contained about 1 mol each of FMN and FAD, which were both extractable with trichloroacetic acid and also boiling water. The oxidized form of the enzyme showed the absorption spectrum of a typical flavoprotein. Aerobic reduction with NADPH resulted in conversion of the spectrum into one of an air-stable semiquinone form. The activity of the purified preparation was 26 mumol cytochrome c reduced/min per mg protein under the standard assay conditions at 22 degrees C. The enzyme catalyzed the reaction through a ping-pong mechanism.  相似文献   

8.
A large-scale purification procedure for phosphoglucose isomerase from pig skeletal muscle is described. It consists of two fractionations by selective precipitation and two ion exchange chromatography steps yielding an end product of approximately 900 units (micromoles of substrate converted to product per min per mg of protein, at 30 degrees) specific activity. The method separates three isoenzymic forms with an overall recovery of about 30% of the original total enzyme activity in the form of Isoenzyme III, the latter being the predominant enzyme species.  相似文献   

9.
A Ca2+-activatable cyclic nucleotide phosphodiesterase from bovine heart can be eluted from a DEAE-cellulose column either in the free form by buffers containing 0.1 mM ethylene glycol bis(beta-aminoethyl ether)N-N,N'N'-tetraacetic acid (EGTA) or as a complex of the enzyme with its protein modulator by buffers containing 0.01 mM CaCl2. A purification procedure based primarily on the significantly different affinity of the two forms of the enzyme for DEAE-cellulose was developed for the purification of the enzyme from bovine heart. The procedure involves ammonium sulfate fractionation, three chromatographic steps on DEAE-cellulose, and gel filtration on Sephadex G-200 with a 5000-fold purification over the crude extract. The purified enzyme has a specific activity of 120 mumol of cAMP/mg/min, can be activated 5-fold by Ca2+, but is only 80% pure as judged by analytical disc gel electrophoresis. The purified enzyme is unstable but can be stabilized by addition of Ca2+ and the protein modulator; this is in contrast to the less pure preparations of Ca2+-activatable phosphodiesterase which are destabilized by the protein modulator in the presence of Ca2+.  相似文献   

10.
A modified method for the detection of DNA polymerases in cell extracts and purified enzyme preparations after electrophoresis in polyacrylamide gradient cylindrical gels is described. The technique, which is based on direct assay of activity in a reaction mixture during elution of DNA polymerases from gel slices, was applied to the pursuit of enzyme forms of Streptomyces aureofaciens DNA polymerase during purification procedure. In a crude extract of S. aureofaciens mycelium many catalytically active forms of DNA polymerase ranging from 35 to 860 kDa were detected. After purification, that included mycelium homogenization, precipitation of nucleic acids by polyethylene glycol, DEAE-Sephadex, QAE-Sephadex and DNA-Sepharose chromatography, higher molecular mass forms of more than 172 kDa have not been found. The lower molecular mass forms were separated into two groups by DNA-Sepharose chromatography. On the basis of their characterization, it is assumed that the lower molecular mass forms are produced by proteolysis and the major form found after purification of S. aureofaciens DNA polymerase in the presence of suitable proteinase inhibitors should be a protein of 172 kDa.  相似文献   

11.
Long-chain acyl-CoA hydrolase (EC 3.1.2.2.) has been partially purified from the 100,000 × g supernatant fraction of rat brain tissue. The purification procedure included chromatography on gel filtration media, DEAE-cellulose, CM-cellulose, and hydroxyapatite. The partially purified enzyme had a specific activity of 7.1 mol/min-mg, and when analyzed by polyacrylamide gel electrophoresis, revealed one major and three minor bands of protein in the presence of dodecyl sulfate and two major bands of protein in the absence of dodecyl sulfate. The enzyme had a molecular weight of 65,000 and showed no evidence of aggregated or dissociated forms. The highest catalytic activity was exhibited with palmitoyl-CoA and oleoyl-CoA as substrates. Lower activity was found with decanoyl-CoA as the substrate and little or no activity was found with acetyl-CoA, malonyl-CoA, butyryl-CoA, or acetoacetyl-CoA. The enzyme was inhibited by CoA, various metal ions, including Mn2+, Mg2+ and Ca2+, and by bovine serum albumin. Heating the enzyme produced a loss of activity which corresponded to a first-order kinetic process, the rate of which was independent of the choice of substrate used to measure enzyme activity. This finding supports the idea that the purification procedure yields a single species of long-chain acyl-CoA hydrolase.  相似文献   

12.
Modifications in the muscle acylphosphatase purification procedure enabled us to isolate the enzyme with its sole cysteine in the -SH form; this enzyme form is the most abundant in vivo. Our data demonstrates that the enzyme forms purified by previously reported procedures can be easily derived from a reaction of the SH-enzyme with oxidized glutathione. Probably most, or even all, of these enzyme forms are artifacts due to the purification. The SH-acylphosphatase shows kinetic parameters similar to those reported for the mixed disulfide with glutathione and S-S dimer, except for the specific activity value, which is about twice as much, and the Km, which is reduced.  相似文献   

13.
We have developed a rapid purification method for DNA topoisomerase I from Raji cells, a human Burkitt lymphoma cell line, using ammonium sulfate fractionation followed by chromatography on a Mono S column (FPLC, Pharmacia). By this method, the enzyme could be purified to near homogeneity within one day. Electrophoresis on sodium dodecyl sulfate polyacrylamide gel revealed that the final preparation is mainly composed of a 100-kDa protein. The major enzyme activity sedimented through a glycerol density gradient at 5.7S, accompanied with a minor peak at 8.7S. The former may correspond to the monomer of the 100-kDa polypeptide, and the latter, to its dimeric form. The gel filtration study of the crude extract revealed an active molecular species of 200 kDa, in addition to 100 kDa, and lower molecular weight forms. These results suggest that DNA topoisomerase I is largely in monomeric form, but also has a minor population of the dimeric form.  相似文献   

14.
Saccharomyces lactis strain Y-123, a constitutive high producer of beta-glucosidase (B(h)), was grown in an enriched medium. beta-Glucosidase, extracted most easily by cell autolysis, was purified by successive ammonium sulfate precipitation, ethyl alcohol precipitation, gel filtration, calcium phosphate gel adsorption-elution, and hydroxyapatite column chromatography. The specific activity of the enzyme increased 200-fold during the purification. The electrophoretic and catalytic properties of the enzyme did not change during the procedure. Polyacrylamide gel disc electrophoresis of the partially purified enzyme revealed one major and several minor protein-staining bands. beta-Glucosidase activity in the polyacrylamide gel columns was measured directly by assaying sections of columns frozen and sliced immediately after electrophoresis. Most of the activity coincided with the major protein-staining band. Prolonged assay produced minor activity coinciding with the less intense protein bands. Properties of the enzyme suggest that it is a single, unconjugated, intracellular, high molecular weight protein. The purification procedure is applicable to strains of S. lactis which possess alleles of the B locus for beta-glucosidase synthesis.  相似文献   

15.
Dihydroorotate (DHO) synthetase is a trifunctional protein that catalyzes the first three reactions of de novo pyrimidine biosynthesis. A single-step procedure for purification of DHO synthetase from mutant hamster cells that overproduce this protein has been developed. The synthetase is adsorbed from a postmitochondrial supernatant to a column of Procion blue-Sepharose 4B and, after the column is washed, the synthetase is eluted as a single peak with 0.4 M KCl. Pooled fractions from the trailing side of this peak yield DHO synthetase with a specific activity for aspartate transcarbamylase of 14 mumol/min/mg protein, representing a purification factor of 8.5-fold and a recovery of 28% from the postmitochondrial supernatant. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis showed that the DHO synthetase was of high purity. A further 34% of the DHO synthetase from the leading side of the eluted peak contained a minor proportion of a proteolytic fragment. Similar results were obtained with an established four-step purification procedure.  相似文献   

16.
Cytosolic aspartate aminotransferases from chicken heart, liver, spleen, skeletal muscle and breast muscle differed in number of their molecular forms, detected by polyacrylamide gel electrophoresis and specific staining. The number of molecular forms varied from tissue to tissue but the electrophoretic mobilities of a given form in all tissues were analogous. Within a single tissue most of the enzyme activity was present as the lowest-running band (alpha form) and the rest was distributed in minor bands termed (B,tau, alpha and epsilon forms). We report a method for the purification of cytosolic aspartate aminotransferases from various chicken tissues. The procedure can be carried out in one week and allows the obtention of isolated molecular forms of the enzyme, independently of the tissue under study. Separation of multiple forms was also achieved by chromatofocusing. The isoelectric points determined by this method for a given form in all five tissues were analogous and differed from those of the molecular forms of the enzyme from other origins. An Mr of 100,000 was obtained for all molecular forms of the five chicken tissues studied.  相似文献   

17.
Pellet-associated human brain alpha-L-fucosidase was solubilized with 0.5% (w/v) Triton X-100 and purified by affinity chromatography on agarose-6-aminohexanoyl-fucosamine resin. The procedure resulted in a 290,000-fold purification, a 58% yield and a final specific activity of 11,500 nmol/min per mg of protein. Isoelectric focusing indicated that all six major isoforms (with pI values between 4.1 and 5.3) present in crude brain pellet preparations were purified by the affinity technique. SDS/PAGE indicated the presence of one subunit (54 kDa) and a minor protein band at 67 kDa, which presumably is a contaminant since it was not immunoreactive on Western blotting. The pH optimum of the brain enzyme and its apparent Km for the synthetic substrate 4-methylumbelliferyl alpha-L-fucopyranoside were 5.5 and 0.07 mM respectively. Pellet-associated human brain and liver alpha-L-fucosidases were both capable of hydrolysing fucosyl-GM1 ganglioside without activator proteins or detergents. Linear hydrolysis rates were found only for short incubation times (1-5 min). Optimal enzymic activity at 37 degrees C was found at pH 3.4 for both alpha-L-fucosidases, with no activity at pH values above 4.0.  相似文献   

18.
Primary and early subcultures (1st- to 3rd passage) of human umbilical vein endothelial cells produce tissue-type plasminogen activator (t-PA) antigen, consisting only of a major Mr 110,000 t-PA form. Later subcultures (greater than 4th passage) produce increasing amounts of t-PA antigen, consisting of a major Mr 110,000 and a minor Mr 68,000 form as well as increasing amounts of urokinase-type plasminogen activator (u-PA) antigen, consisting of a minor Mr 95,000 and major Mr 54,000 form. All of the major plasminogen activator forms were purified to homogeneity from 72 h serum-free conditioned media (3 liters, 1-1.8 x 10(9) cells) by a combination of immunoaffinity and gel filtration chromatography. Typically, 4th to 6th passage cultures produced/secreted t-PA-type proteins consisting of an inactive Mr 110,000 (220 IU/mg) and active Mr 68,000 (76,500 IU/mg) form representing about 39 and 8%, respectively, of the total starting sodium dodecyl sulfate stable t-PA activity, and u-PA-type proteins consisting of an inactive Mr 95,000 (700 IU/mg) and active Mr 54,000 (81,000 IU/mg) form representing about 9 and 38%, respectively, of the total starting sodium dodecyl sulfate stable u-PA activity. The isolated Mr 68,000 t-PA and Mr 54,000 u-PA proteins, exist only as two-chain forms in the absence of aprotinin and as mixtures of single- and two-chain proteins in the presence of aprotinin. Treatment with nucleophilic agents completely dissociated the Mr 110,000 t-PA and Mr 95,000 u-PA proteins into their respective Mr 68,000 t-PA and Mr 54,000 u-PA activity forms and a common Mr 46,000 protein, confirming the enzyme-inhibitor complex nature of these inactive plasminogen activator forms.  相似文献   

19.
This paper describes a rapid purification procedure for 3-hydroxy-3-methylglutaryl coenzyme A reductase, the major regulatory enzyme in hepatic cholesterol biosynthesis. A freeze-thaw technique is used for solubilizing the enzyme from rat liver microsomal membranes. No detergents or other stringent conditions are required. The purification procedure employs Blue Dextran-Sepharose-4B affinity chromatography, and purification can be carried out from microsomal membranes to purified enzyme in 8 to 10 hours. The purified enzyme has a specific activity of 517 nmoles/min/mg protein, and it is 975-fold purified with respect to the original microsomal membrane suspension. SDS polyacrylamide gel electrophoresis of the purified enzyme shows only trace impurities; the subunit molecular weight for the enzyme measured by this technique is 47,000.  相似文献   

20.
Two forms of calbindin-D9k have sometimes been observed within a single tissue. Sequencing of these proteins has been complicated by the presence of blocked amino termini. Tandem mass spectrometry is a powerful tool for comparing related proteins, and its use does not depend upon an unblocked amino terminus. In the present studies, calbindin-D9k was purified from the intestines of mice (270 animals per purification) by use of gel permeation chromatography and two preparative electrophoresis steps in the presence and absence of EDTA. The purified protein appeared to be homogeneous following electrophoresis under nondenaturing conditions, but two components were identified by sodium dodecyl sulfate-gel electrophoresis and immunoblotting. Two forms of the protein were isolated by reverse-phase high performance liquid chromatography. In each of three preparations, the average ratio of the major:minor isoforms was 2:1. The major form contained 77 amino acids and lacked the amino-terminal serine found in 78-amino acid calbindins from rat and pig. The amino acid sequence was identical with the deduced sequence reported for rat intestinal calbindin-D9k in 73 of 77 positions. In the minor form, a glutamine was found in a location between Lys-43 and Ala-44 of the major form and between the two calcium binding sites of the protein. The minor form was otherwise identical with the major form, including the presence of a blocked amino terminus. The inserted glutamine was located at the site of an intron in the rat calbindin gene, suggesting the possibility that alternative splicing produced the two forms of calbindin-D9k. The functional significance of an inserted amino acid between the two calcium binding sites remains to be explored.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号