首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 30 毫秒
1.
2.
Complementary DNA clones encoding acidic and basic isoforms of tomato chitinases were isolated fromCladosporium fulvum-infected leaves. The clones were sequenced and found to encode the 30 kDa basic intracellular and the 26 and 27 kDa acidic extracellular tomato chitinases previously purified (M.H.A.J. Joostenet al., in preparation). A fourth truncated cDNA which appears to encode an extracellular chitinase with 82% amino acid similarity to the 30 kDa intracellular chitinase was also isolated. Characterization of the clones revealed that the 30 kDa basic intracellular protein is a class I chitinase and that the 26 and 27 kDa acidic extracellular proteins which have 85% peptide sequence similarity are class II chitinases. The characterized cDNA clones represent four from a family of at least six tomato chitinases. Southern blot analysis indicated that, with the exception of the 30 kDa basic intracellular chitinase, the tomato chitinases are encoded by one or two genes. Northern blot analysis showed that the mRNA encoding the 26 kDa acidic extracellular chitinase is induced more rapidly during an incompatibleC. fulvum-tomato interaction than during a compatible interaction. This difference in timing of mRNA induction was not observed for the 30 kDa basic intracellular chitinase.  相似文献   

3.
Infection of potato leaves (Solanum tuberosum L. cv. Datura) by the late blight fungus Phytophthora infestans, or treatment with fungal elicitor leads to a strong increase in chitinase and 1,3--glucanase activities. Both enzymes have been implicated in the plant's defence against potential pathogens. In an effort to characterize the corresponding genes, we isolated complementary DNAs encoding the basic forms (class I) of both chitinase and 1,3--glucanase, which are the most abundant isoforms in infected leaves. Sequence analysis revealed that at least four genes each are expressed in elicitor-treated leaves. The structural features of the potato chitinases include a hydrophobic signal peptide at the N-terminus, a hevein domain which is characteristic of class I chitinases, a proline- and glycine-rich linker region which varies among all potato chitinases, a catalytic domain, and a C-terminal extension. The potato 1,3--glucanases also contain a N-terminal hydrophobic signal peptide and a C-terminal extension, the latter comprising a potential glycosylation site. RNA blot hybridization experiments showed that basic chitinase and 1,3--glucanase are strongly and coordinately induced in leaves in response to infection, elicitor treatment, ethylene treatment, or wounding. In addition to their activation by stress, both types of genes are regulated by endogenous factors in a developmental and organ-specific manner. Appreciable amounts of chitinase and 1,3--glucanase mRNAs were found in old leaves, stems, and roots, as well as in sepals of healthy, untreated plants, whereas tubers, root tips, and all other flower organs (petals, stamen, carpels) contained very low levels of both mRNAs. In young leaves and stems, chitinase and 1,3--glucanase were differentially expressed. While chitinase mRNA was abundant in these parts of the plant, 1,3--glucanase mRNA was absent. DNA blot analysis indicated that in potato, chitinase and 1,3--glucanase are encoded by gene families of considerable complexity.  相似文献   

4.
Various chitinases have been identified in plants and categorized into several groups based on the analysis of their sequences and domains. We have isolated a tobacco gene that encodes a predicted polypeptide consisting of a 20-amino acid N-terminal signal peptide, followed by a 245-amino acid chitinolytic domain. Although the predicted mature protein is basic and shows greater sequence identity to basic class I chitinases (75%) than to acidic class II chitinases (67%), it lacks the N-terminal cysteine-rich domain and the C-terminal vacuolar targeting signal that is diagnostic for class I chitinases. Therefore, this gene appears to encode a novel, basic, class II chitinase, which we have designated NtChia2;B1. Accumulation of Chia2;B1 mRNA was induced in leaves in association with the local-lesion response to tobacco mosaic virus (TMV) infection, and in response to treatment with salicylic acid, but was only slightly induced by treatment with ethephon. Little or no Chia2;B1 mRNA was detected in roots, flowers, and cell-suspension cultures, in which class I chitinase mRNAs accumulate to high concentrations. Sequence comparisons of Chia2;B1 with known tobacco class I and class II chitinase genes suggest that Chia2;B1 might encode an ancestral prototype of the present-day class I and class II isoforms. Possible mechanisms for chitinase gene evolution are discussed.  相似文献   

5.
Complementary DNA clones encoding acidic and basic isoforms of the class III chitinase were isolated from Nicotiana tabacum. The clones share ca. 65% identity, are equally homologous to the class III chitinases from cucumber and Arabidopsis, and are members of small gene families in tobacco. An acidic class III chitinase was purified from the intercellular fluid of tobacco leaves infected with tobacco mosaic virus (TMV). Partial amino acid sequencing of the protein confirmed that it was encoded by one of the cDNA clones. The mRNAs of the class III chitinases are coordinately expressed in response to TMV infection, both in infected and uninfected tissue. The acidic and basic class III chitinases constitute previously undescribed pathogenesis-related proteins in tobacco.  相似文献   

6.
Various chitinases have been identified in plants and categorized into several groups based on the analysis of their sequences and domains. We have isolated a tobacco gene that encodes a predicted polypeptide consisting of a 20-amino acid N-terminal signal peptide, followed by a 245-amino acid chitinolytic domain. Although the predicted mature protein is basic and shows greater sequence identity to basic class I chitinases (75%) than to acidic class II chitinases (67%), it lacks the N-terminal cysteine-rich domain and the C-terminal vacuolar targeting signal that is diagnostic for class I chitinases. Therefore, this gene appears to encode a novel, basic, class II chitinase, which we have designated NtChia2;B1. Accumulation of Chia2;B1 mRNA was induced in leaves in association with the local-lesion response to tobacco mosaic virus (TMV) infection, and in response to treatment with salicylic acid, but was only slightly induced by treatment with ethephon. Little or no Chia2;B1 mRNA was detected in roots, flowers, and cell-suspension cultures, in which class I chitinase mRNAs accumulate to high concentrations. Sequence comparisons of Chia2;B1 with known tobacco class I and class II chitinase genes suggest that Chia2;B1 might encode an ancestral prototype of the present-day class I and class II isoforms. Possible mechanisms for chitinase gene evolution are discussed. Received: 25 May 1998 / Accepted: 29 June 1998  相似文献   

7.
Plants synthesize a number of antimicrobial proteins in response to pathogen invasion and environmental stresses. These proteins include two classes of chitinases that have either basic or acidic isoelectric points and that are capable of degrading fungal cell wall chitin. We have cloned and determined the nucleotide sequence of the genes encoding the acidic and basic chitinases from Arabidopsis thaliana (L.) Heynh. Columbia wild type. Both chitinases are encoded by single copy genes that contain introns, a novel feature in chitinase genes. The basic chitinase has 73% amino acid sequence similarity to the basic chitinase from tobacco, and the acidic chitinase has 60% amino acid sequence similarity to the acidic chitinase from cucumber. Expression of the basic chitinase is organ-specific and age-dependent in Arabidopsis. A high constitutive level of expression was observed in roots with lower levels in leaves and flowering shoots. Exposure of plants to ethylene induced high levels of systemic expression of basic chitinase with expression increasing with plant age. Constitutive expression of basic chitinase was observed in roots of the ethylene insensitive mutant (etr) of Arabidopsis, demonstrating that root-specific expression is ethylene independent. Expression of the acidic chitinase gene was not observed in normal, untreated Arabidopsis plants or in plants treated with ethylene or salicylate. However, a transient expression assay indicated that the acidic chitinase promoter is active in Arabidopsis leaf tissue.  相似文献   

8.
Leaves and bulbs of garlic ( Allium sativum L.) contain a chitinase which can be separated into three different isoforms with similar molecular structure and N- terminal amino acid sequence. SDS-PAGE of the alkylated chitinase revealed two distinct polypeptides of 32 and 33 kDa. Induction studies of the chitinase in leaves of garlic plants indicated that not only treatment with ethephon or salicylate and wounding but also a temperature shock strongly increased the enzyme level.
cDNA libraries constructed from poly(A)-rich RNA isolated from young garlic shoots and bulbs were screened for chitinase clones using the cDNA clone CCH4 encoding a basic potato chitinase as a probe. Two different cDNA clones (designated CHITAS 1 and CHITAS 2)of ca 1 000 bp were isolated and their sequences analyzed. The amino acid sequences deduced from both cDNA clones were homologous though not identical to the N-terminal sequences of the mature chitinases. Although both clones encode highly homologous chitinases their sequences definitely differ in that they have different signal peptides and one of them contains a glycine-rich domain. The garlic chitinases are apparently translated from an mRNA of 1200 nucleotides which encodes a proprotein of approximately 32 or 33 kDa for CHITAS 1 and CHITAS 2, respectively. Co-translational removal of the signal peptide will result in a 30 (for CHITAS 1) or 31 kDa (for CHITAS 2) protein with an isoelectric point of 4. 94 (for CHITAS 1) or 6. 12 (for CHITAS 2). Garlic chitinases are encoded by a small gene family as shown by Southern blot analysis of genomic DNA isolated from garlic.
The garlic chitinases show a high degree of sequence homology to the previously isolated chitinases from dicotyledonous as well as monocotyledonous species, indicating that these proteins have been conserved from an evolutionary point of view.  相似文献   

9.
Accumulation of extracellular chitinases in Brassica napus plants infected with Turnip yellow mosaic virus (TYMV) and fungal pathogen Leptosphaeria maculans was studied in both compatible and incompatible interaction. Analysis of apoplast fluid by means of non-denaturing anodic and cathodic PAGE followed by in-gel detection of chitinase activity revealed a number of chitinase isozymes. TYMV induced 8 acidic and 4 basic isozymes in a systemic way. Except for one acidic and one basic isozyme, all other chitinases were also constitutively present in low amounts in mock inoculated control. In TYMV systemically infected plants, chitinases were detected in leaves expressing symptoms as well as in symptomless ones. Both virulent and avirulent L. maculans isolates induced production of chitinase isozymes in cotyledons in a time dependent manner. Some of them were present in plants constitutively and their content increased after inoculation. Three of five acidic and two of three basic isozymes responded to L. maculans infection. Chitinases started to accumulate before symptom appearance. First two acidic isozymes were detected 24 h after inoculation. The difference between compatible and incompatibe interaction reflected two basic isozymes.  相似文献   

10.
The fungicidal class I endochitinases (E.C.3.3.1.14, chitinase) are associated with the biochemical defense of plants against potential pathogens. We isolated and sequenced a genomic clone, DAH53, corresponding to a class I basic endochitinase gene in pea, Chil. The predicted amino acid sequence of this chitinase contains a hydrophobic C-terminal domain similar to the vacuole targeting sequences of class I chitinases isolated from other plants. The pea genome contains one gene corresponding to the chitinase DAH53 probe. Chitinase RNA accumulation was observed in pea pods within 2 to 4 h after inoculation with the incompatible fungal strain Fusarium solani f. sp. phaseoli, the compatible strain F. solani f.sp. pisi, or the elicitor chitosan. The RNA accumulation was high in the basal region (lower stem and root) of both fungus challenged and wounded pea seedlings. The sustained high levels of chitinase mRNA expression may contribute to later stages of pea's non-host resistance.  相似文献   

11.
12.
Chitinases accumulate in higher plants upon pathogen attack are capable of hydrolyzing chitin-containing fungal cell walls and are thus implicated as part of the plant defense response to fungal pathogens. To evaluate the relative role of the predominate chitinase (class I, basic enzyme) of Arabidopsis thaliana in disease resistance, transgenic Arabidopsis plants were generated that expressed antisense RNA to the class I chitinase. Young plants or young leaves of some plants expressing antisense RNA had <10% of the chitinase levels of control plants. In the oldest leaves of these antisense plants, chitinase levels rose to 37–90% of the chitinase levels relative to vector control plants, most likely because of accumulation and storage of the enzyme in vacuoles. The rate of infection by the fungal pathogen Botrytis cinerea was measured in detached leaves containing 7–15% of the chitinase levels of control plants prior to inoculation. Antisense RNA was not effective in suppressing induced chitinase expression upon infection as chitinase levels increased in antisense leaves to 47% of levels in control leaves within 24 hours after inoculation. Leaves from antisense plants became diseased at a slightly faster rate than leaves from control plants, but differences were not significant due to high variability. Although the tendency to increased susceptibility in antisense plants suggests that chitinases may slow the growth of invading fungal pathogens, the overall contribution of chitinase to the inducible defense reponses in Arabidopsis remains unclear.  相似文献   

13.
Zhao  Kai-Jun  Chye  Mee-Len 《Plant molecular biology》1999,40(6):1009-1018
We have cloned a 1.3 kb Brassica juncea cDNA encoding BjCHI1, a novel acidic chitinase with two chitin-binding domains that shows 62% identity to Nicotiana tabacum Chia1 chitinase. BjCHI1 is structurally unlike Chia1 that has one chitin-binding domain, but resembles Chia5 chitinase UDA1, the precursor of Urtica dioica agglutinin; however there is only 36.9% identity between them. We propose that BjCHI1 should be classified under a new class, Chia7. The spacer and the hinge region of BjCHI1 are proline-rich, like that of Beta vulgaris Ch1, a Chia6 chitinase with half a chitin-binding domain. Northern blot analysis showed that the 1.3 kb BjCHI1 mRNA is induced by wounding and methyl jasmonate (MeJA) treatment but is unaffected by ethylene, salicylic acid (SA) or abscisic acid (ABA). This is the first report on MeJA induction of chitinase gene expression and further suggests that wound-related JA-mediated signal transduction is independent of that involving SA. Western blot analysis using polyclonal antibodies against BjCHI1 showed a cross-reacting band with an apparent molecular mass of 37 kDa in wounded tissues of B. juncea, revealing that, unlike UDA1, BjCHI1 is not cleaved post-translationally at the hinge. Expression of recombinant BjCHI1 in Escherichia coli BL21(DE3) inhibited its growth while crude extracts from E. coli JM109 expressing recombinant BjCHI1 showed chitinase activity. Results from polymerase chain reaction (PCR) suggest that genes encoding chitinases with single or double chitin-binding domains exist in B. juncea.  相似文献   

14.
15.
16.
17.
In plants, various chitinases have been identified and categorized into several groups based on the analysis of their sequences and domains. We have isolated SafchiA, a novel class of chitinase from saffron (Crocus sativus L.). The cDNA encoding SafchiA is mainly expressed in roots and corms, and its expression is induced by elicitor treatment, methyl jasmonate, wounding, and by the fungi Fusarium oxysporum, Beauveria and Phoma sp., suggesting a defence role of the protein. Furthermore, in vitro assays with the recombinant native protein showed chitinolytic, and antifungal activity. The deduced protein shares high similarity with chitinases belonging to family 19 of glycosyl-hydrolases, although some changes in the enzyme active site are present. To explore the properties of SafchiA we have expressed recombinant SafchiA in Escherichia coli and generated four different mutants affected in residues involved in the catalytic activity. One glutamic acid essential for family 19 chitinases activity is not present in C. sativus chitinase suggesting that only one acidic residue is necessary for the enzyme activity, in a similar manner as family 18 glycosyl-hydrolases.  相似文献   

18.
19.
Barley ( Hordeum vulgare L.) chitinases (EC 3.2.1.14) were found to be distributed and induced in highly tissue specific patterns. Out of 6 chitinases investigated 3 were present in leaves and only a class II chitinase (molecular mass 24 846 ± 5 Da, pI≥9.8) was markedly induced in leaves heavily infected with powdery mildew ( Erysiphe graminis f. sp. hordei ). The class II chitinase and a novel class III chitinase (molecular mass 30 kDa, pI≥9.8) were found in intercellular washing fluid of leaves, suggesting extracellular deposition. Neither of these two proteins were induced after infiltration of sodium salicylate (2 m M , pH 6.5) or nickel chloride (2 m M ). The class III chitinase showed exochitinase activity in addition to endochitinase activity. No grain specific chitinases were found in leaves after any of the stresses applied. In contrast, 3 grain specific chitinases and one of the leaf chitinases were found in in vitro cultures.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号