首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
It has been shown that the P1 site (the center of the reactive site) of protease inhibitors corresponds to the specificity of the cognate protease, and consequently specificity of Streptomyces subtilisin inhibitor (SSI) can be altered by substitution of a single amino acid at the P1 site. In this paper, to investigate whether similar correlation between inhibitory activity of mutated SSI and substrate preference of protease is observed for subtilisin BPN', which has broad substrate specificity, a complete set of mutants of SSI at the reaction site P1 (position 73) was constructed by cassette and site-directed mutagenesis and their inhibitory activities toward subtilisin BPN' were measured. Mutated SSIs which have a polar (Ser, Thr, Gln, Asn), basic (Lys, Arg), or aromatic amino acid (Tyr, Phe, Trp, His), or Ala or Leu, at the P1 site showed almost the same strong inhibitory activity toward subtilisin as the wild type (Met) SSI. However, the inhibitory activity of SSI variants with an acidic (Glu, Asp), or a beta-branched aliphatic amino acid (Val, Ile), or Gly or Pro, at P1 was decreased. The values of the inhibitor constant (Ki) of mutated SSIs toward subtilisin BPN' were consistent with the substrate preference of subtilisin BPN'. A linear correlation was observed between log(1/Ki) of mutated SSIs and log(1/Km) of synthetic substrates. These results demonstrate that the inhibitory activities of P1 site mutants of SSI are linearly related to the substrate preference of subtilisin BPN', and indicate that the binding mode of the inhibitors with the protease may be similar to that of substrates, as in the case of trypsin and chymotrypsin.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
Two metalloendopeptidases, designated as Streptomyces griseus metalloendopeptidases I and II (SGMPI and SGMPII), were isolated from a commercial Pronase P by a method including affinity chromatography on carbobenzoxy-L-alaninyl-triethylenetetraminyl-Sepharose (Z-Ala-T-Sepharose). The two enzymes differed from each other in behavior on ion-exchange chromatography but showed the same amino-terminal sequence at least up to the 20th residue. Their molecular weights were both estimated to be 37,000 by SDS-polyacrylamide gel electrophoresis. Elemental and amino acid composition analyses indicated that both of them contained about 1 g atom of zinc and one cystine residue per mol of protein. Cleavage specificities of the two enzymes toward synthetic peptide-substrates were very similar to those observed with thermolysin. EDTA, o-phenanthroline, and phosphoramidon strongly inhibited these enzymes, while typical serine-protease inhibitors and cysteine-protease inhibitors had no effect. The findings clearly indicate that SGMPI and SGMPII can be classified into the family of zinc-endopeptidases. It was unexpectedly found, however, that these metalloendopeptidases were strongly inhibited by protein serine-protease inhibitors produced by Streptomycetes, such as Streptomyces subtilisin inhibitor (SSI), alkaline protease inhibitor-2c' (API-2c'), and plasminostreptin (PS).  相似文献   

3.
A secretory expression system for Streptomyces subtilisin inhibitor (SSI) was established in a heterologous host, Streptomyces lividans 66, by introducing the 1.8-kbp BglII/SalI fragment containing SSI gene into the Streptomyces multicopy vector, pIJ 702. The expression of SSI did not depend on the orientation of the 1.8-kbp BglII/SalI fragment or on the promoter for tyrosinase gene (mel) in pIJ 702, which suggested that this fragment also carries the SSI promoter. The expressed SSI in S.lividans 66 was secreted into the culture medium in a large amount, as observed with the original strain, S. albogriseolus S-3253. Amino acid sequence analysis showed that the SSI secreted from S. lividans 66 contained three additional amino acid residues in the NH2-terminal region. The inhibitory activity toward subtilisin BPN' and the antigenic activity of the SSI secreted from S. lividans 66 were found to be identical with those of authentic SSI.  相似文献   

4.
An extracellular serine protease produced by a mutant, M1, derived from Streptomyces albogriseolus S-3253 that no longer produces a protease inhibitor (Streptomyces subtilisin inhibitor [SSI]) was isolated. A 20-kDa protein was purified by its affinity for SSI and designated SAM-P20. The amino acid sequence of the amino-terminal region of SAM-P20 revealed high homology with the sequences of Streptomyces griseus proteases A and B, and the gene sequence confirmed the relationships. The sequence also revealed a putative amino acid signal sequence for SAM-P20 that apparently functioned to allow secretion of SAM-P20 from Escherichia coli carrying the recombinant gene. SAM-P20 produced by E. coli cells was shown to be sensitive to SSI inhibition.  相似文献   

5.
A novel proteinaceous inhibitor for the metalloproteinase of Streptomyces caespitosus has been isolated from the culture supernatant of Streptomyces sp. I-355. It was named ScNPI (Streptomyces caespitosus neutral proteinase inhibitor). ScNPI exhibited strong inhibitory activity toward ScNP with a K(i) value of 1.6 nm. In addition, ScNPI was capable of inhibiting subtilisin BPN' (K(i) = 1.4 nm) (EC ). The scnpi gene consists of two regions, a signal peptide (28 amino acid residues) and a mature region (113 amino acid residues, M(r) = 11,857). The deduced amino acid sequence of scnpi showed high similarity to those of Streptomyces subtilisin inhibitor (SSI) and its homologues. The reactive site of ScNPI for inhibition of subtilisin BPN' was identified to be Met(71)-Tyr(72) bond by specific cleavage. To identify the reactive site for ScNP, Tyr(33) and Tyr(72), which are not conserved among other SSI family inhibitors but are preferable amino acid residues for ScNP, were replaced separately by Ala. The Y33A mutant retained inhibitory activity toward subtilisin BPN' but did not show any inhibitory activity toward ScNP. Moreover, a dimer of ternary complexes among ScNPI, ScNP, and subtilisin BPN' was formed to give the 2:2:2 stoichiometry. These results strongly indicate that ScNPI is a double-headed inhibitor that has individual reactive sites for ScNP and subtilisin BPN'.  相似文献   

6.
The crystal structure of the complex of a bacterial alkaline serine proteinase, subtilisin BPN', with its proteinaceous inhibitor SSI (Streptomyces subtilisin inhibitor) was solved at 2.6 A resolution. Compared with other similar complexes involving serine proteinases of the trypsin family, the present structure is unique in several respects. (1) In addition to the usual antiparallel beta-sheet involving the P1, P2 and P3 residues of the inhibitor, the P4, P5 and P6 residues form an antiparallel beta-sheet with a previously unnoticed chain segment (residues 102 through 104, which was named the S4-6 site) of subtilisin BPN'. (2) The S4-6 site does not exist in serine proteinases of the trypsin family, whether of mammalian or microbial origin. (3) Global induced-fit movement seems to occur on SSI: a channel-like structure in SSI where hydrophobic side-chains are sandwiched between two lobes becomes about 2 A wider upon complexing with subtilisin. (4) The complex is most probably a Michaelis complex, as in most of the other complexes. (5) The main role of the "secondary contact region" of SSI seems to be to support the reactive site loop ("primary contact region"). Steric homology of the two contact regions between the inhibitors of the SSI family and the pancreatic secretory trypsin inhibitor-ovomucoid inhibitor family is so high that it seems to indicate divergent evolutionary processes and to support the general notion as to the relationship of prokaryotic and eukaryotic genes put forward by Doolittle (1978).  相似文献   

7.
In contrast to the Gram-negative bacteria, Gram-positive bacteria such as Streptomyces lack a mucopolysaccharide cell wall which allows them to produce and secrete a variety of proteins directly into their environment. In an effort to understand and eventually exploit the synthesis and secretion of proteins by Streptomyces, we identified and characterized two naturally occurring abundantly produced proteins in culture supernatants of Streptomyces lividans and Streptomyces longisporus. We purified these 10-kDa proteins and obtained partial amino acid sequence information which was then used to design oligonucleotide probes in order to clone their genes. Analysis of the sequence data indicated that these proteins were related to each other and to several other previously characterized Streptomyces protein protease inhibitors. We demonstrate that both proteins are protein protease inhibitors with specificity for trypsin-like enzymes. The presumptive signal peptidase cleavage sites and subsequent aminopeptidase products of each protein are characterized. Finally, we show that the cloned genes contain all of the information necessary to direct synthesis and secretion of the proteins by Streptomyces spp. or Escherichia coli.  相似文献   

8.
Previously, we isolated a candidate for an endogenous target enzyme(s) of the Streptomyces subtilisin inhibitor (SSI), termed SAM-P20, from a non-SSI-producing mutant strain (S. Taguchi, A. Odaka, Y. Watanabe, and H. Momose, Appl. Environ. Microbiol. 61:180-186, 1995). In this study, in order to investigate the detailed enzymatic properties of this protease, an overproduction system of recombinant SAM-P20 was established in Streptomyces coelicolor with the SSI gene promoter. The recombinant SAM-P20 was purified by salting out and by two successive ion-exchange chromatographies to give a homogeneous band by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Partial peptide mapping and amino acid composition analysis revealed that the recombinant SAM-P20 was identical to natural SAM-P20. From the results for substrate specificity and inhibitor sensitivity, SAM-P20 could be categorized as a chymotrypsin-like protease with an arginine-cleavable activity, i.e., a serine protease with broad substrate specificity. For proteolytic activity, the optimal pH was 10.0 and the optimal temperature was shifted from 50 to 80 degrees C by the addition of 10 mM calcium ion. The strong stoichiometric inhibition of SAM-P20 activity by SSI dimer protein occurred in a subunit molar ratio of these two proteins of about 1, and an inhibitor constant of SSI toward SAM-P20 was estimated to be 8.0 x 10(-10) M. The complex formation of SAM-P20 and SSI was monitored by analytical gel filtration, and a complex composed of two molecules of SAM-P20 and one dimer molecule of SSI was detected, in addition to a complex of one molecule of SAM-P20 bound to one dimer molecule of SSI. The reactive site of SSI toward SAM-P20 was identified as Met-73-Val-74 by sequence analysis of the modified form of SSI, which was produced by the acidification of the complex of SSI and SAM-P20. This reactive site is the same that toward an exogenous target enzyme, subtilisin BPN'.  相似文献   

9.
10.
Streptomyces griseus metalloendopeptidase II (SGMPII) was shown to form tight complexes with several Streptomyces protein inhibitors which had been believed to be specific to serine proteases, such as Streptomyces subtilisin inhibitor (SSI), plasminostreptin (PS), and alkaline protease inhibitor-2c' (API-2c'), as well as with Streptomyces metalloprotease inhibitor (SMPI). The dissociation constants of complexes between SGMPII and these inhibitors were successfully determined by using a novel fluorogenic bimane-peptide substrate. The values ranged from nM to pM. The results of studies by gel chromatographic and enzymatic analyses indicated that SGMPII is liberated from the complex with SSI by the addition of subtilisin BPN'. SGMPII and subtilisin BPN' proved, therefore, to interact with SSI in a competitive manner, despite the difference in the chemical nature of their active sites.  相似文献   

11.
The protein Streptomyces subtilisin inhibitor, SSI, efficiently inhibits a bacterial serine protease, subtilisin BPN'. We recently demonstrated that functional change in SSI was possible simply by replacing the amino acid residue at the reactive P1 site (methionine 73) of SSI. The present paper reports the additional effect of replacing methionine 70 at the P4 site of SSI (Lys73) on inhibitory activity toward two types of serine proteases, trypsin (or lysyl endopeptidase) and subtilisin BPN'. Conversion of methionine 70 at the P4 site of SSI(Lys73) to glycine or alanine resulted in increased inhibitory activity toward trypsin and lysyl endopeptidase, while replacement with phenylalanine weakened the inhibitory activity toward trypsin. This suggests that steric hindrance at the P4 site of SSI(Lys73) is an obstacle for its binding with trypsin. In contrast, the same P4 replacements had hardly any effect on inhibitory activity toward subtilisin BPN'. Thus the subsite structure of subtilisin BPN' is tolerant to these replacements. This contrast in the effect of P4 substitution might be due to the differences in the S4 subsite structures between the trypsin-like and the subtilisin-like proteases. These findings demonstrate the importance of considering structural complementarity, not only at the main reactive site but also at subsites of a protease, when designing stronger inhibitors.  相似文献   

12.
G Lao  D B Wilson 《Applied microbiology》1996,62(11):4256-4259
The major Thermomonospora fusca YX extracellular protease gene (tfpA) was cloned into Escherichia coli and Streptomyces lividans and was sequenced. The open reading frame encoded 375 residues, including a 31-residue potential signal sequence, an N-terminal prosequence containing 150 residues, and the 194-residue mature protease that belongs to the chymotrypsin family. The protease was secreted by S. lividans, but evidence suggested that it was bound to an extracellular protease inhibitor. An inhibitor-deficient mutant was selected to produce protease for purification.  相似文献   

13.
Abstract The genes coding for the protease inhibitors, SSI and API-2c', have been analyzed by comparing DNA macrorestriction patterns of Streptomyces albogriseolus S-3253 and S. griseoincamatus KTo-250 with those of inhibitor-deficient mutants. The mutants were found to suffer from chromosomal deletions rather than plasmid loss which resulted in the loss of the relevant genes. Hybridization experiments indicated that the ssi homologs in S. lividans and S. coelicolor A3(2) are located near the end of the linear chromosome.  相似文献   

14.
Secretory leukocyte protease inhibitor (SLPI) is a protease inhibitor of the whey acidic protein-like family inhibiting chymase, chymotrypsin, elastase, proteinase 3, cathepsin G and tryptase. Performing in vitro enzymatic assays using both Western blotting and liquid chromatography/mass spectrometry techniques we showed that, of the proteases known to interact with SLPI, only chymase could uniquely cleave this protein. The peptides of the cleaved SLPI (cSLPI) remain coupled due to the disulfide bonds in the molecule but under reducing conditions the cleavage can be observed as peptide products. Subsequent ex vivo studies confirmed the presence of SLPI in human saliva and its susceptibility to cleavage by chymase. Furthermore, inhibitors of chymase activity are able to inhibit this cleavage. Human saliva from both normal and allergic individuals was analyzed for levels of cSLPI and a correlation between the level of cSLPI and the extent of allergic symptoms was observed, suggesting the application of cSLPI as a biomarker of chymase activity in humans.  相似文献   

15.
16.
Just one amino acid substitution (Trp86 replaced by His), which is more than 30 A away from the reactive site, changed the inhibitor, Streptomyces subtilisin inhibitor (SSI), into a temporary inhibitor without a change in the inhibition constant. When the inhibitor was in excess of subtilisin BPN', the wild-type SSI was stable under protease attack, while the mutant inhibitor was hydrolyzed to peptide fragments in an all-or-none manner. The mechanism of this temporary inhibition induced by the amino acid substitution was studied on the basis of structural, thermodynamic, and kinetic data obtained by a combined use of NMR, hydrogen-deuterium exchange, differential scanning calorimetry, and gel filtration HPLC. The mutation did not induce major structural changes, and in particular, the structure of the enzyme-binding region was virtually unaffected. The denaturation temperature of SSI, however, was decreased by 10 deg upon mutation, although it still remained a thermostable protein with a denaturation temperature of 73 degrees C. Furthermore, the activation enthalpy for denaturation was reduced dramatically, to half that of the wild type. When the mutated SSI is present in excess of the enzyme, the proteolysis followed first-order reaction kinetics with respect to the total concentration of the mutated SSI molecules present. From these combined results, we conclude that the proteolysis proceeds not through the native form of the inhibitor in the inhibitor-enzyme complex but through the denatured (unfolded) form of the inhibitor whose fraction is increased by the mutation. This conclusion states that the necessary condition for being a serine protease inhibitor lies not only in the design of the reactive site structure that is highly resistant to protease attack but also in the suppression of such structural fluctuation that brings about cooperative denaturation. In contrast, when the protease existed in excess of the mutated inhibitor, the proteolysis reaction was accelerated by more than 2 orders of magnitude. Furthermore, the reaction occurred even in the wild-type SSI at a comparable rate as in the mutated protein. This indicates that in the enzyme excess case another, more efficient digestion mechanism involving fluctuation within the native manifold of the inhibitor dominates.  相似文献   

17.
Y Kourteva  R Boteva 《FEBS letters》1989,247(2):468-470
The amino acid composition and inhibitory properties of a protein (SI-1-72) isolated from the culture medium of a Streptomyces sp. have been investigated. SI-1-72 appears to be a monomer protein of molecular mass about 13,100 Da and amino acid composition which differs from that of the inhibitors of the Streptomyces subtilisin inhibitor (SSI) family. Furthermore, it was found to exhibit novel specificity: strong inhibitory effect against microbial alkaline proteinases, moderate effect towards chymotrypsin and elastase, and no inhibition of the other serine proteinases, as well as of the cysteine, aspartate and metallo-proteinases.  相似文献   

18.
Human plasma kallikrein (huPK) is a proteinase that participates in several biological processes. Although various inhibitors control its activity, members of the Kazal family have not been identified as huPK inhibitors. In order to map the enzyme active site, we synthesized peptides based on the reactive site (PRILSPV) of a natural Kazal-type inhibitor found in Cayman plasma, which is not an huPK inhibitor. As expected, the leader peptide (Abz-SAPRILSPVQ-EDDnp) was not cleaved by huPK. Modifications to the leader peptide at P'1, P'3 and P'4 positions were made according to the sequence of a phage display-generated recombinant Kazal inhibitor (PYTLKWV) that presented huPK-binding ability. Novel peptides were identified as substrates for huPK and related enzymes. Both porcine pancreatic and human plasma kallikreins cleaved peptides at Arg or Lys bonds, whereas human pancreatic kallikrein cleaved bonds involving Arg or a pair of hydrophobic amino acid residues. Peptide hydrolysis by pancreatic kallikrein was not significantly altered by amino acid replacements. The peptide Abz-SAPRILSWVQ-EDDnp was the best substrate and a competitive inhibitor for huPK, indicating that Trp residue at the P'4 position is important for enzyme action.  相似文献   

19.
An inhibitor (BGIA) against an acidic amino acid-specific endopeptidase of Streptomyces griseus (Glu S. griseus protease) was isolated from seeds of the bitter gourd Momordica charantia L., and its amino acid sequence was determined. The molecular weight of BGIA based on the amino acid sequence was calculated to be 7419. BGIA competitively inhibited Glu S. griseus protease with an inhibition constant (Ki) of 70 nM, and gel filtration analyses suggested that BGIA forms a 1:1 complex with this protease. However, two other acidic amino acid-specific endopeptidases, protease V8 from Staphylococcus aureus and Bacillus subtilis proteinase (Glu B. subtilis protease), were not inhibited by BGIA. BGIA had no inhibitory activity against chymotrypsin, trypsin, porcine pancreatic elastase, and papain, although subtilisin Carlsberg was strongly inhibited. The amino acid sequence of BGIA shows similarity to potato chymotrypsin inhibitor, barley subtilisin-chymotrypsin inhibitor CI-1 and CI-2, and leech eglin C, especially around the reactive site. Although the residue at the putative reactive site of these inhibitors is leucine or methionine, the corresponding amino acid in BGIA is alanine.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号