首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Liver is the most important organ involved in biotransformation of xenobiotics. Within the main organisational unit, the hepatocyte, is an assembly of enzymes commonly classified as phase I and phase II enzymes. The phase I enzymes principally cytochrome P450 catalyse both oxidative and reductive reactions of a bewildering number of xenobiotics. Many of the products of phase I enzymes become substrates for the phase II enzymes, which catalyse conjugation reactions making use of endogenous cofactors. As xenobiotic metabolising enzymes are responsible for the toxicity of many chemicals and drugs, testing the role of the biotransformation enzymes and the transporters within the hepatocyte is critical. New methodologies may be able to provide information to allow for better in vitro to in vivo extrapolation of data.  相似文献   

2.
RH1 (2,5-diaziridinyl-3-(hydroxymethyl)-6-methyl-1,4-benzoquinone), which is currently in clinical trials, is a diaziridinyl benzoquinone bioreductive anticancer drug that was designed to be activated by the obligate two-electron reductive enzyme NAD(P)H quinone oxidoreductase 1 (NQO1). In this electron paramagnetic resonance (EPR) study we showed that RH1 was reductively activated by the one-electron reductive enzyme NADPH cytochrome P450 reductase and by a suspension of HCT116 human colon cancer cells to yield a semiquinone free radical. As shown by EPR spin trapping experiments RH1 was reductively activated by cytochrome P450 reductase and underwent redox cycling to produce damaging hydroxyl radicals in reactions that were both H2O2- and iron-dependent. Thus, reductive activation by cytochrome P450 reductase or other reductases to produce a semiquinone that can redox cycle to produce damaging hydroxyl radicals and/or DNA-reactive alkylating species may contribute to the potent cell growth inhibitory effects of RH1. These results also suggest that selection of patients for treatment with RH1 based on their expression levels of NQO1 may be problematic.  相似文献   

3.
观察温肾咳喘片组方中5种主要单体成分甘草酸、厚朴酚、和厚朴酚、蛇床子素和 欧前胡素对细胞色素P450(cytochrome P450, CYP) 1A2,2D6,2E1和3A4基因表达的影 响. 采用实时荧光定量PCR技术检测HepG2细胞中药物处理后各CYP mRNA的表达.厚朴酚 、和厚朴酚、蛇床子素和欧前胡素在不同浓度均能明显的诱导CYP2E1和CYP3A4,同时欧 前胡素也能诱导CYP1A2的表达,而甘草酸、厚朴酚、和厚朴酚、蛇床子素和欧前胡素在 不同浓度对CYP2D6的表达均具有较弱的抑制作用.甘草酸、厚朴酚、和厚朴酚、蛇床子 素和欧前胡素能明显影响CYP1A2、2D6、2E1或3A4的表达.此研究为中西药物代谢性相互 作用及毒理学的研究提供实验依据.  相似文献   

4.
RH1 (2,5-diaziridinyl-3-(hydroxymethyl)-6-methyl-1,4-benzoquinone), which is currently in clinical trials, is a diaziridinyl benzoquinone bioreductive anticancer drug that was designed to be activated by the obligate two-electron reductive enzyme NAD(P)H quinone oxidoreductase 1 (NQO1). In this electron paramagnetic resonance (EPR) study we showed that RH1 was reductively activated by the one-electron reductive enzyme NADPH cytochrome P450 reductase and by a suspension of HCT116 human colon cancer cells to yield a semiquinone free radical. As shown by EPR spin trapping experiments RH1 was reductively activated by cytochrome P450 reductase and underwent redox cycling to produce damaging hydroxyl radicals in reactions that were both H2O2- and iron-dependent. Thus, reductive activation by cytochrome P450 reductase or other reductases to produce a semiquinone that can redox cycle to produce damaging hydroxyl radicals and/or DNA-reactive alkylating species may contribute to the potent cell growth inhibitory effects of RH1. These results also suggest that selection of patients for treatment with RH1 based on their expression levels of NQO1 may be problematic.  相似文献   

5.
Microsomal cytochrome P450 family 1 enzymes play prominent roles in xenobiotic detoxication and procarcinogen activation. P450 1A2 is the principal cytochrome P450 family 1 enzyme expressed in human liver and participates extensively in drug oxidations. This enzyme is also of great importance in the bioactivation of mutagens, including the N-hydroxylation of arylamines. P450-catalyzed reactions involve a wide range of substrates, and this versatility is reflected in a structural diversity evident in the active sites of available P450 structures. Here, we present the structure of human P450 1A2 in complex with the inhibitor alpha-naphthoflavone, determined to a resolution of 1.95 A. alpha-Naphthoflavone is bound in the active site above the distal surface of the heme prosthetic group. The structure reveals a compact, closed active site cavity that is highly adapted for the positioning and oxidation of relatively large, planar substrates. This unique topology is clearly distinct from known active site architectures of P450 family 2 and 3 enzymes and demonstrates how P450 family 1 enzymes have evolved to catalyze efficiently polycyclic aromatic hydrocarbon oxidation. This report provides the first structure of a microsomal P450 from family 1 and offers a template to study further structure-function relationships of alternative substrates and other cytochrome P450 family 1 members.  相似文献   

6.
In vitro, cytochrome b5 modulates the rate of cytochrome P450-dependent mono-oxygenation reactions. However, the role of this enzyme in determining drug pharmacokinetics in vivo and the consequential effects on drug absorption distribution, metabolism, excretion, and toxicity are unclear. In order to resolve this issue, we have carried out the conditional deletion of microsomal cytochrome b5 in the liver to create the hepatic microsomal cytochrome b5 null mouse. These mice develop and breed normally and have no overt phenotype. In vitro studies using a range of substrates for different P450 enzymes showed that in hepatic microsomal cytochrome b5 null NADH-mediated metabolism was essentially abolished for most substrates, and the NADPH-dependent metabolism of many substrates was reduced by 50-90%. This reduction in metabolism was also reflected in the in vivo elimination profiles of several drugs, including midazolam, metoprolol, and tolbutamide. In the case of chlorzoxazone, elimination was essentially unchanged. For some drugs, the pharmacokinetics were also markedly altered; for example, when administered orally, the maximum plasma concentration for midazolam was increased by 2.5-fold, and the clearance decreased by 3.6-fold in hepatic microsomal cytochrome b5 null mice. These data indicate that microsomal cytochrome b5 can play a major role in the in vivo metabolism of certain drugs and chemicals but in a P450- and substrate-dependent manner.  相似文献   

7.
Cytochrome P450: progress and predictions.   总被引:7,自引:0,他引:7  
The cytochrome P450 gene superfamily encodes many isoforms that are unusual in the variety of chemical reactions catalyzed and the number of substrates attacked. The latter include physiologically important substances such as steroids, eicosanoids, fatty acids, lipid hydroperoxides, retinoids, and other lipid metabolites, and xenobiotics such as drugs, alcohols, procarcinogens, antioxidants, organic solvents, anesthetics, dyes, pesticides, odorants, and flavorants. Accordingly, it is not surprising that these catalysts have come under intensive study in recent years in fields as diverse as biochemistry and molecular biology, endocrinology, pharmacology, toxicology, anesthesiology, nutrition, pathology, and oncology. In this review, recent advances in our knowledge of the catalytic properties, reaction mechanisms, and regulation of expression and activity of the P450 enzymes are briefly summarized. In addition, the prospects for research in this field are considered, and advances are predicted in four broad areas: improved basic knowledge of enzyme catalysis and regulation; synthesis of fine chemicals, including drug design and screening; removal of undesirable environmental chemicals; and biomedical applications related to steroid, drug, carcinogen, and alcohol metabolism.  相似文献   

8.
Cytochrome P-450CAM was shown to be the primary catalyst mediating reductive dehalogenation of polychlorinated ethanes byPseudomonas putida G786. Under anaerobic conditions, the enzyme catalyzed reductive elimination reactionsin vivo with the substrates hexachloroethane, pentachloroethane, and 1,1,1,2-tetrachloroethane; the products were tetrachloroethylene, trichloroethylene, and 1,1-dichloroethylene, respectively.In vivo reaction rates were determined. No reaction was observed with 1,1,2,2-tetrachloroethane or 1,1,1-trichloroethane. Purified cytochrome P-450CAM was used to measure dissociation constants of polychlorinated ethanes for the enzyme active site. Observed rates and dissociation constants were used to predict the course of a reaction with the three substrates simultaneously. Data obtained from experiments withP. putida G786 generally followed the simulated reaction curves. Oxygen suppressed the reductive dechlorination reactions and, in the case of 1,1,1,2-tetrachloroethane, 2,2,2-trichloroacetaldehyde was formed. Significant rates of reductive dechlorination were observed at 5% oxygen suggesting that these reactions could occur under partially aerobic conditions. These studies highlight the potential to use an aerobic bacterium,P. putida G786, under a range of oxygen tensions to reductively dehalogenate mixed wastes which are only degraded at very low rates by obligately anaerobic bacteria.Abbreviations GC/MS Gas chromatography/mass spectrometry - P-450CAM Cytochrome m of the camphor oxidizing system ofP. putida - pca Polychlorinated ethane  相似文献   

9.
Human cytochrome P450 (P450) 2D6 is an important enzyme involved in the metabolism of drugs, many of which are amines or contain other basic nitrogen atoms. Asp301 has generally been considered to be involved in electrostatic docking with the basic substrates, on the basis of previous modeling studies and site-directed mutagenesis. Substitution of Glu216 with a residue other than Asp strongly attenuated the binding of quinidine, bufuralol, and several other P450 2D6 ligands. Catalytic activity with the substrates bufuralol and 4-methoxyphenethylamine was strongly inhibited by neutral or basic mutations at Glu216 (>95%), to the same extent as the substitution of Asn at Asp301. Unlike the Asp301 mutants, the Gln216 mutant (E216Q) retained 40% enzyme efficiency with the substrate spirosulfonamide, devoid of basic nitrogen, suggesting that the substitutions at Glu216 affect binding of amine substrates more than other catalytic steps. Attempts to induce catalytic specificity toward new substrates by substitutions at Asp301 and Glu216 were unsuccessful. Collectively, the results provide evidence for electrostatic interaction of amine substrates with Glu216, and we propose that both of these acidic residues plus at least another residue(s) is (are) involved in binding the repertoire of P450 2D6 ligands.  相似文献   

10.
Cytochrome P450 enzymes catalyze a vast array of oxidative and reductive biotransformations that are potentially useful for industrial and pharmaceutical syntheses. Factors such as cofactor utilization and slow reaction rates for nonnatural substrates limit their large-scale usefulness. This paper reports several improvements that make the cytochrome P450cam enzyme system more practical for the epoxidation of styrene. NADH coupling was increased from 14 to 54 mol %, and product turnover rate was increased from 8 to 70 min(-1) by introducing the Y96F mutation to P450cam. Styrene and styrene oxide mass balance determinations showed different product profiles at low and high styrene conversion levels. For styrene conversion less than about 25 mol %, the stoichiometry between styrene consumption and styrene oxide formation was 1:1. At high styrene conversion, a second doubly oxidized product, alpha-hydroxyacetophenone, was formed. This was also the exclusive product when Y96F P450cam acted on racemic, commercially available styrene oxide. The alpha-hydroxyacetophenone product was suppressed in reactions where styrene was present at saturating concentrations. Finally, styrene epoxidation was carried out in an electroenzymatic reactor. In this scheme, the costly NADH cofactor and one of the three proteins (putidaredoxin reductase) are eliminated from the Y96F P450cam enzyme system.  相似文献   

11.
12.
Hepatic mitochondria contain an inducible cytochrome P450, referred to as P450 MT5, which cross-reacts with antibodies to microsomal cytochrome P450 2E1. In the present study, we purified, partially sequenced, and determined enzymatic properties of the rat liver mitochondrial form. The mitochondrial cytochrome P450 2E1 was purified from pyrazole-induced rat livers using a combination of hydrophobic and ion-exchange chromatography. Mass spectrometry analysis of tryptic fragments of the purified protein further ascertained its identity. N-terminal sequencing of the purified protein showed that its N terminus is identical to that of the microsomal cytochrome P450 2E1. In reconstitution experiments, the mitochondrial cytochrome P450 2E1 displayed the same catalytic activity as the microsomal counterpart, although the activity of the mitochondrial enzyme was supported exclusively by adrenodoxin and adrenodoxin reductase. Mass spectrometry analysis of tryptic fragments and also immunoblot analysis of proteins with anti-serine phosphate antibody demonstrated that the mitochondrial cytochrome P450 2E1 is phosphorylated at a higher level compared with the microsomal counterpart. A different conformational state of the mitochondrial targeted cytochrome P450 2E1 (P450 MT5) is likely to be responsible for its observed preference for adrenodoxin and adrenodoxin reductase electron transfer proteins.  相似文献   

13.
Ingestion of broccoli or other cruciferous vegetables inhibits the induction of cancer by chemicals and modifies some cytochrome P-450 enzyme activities. The effect of dietary broccoli on the levels of P450IA and IIB mRNA and proteins in rat liver and colon has been studied. Rats were fed a ten percent broccoli diet for 7 days. The expression of the cytochrome P-450 forms was altered to a different extent in the liver and colon. The level of total P450IA mRNA in the liver was increased by the broccoli together with the P450IA1 and IA2 proteins. Colonic P450IA1 mRNA and protein were induced by the broccoli diet, whereas only P450IA2 protein and not mRNA was detectable in colon, but the protein level was unaffected by the broccoli diet. Liver P450IIB and IIE1 proteins were increased by the broccoli diet, whereas the level of P450IIB mRNAs was not affected. In contrast, the P450IIB mRNA levels were reduced but the protein levels were increased in colon and we suggest that a feedback mechanism caused the decrease of the P450IIB mRNAs levels. Because the ratio between activation and deactivation may be an important risk determinant, we conclude that the protective effect of the broccoli diet on chemically induced tumors in rodents may be caused by the broccoli-induced changes in P450IA and IIB associated enzyme activities.  相似文献   

14.
This paper reports on the application of the molecular Lego approach to P450 enzymes. Protein domains are used as catalytic (P450 BM3 haem domain and human P450 2E1) or electron transfer (flavodoxin and P450 BM3 reductase) modules. The objectives are to build assemblies with improved electrochemical properties, to construct soluble human P450 enzymes, and to generate libraries of new P450 catalytic modules based on P450 BM3. A rationally designed, gene-fused assembly (BMP-FLD) was obtained from the soluble haem domain of cytochrome P450 BM3 from Bacillus megaterium (BMP) and flavodoxin from Desulfovibrio vulgaris (FLD). The assembly was expressed successfully and characterised in its active form, displaying improved electrochemical properties. Solubilisation of the human, membrane-bound P450 2E1 (2E1) was achieved by fusing key elements of the 2E1 enzyme with selected parts of P450 BM3. An assembly containing the first 54 residues of P450 BM3, the whole sequence of P450 2E1 from residue 81 and the reductase domain of P450 BM3 was constructed. The 2E1-BM3 assembly was successfully expressed in the cytosol of Escherichia coli. The soluble form of 2E1-BM3 was reduced in carbon monoxide atmosphere and displayed the typical absorption peak at 450 nm, characteristic of a folded and active P450 enzyme. Finally, the alkali method previously developed in this laboratory was used to screen for P450 activity within a library of random mutants of P450 BM3. A number of variants active towards non-physiological substrates, such as pesticides and polyaromatic hydrocarbons were identified, providing new P450 catalytic modules. The combination of these three areas of research provide interesting tools for exploitation in nanobiotechnology.  相似文献   

15.
A set of nine 4-aminomethyl-7-alkoxycoumarin derivatives was synthesized and characterized as substrates for O-dealkylation by recombinant cytochrome P450 2D6, a major human enzyme involved in drug metabolism. Enzymatic O-dealkylation yields 7-hydroxycoumarins, which have useful fluorescence properties. The substrates, which differed in substitution at the amino and 7-hydroxy positions, varied in terms of catalytic efficiency of O-dealkylation and in their selectivity as substrates for cytochrome P450 2D6 in human liver microsomes. Several of the compounds are useful as cytochrome P450 2D6 substrates in single-phase, rapid-throughput assays.  相似文献   

16.
Evidence for multiple functional active oxidants in cytochrome P450-catalyzed reactions was previously obtained in this laboratory with mutants in which proton delivery was perturbed by replacement of the highly conserved threonine residue in the active site by alanine, thus apparently interfering with the conversion of the peroxo-iron to the hydroperoxo-iron and the latter to the oxenoid-iron species. These enzymes have now been employed to examine the reaction in which cytochrome P450 in liver microsomes is known to effect ipso-substitution, the elimination of p-substituents in phenols to yield hydroquinone. As shown with purified NH(2)-truncated cytochromes in a reconstituted enzyme system, the reaction exhibits an absolute requirement for cytochrome P450 and NADPH-cytochrome P450 reductase. Under optimal conditions truncated cytochrome P450 2E1 is active with 10 of the p-substituted phenols examined. Of particular interest, the corresponding cytochrome with threonine-303 replaced by alanine is from 1.5- to 50-fold higher in activity with the p-chloro, -bromo, -nitro, -cyano, -hydroxymethyl, -formyl, and -acetyl derivatives, and the reaction with the p-benzoyl, -methyl, and -t-butyl compounds is catalyzed by the mutant enzyme only. The results implicate the hydroperoxo-iron species as an electrophilic active oxidant in cytochrome P450-catalyzed aromatic ipso-substitution.  相似文献   

17.
Catalysis of sequential oxidation reactions is not unusual in cytochrome P450 (P450) reactions, not only in steroid metabolism but also with many xenobiotics. One issue is how processive/distributive these reactions are, i.e., how much do the “intermediate” products dissociate. Our work with human P450s 2E1, 2A6, and 19A1 on this subject has revealed a mixture of systems, surprisingly with a more distributive mechanism with an endogenous substrate (P450 19A1) than for some xenobiotics (P450s 2E1, 2A6). One aspect of this research involves carbonyl intermediates, and the choice of catalytic mechanism is linked to the hydration state of the aldehyde. The non-enzymatic rates of hydration and dehydration of carbonyls are not rapid and whether P450s catalyze the reversible hydration is unknown. If carbonyl hydration and dehydration are slow, the mechanism may be set by the carbonyl hydration status.  相似文献   

18.
Three cDNAs for chimeras between cytochrome P-450s (pHP3 and pHP2-1) were constructed and inserted between the alcohol dehydrogenase promoter and terminator regions of the yeast expression vector pAAH5 to form expression plasmids, pAH3P2, pAH3E2, and pAH3A2. pAH3P2 contained the entire coding sequence of cytochrome P-450 (pHP2-1) except for the 3rd, the 8th, the 36th, and the 42nd residues of the total of 490 amino acids. Nucleotide sequences of pAH3P2 were replaced with those of cytochrome P-450 (pHP3) in the region coding for the NH2-terminal 210 and 262 amino acid residues to yield pAH3E2 and pAH3A2, respectively. The three expression plasmids were introduced into Saccharomyces cerevisiae AH22 cells and cytochrome P-450 s (3P2, 3E2, and 3A2) were purified from the microsomal fractions of the transformed yeast cells. In the oxidized state either of the cytochromes exhibited a low- and high-spin mixed-type spectrum of cytochrome P-450. The reduced CO complex of the cytochromes showed a Soret absorption maximum at 450 nm. When laurate or caprate was added to ferric cytochrome P-450 s (3P2 and 3E2), the spectrum was converted to that of the typical high-spin type, indicating the binding of the fatty acids to the substrate site of the cytochromes. On the other hand, the addition of the fatty acids to ferric cytochrome P-450 (3A2) induced no spectral change. Only chemicals having a carboxyl group caused such spectral conversion of cytochrome P-450 (3P2) among dodecyl compounds examined.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
Cytochrome P450s (CYPs) are a large family of heme-containing monooxygenase enzymes involved in the first-pass metabolism of drugs and foreign chemicals in the body. CYP reactions, therefore, are of high interest to the pharmaceutical industry, where lead compounds in drug development are screened for CYP activity. CYP reactions in vivo require the cofactor NADPH as the source of electrons and an additional enzyme, cytochrome P450 reductase (CPR), as the electron transfer partner; consequently, any laboratory or industrial use of CYPs is limited by the need to supply NADPH and CPR. However, immobilizing CYPs on an electrode can eliminate the need for NADPH and CPR provided the enzyme can accept electrons directly from the electrode. The immobilized CYP can then act as a biosensor for the detection of CYP activity with potential substrates, albeit only if the immobilized enzyme is electroactive. The quest to create electroactive CYPs has led to many different immobilization strategies encompassing different electrode materials and surface modifications. This review focuses on different immobilization strategies that have been used to create CYP biosensors, with particular emphasis on mammalian drug-metabolizing CYPs and characterization of CYP electrodes. Traditional immobilization methods such as adsorption to thin films or encapsulation in polymers and gels remain robust strategies for creating CYP biosensors; however, the incorporation of novel materials such as gold nanoparticles or quantum dots and the use of microfabrication are proving advantageous for the creation of highly sensitive and portable CYP biosensors.  相似文献   

20.
Gonzalez FJ 《Mutation research》2005,569(1-2):101-110
Cytochromes P450 are responsible for metabolism of most xenobiotics and are required for the efficient elimination of foreign chemicals from the body. Paradoxically, these enzymes also metabolically activate biologically inert compounds to electrophilic derivatives that can cause toxicity, cell death and sometimes cellular transformation resulting in cancer. To establish the role of these enzymes in toxicity and carcinogenicity in vivo, gene knockout mice have been developed. To illustrate the role of P450s in toxicity, CYP2E1-null mice were employed with the commonly used analgesic drug acetaminophen. CYP2E1 is the rate-limiting enzyme that initiates the cascade of events leading to acetaminophen hepatotoxicity; in the absence of this P450, toxicity will only be apparent at high concentrations. Other enzymes and nuclear receptors are also involved in activation or inactivating chemicals. CYP2E1 is induced by alcohol and the primary P450 that carries out ethanol oxidation that can lead to the production of activated oxygen species and oxidative stress that elevate ERK1/2 phosphorylation through EGRF/c-Raf signaling. Paradoxically, activation of this pathway inhibits apoptotic cell death stimulated by reactive oxygen generating chemicals but accelerates necrotic cell death produced by polyunsaturated fatty acids. CYP2E1 is thought to contribute to liver pathologies that result from alcoholic liver disease and non-alcoholic steatohepatitis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号