首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The adult human anterior cruciate ligament (ACL) has a poor functional healing response, whereas the medial collateral ligament (MCL) does not. The difference in intrinsic properties of these ligament cells can be due to their different response to their located microenvironment. Hypoxia is a key environmental regulator after ligament injury. In this study, we investigated the differential response of ACL and MCL fibroblasts to hypoxia on hypoxia-inducible factor-1α, vascular endothelial growth factor, and matrix metalloproteinase-2 (MMP-2) expression. Our results show that ACL cells responded to hypoxia by up-regulating the HIF-1α expression significantly as compared to MCL cells. We also observed that in MCL fibroblasts response to hypoxia resulted in increase in expression of VEGF as compared to ACL fibroblasts. After hypoxia treatment, mRNA and protein levels of MMP-2 increased in both ACL and MCL. Furthermore we found in ACL pro-MMP-2 was converted more into active form. However, hypoxia decreased the percentage of wound closure for both ligament cells and had a greater effect on ACL fibroblasts. These results demonstrate that ACL and MCL fibroblasts respond differently under the hypoxic conditions suggesting that these differences in intrinsic properties may contribute to their different healing responses and abilities.  相似文献   

2.
This study examines the real-time intracellular calcium concentration, [Ca2+]i, response of canine medial collateral ligament (MCL) and anterior cruciate ligament (ACL) fibroblasts subjected to a fluid-induced shear stress of 25 dynes/cm2. In experiments using a modified Hanks' Balanced Salt Solution (HBSS) perfusate, both cell types demonstrated a significant increase in peak [Ca2+]i compared to respective no-flow controls, the response of MCL fibroblasts being nearly 2-fold greater than that of ACL fibroblasts. In studies where the cells were bathed in a medium of HBSS supplemented with 2% newborn bovine serum (NBS) and then introduced to flow with the same medium, ACL fibroblasts responded nearly 3-fold greater than MCL fibroblasts. Neomycin (10 mM), thapsigarigin (1 μM) and Ca2+-free media supplemented with EGTA (1 mM) were able to inhibit significantly the [Ca2+]i response to flow with HBSS in both fibroblasts. Thapsigargin also blocked the NBS flow response in both cell types, while neomycin and Ca2+-free media significantly inhibited the ACL response. Our findings demonstrate that ACL and MCL cells are not the same. These differences may be related to the disparate healing capacity of the ACL and MCL observed clinically.  相似文献   

3.
Basic fibroblast growth factor (bFGF) and growth and differentiation factor (GDF)-5 stimulate the healing of medial collateral ligament (MCL) injury. However, the effect of isolated and combined use of bFGF/GDF-5 remains still unclear. We investigated cellular proliferation and migration responding to bFGF/GDF-5 using rabbit MCL fibroblasts. Rabbit MCL injury was treated by bFGF and/or GDF-5 with peptide hydrogels. Gene expression and deposition of collagens in healing tissues were evaluated. bFGF/GDF-5 treatment additively enhanced cell proliferation and migration. bFGF/GDF-5 hydrogels stimulated Col1a1 expression without increasing Col3a1 expression. Combined use of bFGF/GDF-5 stimulated type I collagen deposition and the reorganization of fiber alignment, and induced better morphology of fibroblasts in healing MCLs. Our study indicates that combined use of bFGF/GDF-5 might enhance MCL healing by increasing proliferation and migration of MCL fibroblasts, and by regulating collagen synthesis and connective fiber alignment.  相似文献   

4.
Summary We have developed a procedure to explant fibroblasts from the anterior cruciate ligament (ACL) and the medial collateral ligament (MCL) of the rabbit knee, and have optimized conditions for maintaining them in culture. Maximal growth for both ACL and MCL cells was obtained with Dulbecco's modified Eagle's medium supplemented with 15% fetal bovine serum and 250 μM ascorbate. ACL and MCL fibroblasts displayed intrinsic differences in their responses to changes in culture parameters. Specifically, they displayed different growth responses when plated at different densities and responded to RPMI 1640 medium in very different ways. There were also biochemical differences between the cell types. Both cell types produced similar amounts of collagen in culture, but the ratio of type I to type III, the major collagen subtypes produced by these cells, were different. ACL fibroblasts produced 86.7% type I and 13.3% type III, and MCL fibroblasts produced 71.1% type I and 28.9% type III. In addition, total protein produced by ACL fibroblasts was higher than that produced by MCL cells. This confirms the suggestions of previous researchers that such differences might exist. This work was funded by a grant-in-aid from Medtronic of Canada, by an R&D Grant from the Alberta Ministry of Technology, Research and Telecommunications, and by the Alberta Heritage Foundation for Medical Research.  相似文献   

5.
Extracellular matrix (ECM) binding to integrin receptors regulates cell cycle progression and survival. In adherent cells, ECM disassembly induces anoikis, the apoptotic pathway switched on by loss of adhesion. ECM-deficient Ehlers-Danlos syndrome (EDS) fibroblasts, to adhere to rare fibronectin (FN) fibrils, and to proliferate, only organize, as FN receptor, the alphavbeta3 integrin. We report that in EDS cells the alphavbeta3 integrin is bound to talin and vinculin, but not to tensin, and that actin cytoskeleton is disorganized. Furthermore, in EDS cells Bcl-2 is down-regulated and caspases are active. We provide evidence that the antibody-mediated alphavbeta3 integrin or the FN inhibition induces anoikis in EDS cells. The alphavbeta3 integrin transduces survival signals to pp60src-mediated tyrosine phosphorylated paxillin, instead than to FAK, and interacts with EGF receptor (EGFR). This complex, when activated by EGF and FN, signals for the rescue of EDS cells from anoikis. Therefore, EDS cells, through the alphavbeta3 integrin-EGFR complexes, engage a paxillin- but not FAK-mediated pathway of cell survival.  相似文献   

6.
Fibronectin (FN) deposition mediated by fibroblasts is an important process in matrix remodeling and wound healing. By monitoring the deposition of soluble biotinylated FN, we show that the stress-induced TG-FN matrix, a matrix complex of tissue transglutaminase (TG2) with its high affinity binding partner FN, can increase both exogenous and cellular FN deposition and also restore it when cell adhesion is interrupted via the presence of RGD-containing peptides. This mechanism does not require the transamidase activity of TG2 but is activated through an RGD-independent adhesion process requiring a heterocomplex of TG2 and FN and is mediated by a syndecan-4 and β1 integrin co-signaling pathway. By using α5 null cells, β1 integrin functional blocking antibody, and a α5β1 integrin targeting peptide A5-1, we demonstrate that the α5 and β1 integrins are essential for TG-FN to compensate RGD-induced loss of cell adhesion and FN deposition. The importance of syndecan-2 in this process was shown using targeting siRNAs, which abolished the compensation effect of TG-FN on the RGD-induced loss of cell adhesion, resulting in disruption of actin skeleton formation and FN deposition. Unlike syndecan-4, syndecan-2 does not interact directly with TG2 but acts as a downstream effector in regulating actin cytoskeleton organization through the ROCK pathway. We demonstrate that PKCα is likely to be the important link between syndecan-4 and syndecan-2 signaling and that TG2 is the functional component of the TG-FN heterocomplex in mediating cell adhesion via its direct interaction with heparan sulfate chains.  相似文献   

7.
Multilayered fibroblast sheets have applications as cell transplants for tissue engineering. One way to increase their therapeutic efficacy is to increase cell numbers in a graft, but the factors influencing multilayered growth remain poorly understood. In this study, we investigated the roles of focal adhesion (FA) assembly and intercellular cohesion through fibronectin (FN) in the proliferation of normal human fibroblasts at confluence. Density‐dependent growth‐arrested fibroblasts resumed DNA synthesis when cultured in multilayer formation medium (MFM) containing transforming growth factor‐β1, ascorbic acid, and serum. This proliferation depended on α5β1‐integrin‐mediated cell‐FN‐cell interactions because blocking them with antibodies inhibited DNA synthesis. However, cell‐FN‐cell cohesion operated well regardless of exposure to MFM, judging from several parameters, including FN matrix deposition, activated β1 integrin expression, and stress fiber development. Density‐arrested cells formed few FAs at the cell center. Exposure of the cells to MFM induced the formation of vinculin‐, paxillin‐, and phosphotyrosine‐containing FAs throughout the ventral cell‐surface, indicating ROCK‐mediated actomyosin contractile force generation. When the assembly of FAs was inhibited with either the ROCK inhibitor Y‐27632 or the myosin II inhibitor blebbistatin, the up‐regulation of DNA synthesis by MFM was suppressed. The drugs did not impair FN matrix deposition, activated β1 integrin expression, and stress fiber development. Thus, these results indicate that the formation of FAs promotes the proliferation of confluent fibroblasts with the support of α5β1‐integrin‐mediated cell‐FN‐cell cohesion. The present findings provide insights into the rational design of high‐density fibroblast transplants. J. Cell. Physiol. 219: 194–201, 2009. © 2008 Wiley‐Liss, Inc.  相似文献   

8.
The present study was undertaken to define the nature of key transport processes for sodium, glucose, proline, and sulfate in primary culture of canine anterior cruciate ligament (ACL) and medial collateral ligament (MCL) cells. Uptake studies using radiolabeled isotopes were performed and Na,K-ATPase activity was determined in cell lysates. At 25 degrees C both ACL and MCL cells showed a significant uptake of 86Rb. Ouabain inhibited Rb uptake by 55% in ACL cells and by 60% in MCL cells. The transport activity of Na,K-ATPase in intact cells was calculated to be 57 and 71 nmol.(mg protein)-1.(15 min)-1, respectively. The enzymatic activity of Na,K-ATPase in cell lysates was observed to be 104 for ACL cells and 121 nmol.(mg protein)-1.(15 min)-1 for MCL cells. Cytochalasin B, a known inhibitor of sodium-independent D-glucose transport, completely inhibited D-glucose uptake in ACL and MCL cells. Removal of Na+ or addition of 10-5 mol/L phlorizin, a potent inhibitor of the sodium-D-glucose cotransporter, did not alter D-glucose uptake, suggesting that glucose entered the cells using a sodium-independent pathway. Both ACL and MCL cells exhibited high sulfate uptake that was not altered by replacement of Na+ by N-methyl-D-glucamine, whereas DIDS, an inhibitor of sulfate/anion exchange abolished sulfate uptake in both cell types. Thus, neither cell type seems to possess a sodium-sulfate cotransport system. Rather, sulfate uptake appeared to be mediated by sulfate/anion exchange. Proline was rapidly taken up by ACL and MCL cells and its uptake was reduced by 85% when Na+ was replaced by N-methyl-D-glucamine, indicating that proline entered the cells via sodium-dependent cotransport systems. The data demonstrate that both ACL and MCL cells possess a highly active sodium pump, a secondary active sodium-proline cotransport system, and sodium-independent transport systems for D-glucose and sulfate.  相似文献   

9.
We have previously shown that the transcellular migration of rat ascites hepatoma (AH130-MM1) cells through a cultured mesothelial cell monolayer (MCL) is triggered with lysophosphatidic acid (LPA) that stimulates actin polymerization and myosin light chain phosphorylation through the activation of Rho-ROCK (Rho-kinase) cascade. When, however, the motility of MM1 cells on a glass surface was tested by phagokinetic track motility assay, LPA failed to induce the motility. Nevertheless, when the glass had been coated with fibronectin (FN), LPA could induce phagokinetic motility which was accompanied by transformation of MM1 cells to fusiform-shape and assembly of focal adhesion. beta1 integrin, the counter receptor of FN, was expressed on MM1 cells. Anti-FN antibody, anti-beta1 integrin antibody and cyclo-GRGDSPA remarkably suppressed LPA-induced phagokinetic motility. These antibodies suppressed LPA-induced transcellular migration through MCL, as well. These results indicate that actin polymerization and phosphorylation of myosin light chain through Rho activation are insufficient for inducing motility but the cooperative FN/beta1 integrin-mediated adhesion is necessary for both the phagokinetic motility and transcellular migration of MM1 cells.  相似文献   

10.
The medial collateral (MCL) and the anterior cruciate ligament (ACL) of the rat's knee are frequently used in biomedical research and occasionally in ligament healing studies. The contralateral normal ligament serves as a control. In this study the presence of symmetry in the biomechanical properties of the MCL and the ACL was investigated. Bilateral femur-MCL-tibia and femur-ACL-tibia preparations were obtained from the hind limbs of sixty rats and were subjected to tensile testing to failure under the same loading conditions. Tensile load to failure, stiffness and energy absorption capacity were measured and the mode of failure was recorded. All biomechanical parameters were not significantly different between the two knees of the same animal, although significant individual variation was evident. The most common mechanism of failure was mid-substance tear. Symmetry seems to exist in the biomechanical properties of the MCL and the ACL in the rat knee. When ligament healing is evaluated, increased group size is necessary and the use of a normal control group may be advisable. The contralateral normal knee ligament may serve as a control when the properties of an injured ligament are evaluated and when the parameters of tensile testing failure under similar load conditions are applied.  相似文献   

11.
During wound healing and inflammation, fibroblasts express elevated alkaline phosphatase (ALP), but are not in contact with collagen fibrils in the fibronectin (FN)-rich granulation tissue. We hypothesized that the extracellular matrix (ECM) environment might influence the induction of ALP in fibroblasts. Here we tested this hypothesis by studying the ALP-inductive response of normal human gingival fibroblasts to ascorbic acid (AsA). AsA induced ALP activity and protein in cells in conventional monolayer culture. This induction was inhibited by blocking-antibodies to the FN receptor alpha 5 beta 1 integrin and by the proline analog 3,4-dehydroproline (DHP). DHP prevented cells from arranging FN fibrils into a pericellular network and reduced the activity of cell spreading on FN. Plating of cells on FN facilitated the up-regulation by AsA of ALP expression, but did not substitute for AsA. In contrast, AsA did not cause ALP induction in cells cultured on and in polymerized type I collagen gels. Collagen fibrils inhibited the up-regulation by AsA of ALP expression in cells plated on FN. These results indicate that the ECM regulates the induction of ALP expression by AsA in fibroblasts: FN enables them to express ALP in response to AsA through interaction with integrin alpha 5 beta 1, whereas type I collagen fibrils cause the suppression of ALP expression and overcome FN.  相似文献   

12.
13.
Exposure of BALB/c-3T3 cells (clone A31) to platelet-derived growth factor (PDGF) results in a rapid time- and dose-dependent alteration in the distribution of vinculin and actin. PDGF treatment (6-50 ng/ml) causes vinculin to disappear from adhesion plaques (within 2.5 min after PDGF exposure) and is followed by an accumulation of vinculin in punctate spots in the perinuclear region of the cell. This alteration in vinculin distribution is followed by a disruption of actin-containing stress fibers (within 5 to 10 min after PDGF exposure). Vinculin reappears in adhesion plaques by 60 min after PDGF addition while stress fiber staining is nondetectable at this time. PDGF treatment had no effect on talin, vimentin, or microtubule distribution in BALB/c-3T3 cells; in addition, exposure of cells to 5% platelet-poor plasma (PPP), 0.1% PPP, 30 ng/ml epidermal growth factor (EGF), 30 ng/ml somatomedin C, or 10 microM insulin also had no effect on vinculin or actin distribution. Other competence-inducing factors (fibroblast growth factor, calcium phosphate, and choleragen) and tumor growth factor produced similar alterations in vinculin and actin distribution as did PDGF, though not to the same extent. PDGF treatment of cells for 60 min followed by exposure to EGF (0.1-30 ng/ml for as long as 8 h after PDGF removal), or 5% PPP resulted in the nontransient disappearance of vinculin staining within 10 min after EGF or PPP additions; PDGF followed by 0.1% PPP or 10 microM insulin had no effect. Treatment of cells with low doses of PDGF (3.25 ng/ml), which did not affect vinculin or actin organization in cells, followed by EGF (10 ng/ml), resulted in the disappearance of vinculin staining in adhesion plaques, thus demonstrating the synergistic nature of PDGF and EGF. These data suggest that PDGF-induced competence and stimulation of cell growth in quiescent fibroblasts are associated with specific rapid alterations in the cellular organization of vinculin and actin.  相似文献   

14.
Integrin subunits present on human bladder cells displayed heterogeneous functional specificity in adhesion to extracellular matrix proteins (ECM). The non-malignant cell line (HCV29) showed significantly higher adhesion efficiency to collagen IV, laminin (LN) and fibronectin (FN) than cancer (T24, Hu456) and v-raf transfected (BC3726) cell lines. Specific antibodies to the alpha(2), alpha(5) and beta(1) integrin subunits inhibited adhesion of the non-malignant cells, indicating these integrin participation in the adhesion to ECM proteins. In contrast, adhesion of cancer cells was not inhibited by specific antibodies to the beta(1) integrin subunit. Antibodies to alpha(3) integrin increased adhesion of cancer cells to collagen, LN and FN, but also of the HCV29 line with collagen. It seems that alpha(3) subunit plays a major role in modulation of other integrin receptors especially in cancer cells. Differences in adhesion to ECM proteins between the non-malignant and cancer cell lines in response to Gal and Fuc were not evident, except for the v-raf transfected cell line which showed a distinct about 6-fold increased adhesion to LN on addition of both saccharides. N-Acetylneuraminic acid inhibited adhesion of all cell lines to LN and FN irrespective of their malignancy.  相似文献   

15.
We investigated the molecular and cellular actions of receptor protein tyrosine phosphatase (PTP) alpha in integrin signaling using immortalized fibroblasts derived from wild-type and PTP alpha-deficient mouse embryos. Defects in PTP alpha-/- migration in a wound healing assay were associated with altered cell shape and focal adhesion kinase (FAK) phosphorylation. The reduced haptotaxis to fibronectin (FN) of PTP alpha-/- cells was increased by expression of active (but not inactive) PTP alpha. Integrin-mediated formation of src-FAK and fyn-FAK complexes was reduced or abolished in PTP alpha-/- cells on FN, concomitant with markedly reduced phosphorylation of FAK at Tyr397. Reintroduction of active (but not inactive) PTP alpha restored FAK Tyr-397 phosphorylation. FN-induced cytoskeletal rearrangement was retarded in PTP alpha-/- cells, with delayed filamentous actin stress fiber assembly and focal adhesion formation. This mimicked the effects of treating wild-type fibroblasts with the src family protein tyrosine kinase (Src-PTK) inhibitor PP2. These results, together with the reduced src/fyn tyrosine kinase activity in PTP alpha-/- fibroblasts (Ponniah et al., 1999; Su et al., 1999), suggest that PTP alpha functions in integrin signaling and cell migration as an Src-PTK activator. Our paper establishes that PTP alpha is required for early integrin-proximal events, acting upstream of FAK to affect the timely and efficient phosphorylation of FAK Tyr-397.  相似文献   

16.
Cell migration on fibronectin (FN)-coated substrata was studied using 10 cell lines, of which only 2 showed clear enhancement and 1 showed marginal enhancement of cell migration. The migration of the other 7 cell lines was not affected on FN-coated substrata, although they all showed FN-dependent cell adhesion. The migration-enhancing activity of FN was found in the fragment including the cell-adhesion and Hep-2 domains, but not other domains (Hep-1/Fib-1, Gel, Fib-2). No difference in the migration-enhancing effect was seen among FNs from plasma, fibroblasts, or transformed cells. FN-dependent cell migration was inhibited by polyclonal antibodies directed to the C-terminal half region including the cell binding domain, but not by antibodies directed to five other domains. Since these results indicated that FN-mediated cell migration could be controlled by the cell-adhesion domain of FN and its receptor, studies were then focused on the effect of antibodies directed to receptors for FN and collagen, and on the effect of tetrapeptide sequences recognized by these receptors. It was found that (i) cell migration on FN-coated surfaces was specifically inhibited by anti-FN receptor antibody P1F8 but not by anticollagen receptor antibody P1H5; (ii) the migration was strongly inhibited by Arg-Gly-Asp-Ser but not by other oligopeptide sequences. However, the majority of those cell lines not susceptible to FN-dependent cell migration were characterized by having FN receptors and the ability to adhere on FN-coated matrix. Based on these findings, it was concluded that FN-dependent cell migration shares the same recognition mechanism as FN-dependent cell adhesion, but that the majority of cell lines not exhibiting FN-dependent migration still show FN-dependent cell adhesion and express the FN receptor (integrin); i.e., cell migration and adhesion involve the same receptor and the same FN loci, but migration is controlled by still-unidentified cellular factors which determine the susceptibility of the cell to the dynamic function of the FN receptor (integrin) unit.  相似文献   

17.
Dermal fibroblasts derived from types I and IV Ehlers-Danlos syndrome (EDS) patients, carrying mutations in COL5A1 and COL3A1 genes, respectively, synthesize aberrant types V and III collagen (COLL) and show defective organization of these proteins into the extracellular matrix (ECM) and high reduction of their functional receptor, the alpha(2)beta(1) integrin, compared with control fibroblasts. EDS cells also show reduced levels of fibronectin (FN) in the culture medium and lack an FN fibrillar network. Finally, EDS cells prevalently organize alpha(v)beta(3) integrin instead of alpha(5)beta(1) integrin. The alpha(v)beta(3) integrin, distributed on the whole EDS cell surface, shows FN binding and assembly properties when the cells are treated with purified FN. Treatment of EDS cells with purified COLLV or COLLIII, but not with FN, restores the control phenotype (COLL(+), FN(+), alpha(v)beta(3)(-), alpha(5)beta(1)(+), alpha(2)beta(1)(+)). Function-blocking antibodies to COLLV, COLLIII, or alpha(2)beta(1) integrin induce in control fibroblasts an EDS-like phenotype (COLL(-), FN(-), alpha(v)beta(3)(+), alpha(5)beta(1)(-), alpha(2)beta(1)(-)). These results show that in human fibroblasts alpha(2)beta(1) integrin organization and function are controlled by its ligand, and that the alpha(2)beta(1)-COLL interaction, in turn, regulates FN integrin receptor recruitment: high alpha(2)beta(1) integrin levels induce alpha(5)beta(1) integrin organization, while low alpha(2)beta(1) integrin levels lead to alpha(v)beta(3) integrin organization.  相似文献   

18.
The knee joint is partially stabilized by the interaction of multiple ligament structures. This study tested the interdependent functions of the anterior cruciate ligament (ACL) and the medial collateral ligament (MCL) by evaluating the effects of ACL deficiency on local MCL strain while simultaneously measuring joint kinematics under specific loading scenarios. A structural testing machine applied anterior translation and valgus rotation (limits 100 N and 10 N m, respectively) to the tibia of ten human cadaveric knees with the ACL intact or severed. A three-dimensional motion analysis system measured joint kinematics and MCL tissue strain in 18 regions of the superficial MCL. ACL deficiency significantly increased MCL strains by 1.8% (p<0.05) during anterior translation, bringing ligament fibers to strain levels characteristic of microtrauma. In contrast, ACL transection had no effect on MCL strains during valgus rotation (increase of only 0.1%). Therefore, isolated valgus rotation in the ACL-deficient knee was nondetrimental to the MCL. The ACL was also found to promote internal tibial rotation during anterior translation, which in turn decreased strains near the femoral insertion of the MCL. These data advance the basic structure-function understanding of the MCL, and may benefit the treatment of ACL injuries by improving the knowledge of ACL function and clarifying motions that are potentially harmful to secondary stabilizers.  相似文献   

19.
The effect of dexamethasone (DEX) on the expression of fibronectin (FN), proalpha(1)(I) collagen (Col1), integrin alpha(2), alpha(5)and beta(1)subunits mRNAs, were studied by quantitative in situ hybridization (ISH) with radiolabelled probes in relationship with the organization of the extracellular matrix (ECM) of FN in human skin fibroblasts. In particular, two fibroblast strains were analysed, one derived from a control donor, typically organizing a rich ECM of FN, and the other from a patient affected by Ehlers-Danlos syndrome (EDS), which did not assemble the FN-ECM. Treatment of both fibroblast strains with 10(-7) m DEX slightly enhanced the level of FN mRNA (by about 1.5-fold), did not influence the level of alpha(5)subunit mRNA and reduced Col1, alpha(2)and beta(1)integrin subunits mRNAs by 2-3-fold. These results show that, in these cells, DEX coordinately downregulates the expression of Col1 and its specific integrin alpha(2)beta(1). Moreover, DEX regulates in a different manner the alpha(5)and beta(1)subunits forming the main FN receptor (FNR) in skin fibroblasts. Immunofluorescence microscopy evidencing the FN-ECM and integrins containing alpha(5)and beta(1)subunits showed that in control cells DEX induced a slight enhancement of the FN-ECM and of the alpha(5)beta(1)receptors patches. Therefore, in these cells the decrease of beta(1)FN receptor subunit mRNA, as well as the decrease of Col1 and its receptor mRNAs, did not influence the FN-ECM assembly. In EDS fibroblasts, DEX decreased the cytoplasmic accumulation of FN and induced the assembly of a rich FN-ECM through the formation of large FNR integrin patches, codistributing with the FN-ECM. We suggest that in EDS skin fibroblasts DEX corrects the defective FN-ECM favouring the sorting and the organization of FN and its alpha(5)beta(1)integrin receptor.  相似文献   

20.
表皮生长因子治疗兔角膜碱烧伤研究   总被引:4,自引:3,他引:1  
本试验制成兔角膜碱烧伤模型,应用重组表皮生长因子(rhEGF)滴眼剂对碱烧伤后的兔角膜溃疡创面进行治疗。63只纯种新西兰白兔分为7组,每组9只,其中5组为治疗组,另2组为对照组,治疗组分别用每毫升0.5,5,20,50和100μg表皮生长因子滴眼剂滴眼,对照组分别用纤维结合蛋白和氯霉素滴眼。伤后24,48,72,96及120h裂隙灯荧光素染色,照像观察溃疡面积,经计算机图像处理,计算。结果显示5组治疗组创面愈合时间明显短于对照组,(P<0.05)。提示EGF对角膜碱烧伤后的溃疡面愈合有促进作用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号