首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The Saccharomyces cerevisiae kinase Ste20 is a member of the p21-activated kinase (PAK) family with several functions, including pheromone-responsive signal transduction. While PAKs are usually activated by small G proteins and Ste20 binds Cdc42, the role of Cdc42-Ste20 binding has been controversial, largely because Ste20 lacking its entire Cdc42-binding (CRIB) domain retains kinase activity and pheromone response. Here we show that, unlike CRIB deletion, point mutations in the Ste20 CRIB domain that disrupt Cdc42 binding also disrupt pheromone signaling. We also found that Ste20 kinase activity is stimulated by GTP-bound Cdc42 in vivo and this effect is blocked by the CRIB point mutations. Moreover, the Ste20 CRIB and kinase domains bind each other, and mutations that disrupt this interaction cause hyperactive kinase activity and bypass the requirement for Cdc42 binding. These observations demonstrate that the Ste20 CRIB domain is autoinhibitory and that this negative effect is antagonized by Cdc42 to promote Ste20 kinase activity and signaling. Parallel results were observed for filamentation pathway signaling, suggesting that the requirement for Cdc42-Ste20 interaction is not qualitatively different between the mating and filamentation pathways. While necessary for pheromone signaling, the role of the Cdc42-Ste20 interaction does not require regulation by pheromone or the pheromone-activated G beta gamma complex, because the CRIB point mutations also disrupt signaling by activated forms of the kinase cascade scaffold protein Ste5. In total, our observations indicate that Cdc42 converts Ste20 to an active form, while pathway stimuli regulate the ability of this active Ste20 to trigger signaling through a particular pathway.  相似文献   

2.
p21-activated kinase links Rac/Cdc42 signaling to merlin.   总被引:21,自引:0,他引:21  
The neurofibromatosis type 2 tumor suppressor gene, NF2, is mutated in the germ line of NF2 patients and predisposes affected individuals to intracranial and spinal tumors. Moreover, somatic mutations of NF2 can occur in the sporadic counterparts of these neurological tumor types as well as in certain neoplasms of non-neuroectodermal origin, such as malignant mesothelioma and melanoma. NF2 encodes a 595-amino acid protein, merlin, which exhibits significant homology to the ezrin-radixin-moesin family of proteins. However, the mechanism by which merlin exerts its tumor suppressor activity is not well understood. In this investigation, we show that merlin is phosphorylated in response to expression of activated Rac and activated Cdc42 in mammalian cells. Furthermore, we demonstrate that merlin phosphorylation is mediated by p21-activated kinase (Pak), a common downstream target of both Rac and Cdc42. Both in vivo and in vitro kinase assays demonstrated that Pak can directly phosphorylate merlin at serine 518, a site that affects merlin activity and localization. These biochemical investigations provide insights into the regulation of merlin function and establish a framework for elucidating tumorigenic mechanisms involved in neoplasms associated with merlin inactivation.  相似文献   

3.
The p21-activated kinases (PAKs) are effectors for the Rho-family GTPase Cdc42p. Here we define the in vivo function of the kinase activity of the budding yeast PAK Cla4p, using cla4 alleles that are specifically inhibited by a cell-permeable compound that does not inhibit the wild-type kinase. CLA4 kinase inhibition in cells lacking the partially redundant PAK Ste20p causes reversible SWE1-dependent cell-cycle arrest and gives rise to narrow, highly elongated buds in which both actin and septin are tightly polarized to bud tips. Inhibition of Cla4p does not prevent polarization of F-actin, and cytokinesis is blocked only in cells that have not formed a bud before inhibitor treatment; cell polarization and bud emergence are not affected by Cla4p inhibition. Although localization of septin to bud necks is restored in swe1Delta cells, cytokinesis remains defective. Inhibition of Cla4p activity in swe1Delta cells causes a delay of bud emergence after cell polarization, indicating that this checkpoint may mediate an adaptive response that is capable of promoting budding when Cla4p function is reduced. Our data indicate that CLA4 PAK activity is required at an early stage of budding, after actin polarization and coincident with formation of the septin ring, for early bud morphogenesis and assembly of a cytokinesis site.  相似文献   

4.
J Roig  P T Tuazon  J A Traugh 《FEBS letters》2001,507(2):195-199
Autophosphorylation of p21-activated protein kinase gamma-PAK is stimulated at 10 microM sphingosine in vitro and is maximal at 100 microM. Sites autophosphorylated on gamma-PAK in response to sphingosine are identical to those obtained with Cdc42(GTP). Autophosphorylation is paralleled by stimulation of gamma-PAK activity as measured with peptide and protein substrates. In 3T3-L1 cells, sphingosine stimulates the autophosphorylation and activity of gamma-PAK associated with the membrane-containing particulate fraction by 2.8-fold, but does not stimulate the activity of the soluble enzyme. Thus, gamma-PAK is activatable via a Cdc42-independent mechanism, suggesting sphingosine has a role in gamma-PAK activation under conditions of cell stress.  相似文献   

5.
p21-activated kinase 1 (Pak1) is an effector for the small GTPases Cdc42 and Rac. Because Pak1 binds to and is activated by both these GTPases, it has been difficult to precisely delineate the signaling pathways that link extracellular stimuli to Pak1 activation. To separate activation of Pak1 by Cdc42 versus activation by Rac, we devised a genetic screen in yeast that enabled us to create and identify Pak1 mutants that selectively couple to Cdc42 but not Rac1. We recovered several such Pak1 mutants and found that the residues most often affected lie within the p21 binding domain, a region previously known to mediate Pak1 binding to GTPases, but that several mutations also map outside the borders of the p21 binding domain. Pak1 mutants that associate with Cdc42 but not Rac1 were also activated by Cdc42 but not Rac1. In rat 3Y1 cells expressing oncogenic Ha-Ras, the Pak1 mutants defective in Rac1 binding are not activated, suggesting that Ras signals through a GTPase other than Cdc42 to activate Pakl. Similar results were obtained when epidermal growth factor was used to activate Pak1. However, Pak1 mutants that are unable to bind Rac are nonetheless well activated by calf serum, implying that this stimulus may induce Pak activation independent of Rac.  相似文献   

6.
Wang L  Zhu K  Zheng Y 《Biochemistry》2004,43(46):14584-14593
Activation of many Rho family GTPase pathways involves the signaling module consisting of the Dbl-like guanine nucleotide exchange factors (GEFs), the Rho GTPases, and the Rho GTPase specific effectors. The current biochemical model postulates that the GEF-stimulated GDP/GTP exchange of Rho GTPases leads to the active Rho-GTP species, and subsequently the active Rho GTPases interact with and activate the effectors. Here we report an unexpected finding that the Dbl oncoprotein, Cdc42 GTPase, and PAK1 can form a complex through their minimum functional motifs, i.e., the Dbl-homolgy (DH) and Pleckstrin-homology domains of Dbl, Cdc42, and the PBD domain of PAK1. The Dbl-Cdc42-PAK1 complex is sensitive to the nucleotide-binding state of Cdc42 since either dominant negative or constitutively active Cdc42 readily disrupts the ternary binding interaction. The complex formation depends on the interactions between the DH domain of Dbl and Cdc42 and between Cdc42 and the PBD domain of PAK1 and can be reconstituted in vitro by using the purified components. Furthermore, the Dbl-Cdc42-PAK1 ternary complex is active in generating signaling output through the activated PAK1 kinase in the complex. The GEF-Rho-effector ternary intermediate is also found in other Dbl-like GEF, Rho GTPase, and effector interactions. Finally, PAK1, through the PDB domain, is able to accelerate the GEF-induced GTP loading onto Cdc42. These results suggest that signal transduction through Cdc42 and possibly other Rho family GTPases could involve tightly coupled guanine nucleotide exchange and effector activation mechanisms and that Rho GTPase effector may have a feedback regulatory role in the Rho GTPase activation.  相似文献   

7.
p21-activated protein kinase: a crucial component of morphological signaling?   总被引:16,自引:0,他引:16  
The mechanisms by which Rho family GTPases (Rho, Rac and Cdc42) regulate coordinated changes to the actin cytoskeleton are being elucidated. This review will focus on the current evidence that the p21-activated kinases (PAKs) are involved in regulating some of the diverse cytoskeletal changes induced by Rac and Cdc42. PAKs have been shown to be required for processes including neurite formation and axonal guidance, development of cell polarity and motile responses. Signaling molecules interacting with PAKs that might contribute to the regulation of such processes have recently been identified.  相似文献   

8.
The p21-activated kinase 3 (PAK3) is one of the recently identified genes for which mutations lead to nonsyndromic mental retardation. PAK3 is implicated in dendritic spine morphogenesis and is a key regulator of synaptic functions. However, the underlying roles of PAK3 in these processes remain poorly understood. We report here that the three mutations R419X, A365E, and R67C, responsible for mental retardation have different effects on the biological functions of PAK3. The R419X and A365E mutations completely abrogate the kinase activity. The R67C mutation drastically decreases the binding of PAK3 to the small GTPase Cdc42 and impairs its subsequent activation by this GTPase. We also report that PAK3 binds significantly more Cdc42 than Rac1 and is selectively activated by endogenous Cdc42, suggesting that PAK3 is a specific effector of Cdc42. Interestingly, the expression of the three mutated proteins in hippocampal neurons affects spinogenesis differentially. Both kinase-dead mutants slightly decrease the number of spines but profoundly alter spine morphology, whereas expression of the R67C mutant drastically decreases spine density. These results demonstrate that the Cdc42/PAK3 is a key module in dendritic spine formation and synaptic plasticity.  相似文献   

9.
Triton X-100 extracts of purified rat brain synaptosomes exhibited marked phosphorylation of an endogenous Mr 87,000 polypeptide following chromatography on DEAE-cellulose. The protein kinase catalyzing this reaction was insensitive to cyclic AMP, Ca2+, calmodulin, and phorbol esters. However, phosphatidylinositol 4-phosphate (PIP) proved to be a potent inhibitor of the Mr 87,000 polypeptide phosphorylation at submicromolar concentrations, whereas phosphatidylinositol, phosphatidylserine, and phosphatidylglycerol were less potent inhibitors. Unsaturated fatty acids could also mimic the effects of PIP at levels above 4 micrograms/ml. The inhibitory effect of PIP largely reflected a profound increase in the apparent Km for Mg2+ such that increasing Mg2+ levels could partially offset the action of PIP. The PIP-sensitive protein kinase was enriched in hypotonic lysates of synaptosomes from which it was partially purified by DEAE-cellulose, hydroxylapatite, and gel permeation chromatography. This purification separated the enzyme from its Mr 87,000 substrate; however, the presence of this polypeptide in heat-inactivated alkali extracts of rat brain provided an exogenous source of substrate which could be used to assay enzyme activity. The relevance of these data to a possible role for PIP and Mg2+ in cellular signaling is discussed.  相似文献   

10.
LIM kinases (LIMK1 and LIMK2) regulate actin cytoskeletal reorganization through cofilin phosphorylation downstream of distinct Rho family GTPases. Pak1 and ROCK, respectively, activate LIMK1 and LIMK2 downstream of Rac and Rho; however, an effector protein kinase for LIMKs downstream of Cdc42 remains to be defined. We now report evidence that LIMK1 and LIMK2 activities toward cofilin phosphorylation are stimulated in cells by the co-expression of myotonic dystrophy kinase-related Cdc42-binding kinase alpha (MRCKalpha), an effector protein kinase of Cdc42. In vitro, MRCKalpha phosphorylated the protein kinase domain of LIM kinases, and the site in LIMK2 phosphorylated by MRCKalpha proved to be threonine 505 within the activation segment. Expression of MRCKalpha induced phosphorylation of actin depolymerizing factor (ADF)/cofilin in cells, whereas MRCKalpha-induced ADF/cofilin phosphorylation was inhibited by the co-expression with the protein kinase-deficient form of LIM kinases. These results indicate that MRCKalpha phosphorylates and activates LIM kinases downstream of Cdc42, which in turn regulates the actin cytoskeletal reorganization through the phosphorylation and inactivation of ADF/cofilin.  相似文献   

11.
Signal transduction cascades involved in regulation of the cell cycle machinery are poorly understood. In the Xenopus oocyte model, meiotic maturation is triggered by MPF, a complex of p34(cdc2)-cyclin B, which is activated in response to a progesterone signal by largely unknown mechanisms. We have previously shown that the p21-activated kinase (PAK) family negatively regulates the MPF amplification loop. In this study, we identify the endogenous PAK2 as a key enzyme in this regulation and describe the pathways by which PAK2 is regulated. We show that the small GTPase Cdc42 is required for maintenance of active endogenous X-PAK2 in resting stage VI oocytes, whereas Rac1 is not involved in this regulation. During the process of maturation, X-PAK2 phosphorylation results in its inactivation and allows maturation to proceed to completion. Activation of mitogen-activated protein kinase and cyclin B-p34(cdc2) is coincident with X-PAK2 inactivation, and purified active MPF inhibits X-PAK2, demonstrating the existence of a new positive feedback loop. Our results confirm and extend the importance of p21-activated kinases in the control of the G(2)/M transition. We hypothesize that the X-PAK2/Cdc42 pathway could link p34(cdc2) activity to the major cytoskeleton rearrangements leading to spindle migration and anchorage to the animal pole cortex.  相似文献   

12.
  1. Download : Download high-res image (249KB)
  2. Download : Download full-size image
  相似文献   

13.
Rho-type GTPases control many cytoskeletal rearrangements, but their regulation remains poorly understood. Here, we show that in S. cerevisiae, activation of the CDK Cdc28-Cln2 at bud emergence triggers relocalization of Cdc24, the GEF for Cdc42, from the nucleus to the polarization site, where it is stably maintained by binding to the adaptor Bem1. Locally activated Cdc42 then polarizes the cytoskeleton in a manner dependent on its effectors Bni1 and the PAK-like kinase Cla4. In addition, Cla4 induces phosphorylation of Cdc24, leading to its dissociation from Bem1 at bud tips, thereby ending polarized bud growth in vivo. Our results thus suggest a dynamic temporal and spatial regulation of the Cdc42 module: Cdc28-Cln triggers actin polarization by activating Cdc42, which in turn restricts its own activation via a negative feedback loop acting on its GEF Cdc24.  相似文献   

14.
The PAK family kinase, Shk1, is an essential regulator of polarized growth in the fission yeast, Schizosaccharomyces pombe. Here we describe the characterization of a novel member of the RhoGAP family, Rga8, identified from a two-hybrid screen for proteins that interact with the Shk1 kinase domain. Although deletion of the rga8 gene in wild type S. pombe cells results in no obvious phenotypic defects under normal growth conditions, it partially suppresses the cold-sensitive growth and morphological defects of S. pombe cells carrying a hypomorphic allele of the shk1 gene. By contrast, overexpression of rga8 is lethal to shk1-defective cells and causes morphological and cytokinesis defects in wild type S. pombe cells. Consistent with a role for Rga8 as a downstream target of Shk1, we show that the Rga8 protein is directly phosphorylated by Shk1 in vitro and phosphorylated in a Shk1-dependent fashion in S. pombe cells. Fluorescence photomicroscopy of the GFP-Rga8 fusion protein indicates that Rga8 is localized to the cell ends during interphase and to the septum-forming region during cytokinesis. In S. pombe cells carrying the orb2-34 allele of shk1, Rga8 exhibits a monopolar pattern of localization, providing evidence that Shk1 contributes to the regulation of Rga8 localization. Although molecular analyses suggest that Rga8 functions as a GAP for the S. pombe Rho1 GTPase, genetic experiments suggest that Rga8 and Rho1 have a positive functional interaction and that gain of Rho1 function, like gain of Rga8 function, is lethal to Shk1-defective cells. Our results suggest that Rga8 is a Shk1 substrate that negatively regulates Shk1-dependent growth control pathway(s) in S. pombe, potentially through interaction with the Rho1 GTPase.  相似文献   

15.
Activation of the canonical mitogen-activated protein kinase (MAPK) cascade by soluble mitogens is blocked in non-adherent cells. It is also blocked in cells in which the cAMP-dependent protein kinase (PKA) is activated. Here we show that inhibition of PKA allows anchorage-independent stimulation of the MAPK cascade by growth factors. This effect is transient, and its duration correlates with sustained tyrosine phosphorylation of paxillin and focal-adhesion kinase (FAK) in non-adherent cells. The effect is sensitive to cytochalasin D, implicating the actin cytoskeleton as an important factor in mediating this anchorage-independent signalling. Interestingly, constitutively active p21-activated kinase (PAK) also allows anchorage-independent MAPK signalling. Furthermore, PKA negatively regulates PAK in vivo, and whereas the induction of anchorage-independent signaling resulting from PKA suppression is blocked by dominant negative PAK, it is markedly prolonged by constitutively active PAK. These observations indicate that PKA and PAK are important regulators of anchorage-dependent signal transduction.  相似文献   

16.
A member of the family of p21-activated protein kinases, gamma-PAK, has cytostatic properties and is activated during apoptosis and in response to DNA damage. To determine whether gamma-PAK is activated by other types of cell stress and to assess its mechanism of activation, the response of gamma-PAK to hyperosmotic stress was examined. In 3T3-L1 mouse fibroblasts, there are two pools of gamma-PAK: the majority of the protein kinase is soluble and has low specific activity, whereas gamma-PAK associated with the particulate fraction has significantly higher specific activity. Hyperosmolarity promotes translocation of gamma-PAK from the soluble to the particulate fraction; this parallels activation of the protein kinase. Activation but not translocation of gamma-PAK is wortmannin-sensitive, suggesting the involvement of a phosphoinositide 3-kinase-related activity. gamma-PAK translocation in response to hyperosmolarity parallels Cdc42 translocation to the particulate fraction in vivo and can be induced in vitro by guanosine 5'-3-O-(thio)triphosphate. Cotransfection of gamma-PAK with constitutively active Cdc42 induces gamma-PAK activation and translocation, whereas inactive Cdc42 inhibits both processes in response to hyperosmotic stress, suggesting that Cdc42 has a role in the translocation and activation of gamma-PAK. alpha-PAK is not activated in response to hyperosmolarity in 3T3-L1 cells. A two-step model of gamma-PAK activation is presented.  相似文献   

17.
Fibroblast growth factor (FGF) signaling is required for numerous aspects of neural development, including neural induction, CNS patterning and neurogenesis. The ability of FGFs to activate Ras/MAPK signaling is thought to be critical for these functions. However, it is unlikely that MAPK signaling can fully explain the diversity of responses to FGFs. We have characterized a Cdc42-dependent signaling pathway operating downstream of the Fgf8a splice isoform. We show that a Cdc42 effector 4-like protein (Cdc42ep4-l or Cep4l) has robust neuronal-inducing activity in Xenopus embryos. Furthermore, we find that Cep4l and Cdc42 itself are necessary and sufficient for sensory neurogenesis in vivo. Furthermore, both proteins are involved in Fgf8a-induced neuronal induction, and Cdc42/Cep4l association is promoted specifically by the Fgf8a isoform of Fgf8, but not by Fgf8b, which lacks neuronal inducing activity. Overall, these data suggest a novel role for Cdc42 in an Fgf8a-specific signaling pathway essential for vertebrate neuronal development.  相似文献   

18.
Cortactin is an F-actin binding protein that is enriched in dynamic cytoskeletal organelles such as podosomes, membrane ruffles, and lamellipodia. We have shown previously that Src-phosphorylation of cortactin is not required for its translocation to phorbol-ester induced podosomes in A7r5 aortic smooth muscle cells, but may be important for stability and turnover of podosomes. However, little is known of the role of Ser/Thr kinases in the regulation of cortactin. Here, we report that p21-associated kinase (PAK), which plays a crucial role in the formation of podosome and membrane ruffles, is able to phosphorylate cortactin in vitro. The predominant phosphorylation site is located at Ser113 in the first actin-binding repeat. Phosphorylation by PAK is not required for the translocation of cortactin to podosomes, lamellipodia, or membrane ruffles in A7r5 smooth muscle cells. However, binding of cortactin to F-actin is significantly reduced by PAK-phosphorylation. Taken together, these results suggest a role for PAK-phosphorylation of cortactin in the regulation of the dynamics of branched actin filaments in dynamic cytoskeletal organelles.  相似文献   

19.
Sec14p is an essential phosphatidylcholine/phosphatidylinositol transfer protein with a well-described role in the regulation of Golgi apparatus-derived vesicular transport in yeast. Inactivation of the CDP-choline pathway for phosphatidylcholine synthesis allows cells to survive in the absence of Sec14p function through restoration of Golgi vesicular transport capability. In this study, Saccharomyces cerevisiae cells containing a SEC14 temperature-sensitive allele along with an inactivated CDP-choline pathway were transformed with a high-copy-number yeast genomic library. Genes whose increased expression inhibited cell growth in the absence of Sec14p function were identified. Increasing levels of the Rho GTPase Cdc42p and its direct effector kinases Cla4p and Ste20p prevented the growth of cells lacking Sec14p and CDP-choline pathway function. Growth suppression was accompanied by an increase in large and multiply budded cells. This effect on polarized cell growth did not appear to be due to an inability to establish cell polarity, since both the actin cytoskeleton and localization of the septin Cdc12p were unaffected by increased expression of Cdc42p, Cla4p, or Ste20p. Nuclei were present in both the mother cell and the emerging bud, consistent with Sec14p regulation of the cell cycle subsequent to anaphase but prior to cytokinesis/septum breakdown. Increased expression of phosphatidylinositol 4-kinases and phosphatidylinositol 4-phosphate 5-kinase prevented growth arrest by CDC42, CLA4, or STE20 upon inactivation of Sec14p function. Sec14p regulation of phosphoinositide levels affects cytokinesis at the level of the Cdc42p/Cla4p/Ste20p signaling cascade.  相似文献   

20.
Eukaryotic messenger RNAs containing premature stop codons are selectively and rapidly degraded, a phenomenon termed nonsense-mediated mRNA decay (NMD). Previous studies with both Caenohabditis elegans and mammalian cells indicate that SMG-2/human UPF1, a central regulator of NMD, is phosphorylated in an SMG-1-dependent manner. We report here that smg-1, which is required for NMD in C. elegans, encodes a protein kinase of the phosphatidylinositol kinase superfamily of protein kinases. We identify null alleles of smg-1 and demonstrate that SMG-1 kinase activity is required in vivo for NMD and in vitro for SMG-2 phosphorylation. SMG-1 and SMG-2 coimmunoprecipitate from crude extracts, and this interaction is maintained in smg-3 and smg-4 mutants, both of which are required for SMG-2 phosphorylation in vivo and in vitro. SMG-2 is located diffusely through the cytoplasm, and its location is unaltered in mutants that disrupt the cycle of SMG-2 phosphorylation. We discuss the role of SMG-2 phosphorylation in NMD.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号