首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Dasypyrum villosum (2n=14), a Mediterranean grass species of the Triticeae, exhibits intraindividual fruit colour polymorphism from pale yellow to almost black. Several studies have reported differences between the plants emerging from pale and dark fruits. They include histone content in root meristem nuclei, cell cycle duration, heterochromatin banding pattern, frequency of a tandemly repeated sequence, and nuclear genome size. In the present study, we examine whether the reports of genome size being up to 1.24-fold larger in seedlings from the lighter caryopses are reproducible. In all, 29 accessions from various countries, totaling 186 plants, were investigated for genome size using flow cytometry with propidium iodide as the DNA stain. Individuals differed 1.12-fold at most and accessions 1.07-fold. The mean genome size (1C-value) was 5.07 pg or 4954 Mbp. Within-accession comparisons of seedlings derived from light and dark caryopses were insignificant (P>0.100). Thus, we found no evidence for a modificatory genome size plasticity in D. villosum. In the light of our data, the previously reported genome size variation, up to 1.66-fold within populations and 1.67-fold between populations, appears unrealistically high. Suboptimal technical procedures for quantitative Feulgen staining are probably responsible for these earlier observations.  相似文献   

3.
4.
Genome size varies considerably between species, and transposable elements (TEs) are known to play an important role in this variability. However, it is far from clear whether TEs are involved in genome size differences between populations within a given species. We show here that in Drosophila melanogaster and Drosophila simulans the size of the genome varies among populations and is correlated with the TE copy number on the chromosome arms. The TEs embedded within the heterochromatin do not seem to be involved directly in this phenomenon, although they may contribute to differences in genome size. Furthermore, genome size and TE content variations parallel the worldwide colonization of D. melanogaster species. No such relationship exists for the more recently dispersed D. simulans species, which indicates that a quantitative increase in the TEs in local populations and fly migration are sufficient to account for the increase in genome size, with no need for an adaptation hypothesis.  相似文献   

5.
Green sturgeon, Acipenser medirostris, and white sturgeon, Acipenser transmontanus, are frequent inhabitants of coastal estuaries from northern California, USA to British Columbia, Canada. An analysis of stomach contents from 95 green sturgeon and six white sturgeon commercially landed in Willapa Bay, Grays Harbor, and the Columbia River estuary during 2000–2005 revealed that 17–97% had empty stomachs, but those fish with items in their guts fed predominantly on benthic prey items and fish. Burrowing thalassinid shrimp (mostly Neotrypaea californiensis) were important food items for both white and especially for green sturgeon taken in Willapa Bay, Washington during summer 2003, where they represented 51% of the biomass ingested (84.9% IRI). Small pits observed in intertidal areas dominated by these shrimp, are likely made by these sturgeon and we present evidence from exclusion studies and field observation that the predator making the pits can have a significant cumulative negative effect on burrowing shrimp density. These burrowing shrimp present a threat to the aquaculture industry in Washington State due to their ability to de-stabilize the substrate on which shellfish are grown. Despite an active burrowing shrimp control program in these estuaries, it seems unlikely that current burrowing shrimp abundance and availability as food is a limiting factor for threatened green sturgeon stocks. However, these large predators may have performed an important top down control function on shrimp populations in the past when they were more abundant.  相似文献   

6.
Large-scale surveys of genome size evolution in angiosperms show that the ancestral genome was most likely small, with a tendency towards an increase in DNA content during evolution. Due to polyploidisation and self-replicating DNA elements, angiosperm genomes were considered to have a 'one-way ticket to obesity' (Bennetzen & Kellogg 1997). New findings on how organisms can lose DNA challenged the hypotheses of unidirectional evolution of genome size. The present study is based on the classical work of Babcock (1947a) on karyotype evolution within Crepis and analyses karyotypic diversification within the genus in a phylogenetic context. Genome size of 21 Crepis species was estimated using flow cytometry. Additional data of 17 further species were taken from the literature. Within 30 diploid Crepis species there is a striking trend towards genome contraction. The direction of genome size evolution was analysed by reconstructing ancestral character states on a molecular phylogeny based on ITS sequence data. DNA content is correlated to distributional aspects as well as life form. Genome size is significantly higher in perennials than in annuals. Within sampled species, very small genomes are only present in Mediterranean or European species, whereas their Central and East Asian relatives have larger 1C values.  相似文献   

7.
Genome size differences are usually attributed to the amplification and deletion of various repeated DNA sequences, including transposable elements (TEs). Because environmental changes may promote modifications in the amount of these repeated sequences, it has been postulated that when a species colonizes new environments this could be followed by an increase in its genome size. We tested this hypothesis by estimating the genome size of geographically distinct populations of Drosophila ananassae, Drosophila malerkotliana, Drosophila melanogaster, Drosophila simulans, Drosophila subobscura, and Zaprionus indianus, all of which have known colonization capacities. There was no strong statistical differences between continents for most species. However, we found that populations of D. melanogaster from east Africa have smaller genomes than more recent populations. For species in which colonization is a recent event, the differences between genome sizes do not thus seem to be related to colonization history. These findings suggest either that genome size is seldom modified in a significant way during colonization or that it takes time for genome size of invading species to change significantly.  相似文献   

8.
Crustacean zooplankton size structure in 27 aquaculture lakes was studied to test the hypothesis that larger size structure is associated with higher grazing pressure. Mean body length of crustaceans was positively correlated with increasing Chl a (r 2 = 0.40, P = 0.000) and TP (r 2 = 0.38, P = 0.000), contrary to the empirical studies. However, the ratio of zooplankton to phytoplankton biomass decreased significantly with increasing TP (r 2 = 0.27, P = 0.005) and mean body length (r 2 = 0.46, P = 0.000). Meanwhile, size structure showed no significant effect in explaining residual variations of phosphorus–chlorophyll relationship (P = 0.231). These results indicate that larger size structure was not always associated with higher zooplankton grazing pressure. It is likely that in aquaculture lakes crustacean zooplankton size structure was of minor importance in control of phytoplankton biomass, and it was mainly regulated by fish predation. The results showed in our study and the empirical studies might be a reflection of two different stages of lake eutrophication and fish predation intensity. Handling editor: S. Dodson  相似文献   

9.
Data from the International Biological Programme (IBP) and subsequent studies have been re-analysed to test the two hypotheses which previously have been suggested concerning the zooplankton in the mountain lake, Øvre Heimdalsvatn: (1) the average temperature in June, more than other summer months, is affecting the growth rate and population densities of zooplankton in the lake, (2) the invasion of the European minnow (Phoxinus phoxinus) has caused changes in the zooplankton community. The analyses have demonstrated that the June temperature strongly affects the growth rate of all the zooplankton species, but that there is no relationship with the population maxima. The species composition in the crustacean zooplankton has not changed between 1969 and 1999, and any direct impact of the minnows on the zooplankton community could not be detected. Indirectly, the minnows may have reduced the density of invertebrate predators, and thus caused an increase in juvenile survival and increased summer maximum density of Bosmina longispina. The variation in density of the copepod, Cyclops scutifer, was correlated with the density of Heterocope saliens, most likely the result of predator–prey interactions.  相似文献   

10.
Fish cover a large size range, from milligrams to tonnes, and many of them are regularly exposed to large variations in ambient oxygen levels. For more than half a century, there have been various, often divergent, claims regarding the effect of body size on hypoxia tolerance in fish. Here, we attempt to link old and new empirical data with the current understanding of the physiological mechanisms behind hypoxia tolerance. Three main conclusions are drawn: (1) body size per se has little or no impact on the ability to take up oxygen during hypoxic conditions, primarily because the respiratory surface area matches metabolic rate over a wide size range. If size-related differences are seen in the ability for oxygen uptake in a species, these are likely to reflect adaptation to different life-styles or habitat choice. (2) During severe hypoxia and anoxia, where fish have to rely on anaerobic ATP production (glycolysis) for survival, large individuals have a clear advantage over smaller ones, because small fish will run out of glycogen or reach lethal levels of anaerobic end-products (lactate and H(+)) much faster due to their higher mass-specific metabolic rate. (3) Those fish species that have evolved extreme adaptations to hypoxia, including haemoglobins with exceptionally high oxygen affinities and an alternative anaerobic end-product (ethanol), reveal that natural selection can be a much more powerful determinant of hypoxia tolerance than scaling of physiological functions.  相似文献   

11.
12.
When juvenile and adult animals occur syntopically, juveniles are at a distinct performance disadvantage due to their absolutely small size. Yet, optimal foraging theory predicts that juvenile predators should feed efficiently in order to compete with adults for food, and to minimize their exposure to predators. Previous authors have suggested that one way for juvenile animals to accomplish these ecological tasks is by increasing their overall feeding performance relative to adults (compensation hypothesis). Nonetheless, only a handful of studies have tested whether juvenile animals have increased feeding performance (e.g. decreased ingestion and/or handling times relative to body size) compared with adults. We tested this hypothesis by examining the ontogeny of head dimensions and feeding performance (ingestion time and number of mandibular protractions) on fish prey for broad-banded water snakes Nerodia fasciata . Individuals were fed fish scaled in a 1:1 ratio to their head width. All head dimensions scaled with significant negative allometry versus body size, and thus smaller snakes had relatively larger heads for their body size compared with larger snakes. By contrast, most head variables (except head volume) exhibited positive allometry versus head length, demonstrating that larger snakes had larger head dimensions relative to head size compared with smaller snakes. In the performance trials, smaller snakes had worse feeding performances when feeding on similarly sized fish prey (relative to their head width) compared with larger snakes. Therefore, these data show that smaller water snakes do not compensate for their size through increased feeding performance.  相似文献   

13.
14.
1.
Arrest temperatures and Q10 values for extensor digitorum longus (EDL), soleus, trabecula, and jejunum muscle twitch strength, contraction time, and 0.5 relaxation time were calculated for a deep torpor hibernator, white-tailed prairie dog (WTPD) (Cynomys leucurus), a shallow torpor hibernator, black-tailed prairie dog (BTPD) (Cynomys ludovicianus), and a non-hibernator, lab rat (Rattus norvegicus) to test the hypothesis that tissue temperature tolerances limit the depth of expressed torpor.  相似文献   

15.
16.
17.
Macroscopic chiral objects (boats and planes with turned rudders, shoes, etc.) get separated from their mirror‐image counterparts by motion in achiral media. However, chiral molecules are not enantio‐differentiated without the presence of a chiral environment, which may be due to other chiral molecules in the medium. This article explores the reasons of this micro/macro difference as well as the size borderline between the two regimes. There are two major demarcation lines, both related to the object's chaotic thermal motion. The first one is due to destruction of the necessary spatial orientation by the fast rotational diffusion. Only particles larger than 1 μm can maintain their original orientation for 1 sec or longer. For smaller particles, an additional external orienting factor, e.g., a strong electric field has to be applied. The second limitation is defined by the ratio of the hydrodynamic separation of the enantiomers (which is directly proportional to time) to their displacement due to the translational Brownian motion (which is proportional to square root of time). On the laboratory time scales (up to a year), the chiral objects have to be larger than 0.25 μm to be resolved. On evolutionary time scales, much smaller object could be resolved. For enantiomers approaching the molecular size, periods comparable to the age of the universe would be required. Chirality, 2011. © 2010 Wiley‐Liss, Inc.  相似文献   

18.
19.
Genome size varies greatly across the flowering plants and has played an important role in shaping their evolution. It has been reported that many factors correlate with the variation in genome size, but few studies have systematically explored this at the genomic level. Here, we scan genomic information for 74 species from 74 families in 38 orders covering the major groups of angiosperms (the taxonomic information was acquired from the latest Angiosperm Phylogeny Group (APG IV) system) to evaluate the correlation between genome size variation and different genome characteristics: polyploidization, different types of repeat sequence content, and the dynamics of long terminal repeat retrotransposons (LTRs). Surprisingly, we found that polyploidization shows no significant correlation with genome size, while LTR content demonstrates a significantly positive correlation. This may be due to genome instability after polyploidization, and since LTRs occupy most of the genome content, it may directly result in most of the genome variation. We found that the LTR insertion time is significantly negatively correlated with genome size, which may reflect the competition between insertion and deletion of LTRs in each genome, and that the old insertions are usually easy to recognize and eliminate. We also noticed that most of the LTR burst occurred within the last 3 million years, a timeframe consistent with the violent climate fluctuations in the Pleistocene. Our findings enhance our understanding of genome size evolution within angiosperms, and our methods offer immediate implications for corresponding research in other datasets.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号