首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
l-Threonine deaminase (l-threonine dehydratase [deaminating], EC 4.2.2.16) has been shown to be involved in the regulation of three of the enzymes of isoleucine-valine biosynthesis in yeast. Mutations affecting the affinity of the enzyme for isoleucine also affected the repression of acetohydroxyacid synthase, dihydroxyacid dehydrase, and reductoisomerase. The data indicate that isoleucine must be bound for effective repression of these enzymes to take place. In a strain with a nonsense mutation midway in liv 1, the gene for threonine deaminase, starvation for isoleucine or valine did not lead to derepression of the three enzymes; starvation for leucine did. The effect of the nonsense mutation is recessive; it is tentatively concluded, therefore, that intact threonine deaminase is required for derepression by two of the effectors for multivalent repression, but not by the third. A model is presented which proposes that a regulatory species of leu tRNA(leu) is the key intermediate for repression and that threonine deaminase is a positive element, regulating the available pool of charged leu tRNA by binding it.  相似文献   

2.
Enzymes of the Isoleucine-Valine Pathway in Acinetobacter   总被引:2,自引:2,他引:0       下载免费PDF全文
Regulation of four of the enzymes required for isoleucine and valine biosynthesis in Acinetobacter was studied. A three- to fourfold derepression of acetohydroxyacid synthetase was routinely observed in two different wild-type strains when grown in minimal medium relative to cells grown in minimal medium supplemented with leucine, valine, and isoleucine. A similar degree of synthetase derepression was observed in appropriately grown isoleucine or leucine auxotrophs. No significant derepression of threonine deaminase or transaminase B occurred in either wild-type or mutant cells grown under a variety of conditions. Three amino acid analogues were tested with wild-type cells; except for a two- to threefold derepression of dihydroxyacid dehydrase when high concentrations of aminobutyric acid were added to the medium, essentially the same results were obtained. Experiments showed that threonine deaminase is subject to feedback inhibition by isoleucine and that valine reverses this inhibition. Cooperative effects in threonine deaminase were demonstrated with crude extracts. The data indicate that the synthesis of isoleucine and valine in Acinetobacter is regulated by repression control of acetohydroxyacid synthetase and feedback inhibition of threonine deaminase and acetohydroxyacid synthetase.  相似文献   

3.
The activities of threonine deaminase, acetohydroxy acid synthetase, acetohydroxy acid reductoisomerase, dihydroxy acid dehydrase, and transaminase B were detected in cell-free extracts of Rhodopseudomonas spheroides. No significant repression or derepression of threonine deaminase activity was observed.  相似文献   

4.
Summary During derepression of threonine deaminase and acetolactate synthetase due to valine deficiency—initiated by -aminobutyric acid limited growth of E. coli K12 or by limited valine supply to an ilv/leu auxotroph of E. coli K12—no alteration of the specific activity of isoleucyl-tRNA-synthetase occurs. Leucine limited growth of the auxotroph, leading to an even higher derepression of the isoleucine biosynthetic enzymes, also does not affect the specific activity of isoleucyl-tRNA-synthetase. However, under growth conditions where the same degree of derepression of threonine deaminase is due to isoleucine deficiency, as in E. coli K12B or two valine resistant mutants thereof grown in the presence of valine, or in the auxotroph during growth-limiting isoleucine supply, a specific two- to three-fold derepression of the isoleucyl-tRNA-synthetase takes place. But there is no strict correlation between the degree of derepression of threonine deaminase due to isoleucine deficiency and the degree of derepression of isoleucyl-tRNA-synthetase, as especially shown in case of the valine resistant mutant Val R4 and Val R5 grown in the presence of valine.These results demonstrate that the rate of formation of isoleucyl-tRNA-synthetase and of threonine deaminase are not regulated by the same molecular devices and that a certain degree of isoleucine deficiency is a prerequisite for a derepression of isoleucyl-tRNA-synthetase.  相似文献   

5.
Summary We describe the regulatory properties of two strains carrying either the ilvA624 or the ilvA625 mutations, located in the structural gene for threonine deaminase. Crude extracts of both these strains possess a threonine deaminase activity migrating on polyacrylamide gels, differently from the wild type enzyme. Growth studies demonstrate that these mutations do not cause a limitation of isoleucine biosynthesis, suggesting normal catalytic activity of deaminase.A regulatory consequence of the ilvA624 allele is a derepression of the isoleucine-valine biosynthetic enzymes, which is recessive to an ilvA + allele. The ilvA625 mutation causes a derepression which is dominant in an ilvA625/ilvA + diploid. We interpret these data assuming that threonine deaminase, previously shown to be an autogenous regulator of the ilv genes, lacks a repressor function in the ilvA624 mutant, while in the ilvA625 mutant it is a better activator than wild type threonine deaminase.The data are discussed in terms of a model requiring that threonine deaminase, or a precursor of it, is in equilibrium between two forms, one being an activator of gene expression and the other being a repressor.  相似文献   

6.
The HOM3 gene of Saccharomyces cerevisiae codes for aspartate kinase, which plays a crucial role in the regulation of the metabolic flux that leads to threonine biosynthesis. With the aim of obtaining yeast strains able to overproduce threonine in a controlled way, we have placed the HOM3-R2 mutant allele, which causes expression of a feedback-insensitive enzyme, under the control of four distinctive regulatable yeast promoters, namely, PGAL1, PCHA1, PCYC1-HSE2, and PGPH1. The amino acid contents of strains bearing the different constructs were analyzed both under repression and induction conditions. Although some differences in overall threonine production were found, a maximum of around 400 nmol/mg (dry weight) was observed. Other factors, such as excretion to the medium and activity of the catabolic threonine/serine deaminase, also affect threonine accumulation. Thus, improvement of threonine productivity by yeast cells would probably require manipulation of these and other factors.  相似文献   

7.
Regulation of the biosynthesis of four of the five enzymes of the isoleucine-valine pathway was studied in Saccharomyces cerevisiae. A method is described for limiting the growth of a leucine auxotroph by using valine as a competitor for the permease. Limitation for isoleucine and valine was accomplished by the use of peptides containing these amino acids conjugated with glycine as nutritional supplements for auxotrophs. The enzymes were repressed on synthetic medium containing isoleucine, valine, and leucine, as well as on broth supplemented with these amino acids. Limitation for any of the three branched-chain amino acids led to derepression of the isoleucine-valine biosynthetic pathway. Maximal derepression ranged from 3-fold for threonine deaminase to approximately 10-fold for acetohydroxyacid synthase. (Two of the enzymes, acetohydroxyacid synthase and dihydroxyacid dehydrase, may be controlled by a mechanism different from that regulating threonine deaminase.) Possible molecular mechanisms for multivalent repression are discussed.  相似文献   

8.
The control of isoleucine and valine biosynthesis was examined in a hisU mutant of Salmonella typhimurium. It was found that the levels of expression of the ilvEDA operon and the ilvC gene were significantly reduced relative to an isogenic normal strain when grown in unsupplemented medium. In contrast, this hisU mutant exhibited only a slight reduction in total acetohydroxy acid synthase activity relative to that of the wild type. The hisU and hisU+ strains were examined to determine their derepressibility upon either leucine, valine or isoleucine limitation. Only during leucine limitation did the hisU strain exhibit impaired derepressibility relative to the hisU+ strain. In addition, repression control of threonine deaminase (the ilvA product of the ilvEDA operon) in this hisU mutant was refractory to exogenous supplementation with either leucine or valine. This response is in distinct contrast to that of the normal strain, in which the single addition of leucine or valine results in a significant reduction in the level of threonine deaminase.  相似文献   

9.
In Escherichia coli, the three branched-chain amino acid activating enzymes appear to be essential for multivalent repression of the isoleucine- and valine-forming enzymes. The results of experiments with a mutant, strain CU18, having an altered threonine deaminase, indicate that free isoleucine and some form of threonine deaminase (the product of the ilvA gene) are also involved in multivalent repression. This strain exhibits abnormally high derepressibility but normal repressibility of its ilv gene products, and its threonine deaminase is inhibited only by high concentrations of isoleucine. In strain CU18, the isoleucine analogue, thiaisoleucine, is incapable of replacing isoleucine in the multivalent repression of the ilv genes, whereas the analogue can fully replace the natural amino acid in repression in other strains examined. The dipeptide, glycyl-leucine, which, like isoleucine, is a heterotropic negative effector of threonine deaminase but is not a substrate for isoleucyl-transfer ribonucleic acid synthetase, can completely prevent the accumulation of threonine deaminase-forming potential during isoleucine starvation in strains with normal threonine deaminases. It can not, however, prevent such accumulation in strain CU18 or in other strains in which threonine deaminase is insensitive to any concentration of isoleucine.  相似文献   

10.
The gene nmrA of Aspergillus nidulans has been isolated and found to be a homolog of the Neurospora crassa gene nmr-1, involved in nitrogen metabolite repression. Deletion of nmrA results in partial derepression of activities subject to nitrogen repression similar to phenotypes observed for certain mutations in the positively acting areA gene.  相似文献   

11.
After 40 min of pyridoxal starvation, pyridoxine phosphate oxidase-less mutants of Escherichia coli B derepressed pyridoxine biosynthesis 13-fold to a rate of 1.7 X 10(-9) mol/h per mg of cells. Threonine at 100 mg/liter prevented this derepression but did not affect the continued synthesis of pyridoxine. Neither serine nor branched-chain amino acids altered the threonine effect.  相似文献   

12.
Threonine deaminase from a mutant of Escherichia coli growing alternatively with isoleucine or pyridoxine is a dimer, whereas the wild-type enzyme is a tetramer.  相似文献   

13.
Cytosine deaminase, encoded by the codA gene in Escherichia coli catalyzes the deamination of cytosine to uracil and ammonia. Regulation of codA expression was studied by determining the level of cytosine deaminase in E. coli K12 grown in various defined media. Addition of either pyrimidine or purine nucleobases to the growth medium caused repressed enzyme levels, whereas growth on a poor nitrogen source such as proline resulted in derepression of cytosine deaminase synthesis. Derepression of codA expression was induced by starvation for either uracil or cytosine nucleotides. Nitrogen control was found to be mediated by the glnLG gene products, and purine repression required a functional purR gene product. Studies with strains harbouring multiple mutations affecting both pyrimidine, purine and nitrogen control revealed that the overall regulation of cytosine deaminase synthesis by the different metabolites is cumulative.This paper is dedicated to Professor John Ingraham, Department of Bacteriology, University of California, Davis, on the occasion of his retirement, in recognition of his many contributions in the field of bacterial growth and metabolism  相似文献   

14.
15.
The Tup1-Ssn6 general repression complex in Saccharomyces cerevisiae represses a wide variety of regulons. Regulon-specific DNA binding proteins recruit the repression complex, and their synthesis, activity, or localization controls the conditions for repression. Rox1 is the hypoxic regulon-specific protein, and a second DNA binding protein, Mot3, augments repression at tightly controlled genes. We addressed the requirements for Tup1-Ssn6 recruitment to two hypoxic genes, ANB1 and HEM13, by using chromatin immunoprecipitation assays. Either Rox1 or Mot3 could recruit Ssn6, but Tup1 recruitment required Ssn6 and Rox1. We also monitored events during derepression. Rox1 and Mot3 dissociated from DNA quickly, accounting for the rapid accumulation of ANB1 and HEM13 RNAs, suggesting a simple explanation for induction. However, Tup1 remained associated with these genes, suggesting that the localization of Tup1-Ssn6 is not the sole determinant of repression. We could not reproduce the observation that deletion of the Tup1-Ssn6-interacting protein Cti6 was required for induction. Finally, Tup1 is capable of repression through a chromatin-dependent mechanism, the positioning of a nucleosome over the TATA box, or a chromatin-independent mechanism. We found that the rate of derepression was independent of the positioned nucleosome and that the TATA binding protein was excluded from ANB1 even in the absence of the positioned nucleosome. The mediator factor Srb7 has been shown to interact with Tup1 and to play a role in repression at several regulons, but we found that significant levels of repression remained in srb7 mutants even when the chromatin-dependent repression mechanism was eliminated. These findings suggest that the repression of different regulons or genes may invoke different mechanisms.  相似文献   

16.
17.
The derepression of the isoleucine and valine biosynthetic enzymes in Escherichia coli and Salmonella typhimurium was examined under conditions of restriction of isoleucine, valine, or leucine (the three amino acids needed for multivalent repression of these enzymes). A procedure was used that allowed the measurement of enzyme-forming potential that accumulated during the starvation period, but could not be expressed unless the missing amino acid was supplied. The threonine deaminase (the product of the ilvA gene)-forming potential that accumulated under such conditions was found to be unstable and decayed with a half-life of about 2.5 min (at 37 C). Evidence was obtained that indicates the threonine deaminase-forming potential that accumulates under conditions of isoleucine starvation is in the form of initiated (rifampin-resistant), but uncompleted (actinomycin D-sensitive), messenger ribonucleic acid chains. Furthermore, it appears that a large portion of the threonine deaminase- and dehydrase (the product of the ilvD gene)-forming potential, under such conditions, is in the form of initiated polypeptide chains. Based on these results and results obtained with SuA(-) strains, a model is presented that explains how the second gene (D) in the ilvADE operon can be partially transcribed and translated under conditions in which there are no completed messenger ribonucleic acids for the gene (A) transcribed before it.  相似文献   

18.
Salmonella typhimurium strain DU501, which was found to be deficient in acetohydroxy acid synthase II (AHAS II) and to possess elevated levels of transaminase B and biosynthetic threonine deaminase, required isoleucine, methionine, or pantothenate for growth. This strain accumulated α-ketobutyrate and, to a lesser extent, α-aminobutyrate. We found that α-ketobutyrate was a competitive substrate for ketopantoate hydroxymethyltransferase, the first enzyme in pantothenate biosynthesis. This competition with the normal substrate, α-ketoisovalerate, limited the supply of pantothenate, which resulted in a requirement for methionine. Evidence is presented to support the conclusion that the ambivalent requirement for either pantothenate or methionine is related to a decrease in succinyl coenzyme A, which is produced from pantothenate and which is an obligatory precursor of methionine biosynthesis. The autointoxification by endogenously produced α-ketobutyrate could be mimicked in wild-type S. typhimurium by exogenously supplied α-ketobutyrate or salicylate, a known inhibitor of pantothenate biosynthesis. The accumulation of α-ketobutyrate was initiated by the inability of the residual AHAS activity provided by AHAS I to efficiently remove the α-ketobutyrate produced by biosynthetic threonine deaminase. The accumulation of α-ketobutyrate was amplified by the action of transaminase B, which decreased the isoleucine pool by catalyzing the formation of α-keto-β-methylvalerate and aminobutyrate from isoleucine and α-ketobutyrate; this resulted in release of threonine deaminase from end product inhibition and unbridled production of α-ketobutyrate. Isoleucine satisfied the auxotrophic requirement of the AHAS II-deficient strain by curtailing the activity of threonine deaminase. Additional lines of evidence based on genetic and physiological experiments are presented to support the basis for the autointoxification of strain DU501 as well as other nonpolarigenic ilvG mutant strains.  相似文献   

19.
Regulation of branched-chain amino acid transport in Escherichia coli.   总被引:16,自引:14,他引:2       下载免费PDF全文
The repression and derepression of leucine, isoleucine, and valine transport in Escherichia coli K-12 was examined by using strains auxotrophic for leucine, isoleucine, valine, and methionine. In experiments designed to limit each of these amino acids separately, we demonstrate that leucine limitation alone derepressed the leucine-binding protein, the high-affinity branched-chain amino acid transport system (LIV-I), and the membrane-bound, low-affinity system (LIV-II). This regulation did not seem to involve inactivation of transport components, but represented an increase in the differential rate of synthesis of transport components relative to total cellular proteins. The apparent regulation of transport by isoleucine, valine, and methionine reported elsewhere was shown to require an intact leucine, biosynthetic operon and to result from changes in the level of leucine biosynthetic enzymes. A functional leucyl-transfer ribonucleic acid synthetase was also required for repression of transport. Transport regulation was shown to be essentially independent of ilvA or its gene product, threonine deaminase. The central role of leucine or its derivatives in cellular metabolism in general is discussed.  相似文献   

20.
Methylammonium Resistance in Aspergillus nidulans   总被引:9,自引:6,他引:3       下载免费PDF全文
Mutants of Aspergillus nidulans resistant to methylammonium toxicity are simultaneously derepressed in the presence of ammonium for apparently all ammonium-repressible activities. Enzyme assays directly demonstrate derepression of nitrate, nitrite, and hydroxylamine reductases, xanthine dehydrogenase, urate oxidase, and allantoinase, whereas in vivo tests show that ammonium and methylammonium repression or inhibition (or both) is relieved in these mutants in pathways of nitrate assimilation, purine transport and degradation, and amino acid, amine, and amide catabolism. Ammonium and methylammonium uptake is apparently not defective in these mutants, for they grow normally on limiting levels of these ions as sole nitrogen source. There is no evidence that more than one gene can mutate to produce the methylammonium resistance (meaR) phenotype. Such mutations are semidominant in both heterocaryons and diploids. The ability of meaR mutations to effect derepression of activities specified by genes within another nucleus in a heterocaryon shows that the action of the mea product is not restricted to the nucleus. Three types of hypotheses might explain this generalized derepression. First, ammonium and methylammonium might not themselves be co-repressors but might require a metabolic conversion, blocked in these mutants, to become co-repressors. Secondly, the mea locus might specify an activity expressed in meaR but not wild-type (meaS) strains, which diminishes the concentration of ammonium and methylammonium participating in co-repression. Finally, ammonium repression might involve a macromolecular control element specified by the meaR locus and common to many or all ammonium-repressible systems. The existence of “regulation reversal mutations” at the meaR locus and the lack of uniformity and coordination with which different enzymatic activities respond to mutational derepression is most compatible with the last type of hypothesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号