首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
A region of 25 nucleotides is highly conserved in genes coding for the alpha, beta, gamma, and delta subunits of the nicotinic acetylcholine receptor (AChR) of human, mouse, calf, chicken, and Torpedo. Based on this observation, a 2-fold degenerate oligonucleotide was synthesized and used as a probe to screen a cDNA library made from a mouse myogenic cell line. Clones coding for the beta, gamma, and delta subunits were identified by the probe. The protein sequence deduced from the beta subunit clones codes for a precursor polypeptide of 501 amino acids with a calculated molecular weight of 56,930 daltons, which includes a signal peptide of 23 amino acids. The protein sequence and structural features of the beta subunits of mouse, calf, and Torpedo are conserved. A clone coding for the mouse gamma subunit was isolated, and its identity was confirmed by alignment of its sequence to previously published cDNA sequences for the mouse and calf gamma subunits. The clone contained approximately 200 nucleotides more at its 3' end untranslated region than a mouse gamma clone recently described. Northern blot analysis, utilizing as probes these beta and gamma subunit cDNAs and previously characterized alpha and delta subunit cDNAs, shows that the steady-state levels of the four AChR mRNAs increase coordinately during terminal differentiation of cultured C2 and C2i mouse myoblasts. The increase in mRNA levels can account for the rise of cell surface receptors during myogenesis and suggests that the muscle AChR genes may be regulated during development by a common mechanism. Utilization of this oligonucleotide probe should prove useful for screening a variety of libraries made from different species and tissues which are known to express AChRs.  相似文献   

3.
4.
The accumulation of translatable acetylcholine receptor alpha-subunit mRNA was examined in the BC3H1 muscle cell line in response to serum and cell growth. Relative amounts of alpha-subunit mRNA were quantitated during differentiation by cell-free translation and immunoprecipitation with an alpha-subunit-specific monoclonal antibody. Logarithmically growing cells do not possess cell surface acetylcholine receptors; however, a significant amount of alpha-subunit mRNA is detectable in cells under these conditions. Furthermore, alpha-subunit is synthesized in growing undifferentiated cells at a rate similar to that of differentiated cultures. Following growth arrest of BC3H1 cells, surface receptors are induced to levels greater than 100-fold above that of growing cells. The relative level of translatable alpha-subunit mRNA in differentiated cells, however, is only approximately 4-fold greater than in growing cultures. Induction of alpha-subunit mRNA appears to be reversible since reinitiation of growth in quiescent differentiated BC3H1 cells results in a reduction in relative abundance of this mRNA species to levels comparable to that of undifferentiated cells and the concomitant loss of surface receptors. These results indicate that receptor expression during differentiation is regulated both post-translationally and at the level of receptor subunit mRNA accumulation.  相似文献   

5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
A glucose transporter cDNA (GLUT) clone was isolated from mouse 3T3-L1 adipocytes and sequenced. The nucleotide and deduced amino acid sequences were, respectively, 95 and 99% homologous to those of the rat brain transporter. The mouse cDNA and a polyclonal antibody recognizing the corresponding in vitro translation product were used to compare changes in transporter mRNA and protein levels during differentiation, glucose starvation, and chronic insulin exposure of 3T3-L1 preadipocytes. The respective cellular content of transporter mRNA and protein were increased 6.6- and 7.8-fold during differentiation, and 3.8- and 2.5-fold from chronic insulin exposure of differentiated adipocytes. Glucose starvation increased transporter mRNA and protein levels 2.2- and 3.5-fold in undifferentiated preadipocytes and 1.8- and 3.1-fold in differentiated adipocytes. Starvation of undifferentiated cells completely converted the native transporter to an incompletely glycosylated form, while increasing basal transport rates 4.5-fold. Either full glycosylation is not required to produce a functionally active transporter, or starvation causes a unique predifferentiation induction of the normally absent "responsive" transporter. The changes in transporter protein expression elicited by differentiation were attributed primarily to increased rates of transporter synthesis, while the disproportionate changes in mRNA and protein expression from chronic insulin treatment and starvation suggested these conditions increase synthesis and decrease turnover rates in regulating transporter protein expression. Although chronic insulin exposure and glucose starvation each raised the expression of transporter protein greater than 3-fold and basal transport rates 2.5- to 4.5-fold, no significant increase in the insulin responsiveness of 3T3-L1 preadipocytes or differentiated adipocytes was observed. Thus, the changes in the transporter mRNA and protein expression observed in this study were most consistent with their being associated with the regulated expression of a basal or low level insulin-responsive transporter.  相似文献   

15.
16.
17.
18.
19.
20.
《The Journal of cell biology》1989,108(6):2277-2290
Torpedo californica acetylcholine receptor (AChR) alpha-, beta-, gamma- , and delta-subunit cDNAs were each stably introduced into muscle and/or fibroblast cell lines using recombinant retroviral vectors and viral infection, or using SV-40 vectors and DNA-mediated cotransfection. The expressed proteins were characterized in terms of their molecular mass, antigenicity, posttranslational processing, cell surface expression, stability in fibroblasts, stability in differentiated and undifferentiated muscle cells, and ability (of alpha) to bind alpha-bungarotoxin (BuTx). We demonstrated that the alpha, beta, gamma, and delta polypeptides acquired one, one, two, and three units of oligosaccharide, respectively. If all four subunits were expressed in the same cell, fully functional cell surface AChRs were produced which had a Kd for BuTx of 7.8 X 10(-11) M. In contrast, subunits expressed individually were not detected on the surface of fibroblasts and the Kd for BuTx binding to individual alpha polypeptides was only approximately 4 X 10(-7) M. The half-lives of the alpha, gamma, and delta subunits at 37 degrees C were all found to be quite short (approximately 43 min), while the half-life of the beta subunit was found to be even shorter (approximately 12 min). The unique half-life of the beta subunit suggests that it might perform a key regulatory role in the process of AChR subunit assembly. One stable fibroblast cell line was established by transfection that expressed beta, gamma, and delta subunits simultaneously. When this cell line was infected with a retroviral alpha recombinant, fully functional cell surface AChRs were produced. The successful expression of this pentameric protein complex combining transfection and infection techniques demonstrates one strategy for stably introducing the genes of a heterologous multisubunit protein complex into cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号