首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Reversible phosphorylation of the 22 kDa BAD protein is crucial for cell survival. Five phosphorylation sites, all serines, had been identified. Here we report on number six. It is threonine-117 phosphorylated by the constitutively active kinase, CK2. Phosphoamino acid analysis and phospho-specific antibodies confirmed Thr117 as additional phosphorylation site. Immunoprecipitation furthermore revealed that BAD is phosphorylated at Thr117 in cultured cortical neurons. PP1, PP2A and PP2C dephosphorylated BAD at Thr117, but PP2B did not. The discovery of the constitutively active CK2 phosphorylating BAD is shedding an unexpected light in the otherwise strictly signal-regulated phosphorylation events on BAD.  相似文献   

2.
The Raf-1 kinase plays a key role in relaying proliferation signals elicited by mitogens or oncogenes. Raf-1 is regulated by complex and incompletely understood mechanisms including phosphorylation. A number of studies have indicated that phosphorylation of serines 259 and 621 can inhibit the Raf-1 kinase. We show that both serines are hypophosphorylated during early mitogenic stimulation and that hypophosphorylation correlates with peak Raf-1 activation. Concentrations of okadaic acid that selectively inhibit protein phosphatase 2A (PP2A) induce phosphorylation of these residues and prevent maximal activation of the Raf-1 kinase. This effect is mediated via phosphorylation of serine 259. The PP2A core heterodimer forms complexes with Raf-1 in vivo and in vitro. These data identify PP2A as a positive regulator of Raf-1 activation and are the first indication that PP2A may support the activation of an associated kinase.  相似文献   

3.
Protein phosphatase 2A (PP2A) activity may be differentially regulated by the expression of proteins containing a related amino acid sequence motif such as the casein kinase 2alpha (CK2alpha) subunit or SV40 small t antigen (SVt). Expression of CK2alpha increases PP2A activity whereas SVt decreases its activity. In this work we have tested for the effect of the expression of a third protein containing a similar motif that could be involved in PP2A regulation, the catalytic casein kinase 2alpha' subunit. Our results show that despite the structural similarity of this protein with the other CK2 catalytic (alpha) subunit, the function of the two subunits with respect to the modulation of PP2A activity is quite different: CK2alpha increases whereas CK2alpha' slightly decreases PP2A activity.  相似文献   

4.
Mitogen-activated protein (MAP) kinases play a central role in controlling a wide range of cellular functions following their activation by a variety of extracellular stimuli. MAP kinase phosphatases (MKPs) represent a subfamily of dual specificity phosphatases, which negatively regulate MAP kinases. Although ERK2 activity is regulated by its phosphorylation state, MKP3 is regulated by physical interaction with ERK2, independent of its enzymatic activity (Camps, M., Nichols, A., Gillieron, C., Antonsson, B., Muda, M., Chabert, C., Boschert, U., and Arkinstall, S., (1998) Science 280, 1262-1265; Farooq, A., Chaturvedi, G., Mujtaba, S., Plotnikova, O., Zeng, L., Dhalluin, C., Ashton, R., and Zhou, M. M. (2001), Mol. Cell 7, 387-399; Zhou, B., and Zhang, Z. Y. (1999) J. Biol. Chem. 274, 35526-35534). The interaction of ERK2 and MKP3 allows the reciprocal cross-regulation of their catalytic activity. Indeed, MKP3 acts as a negative regulator on ERK2-MAP kinase signal transduction activity, representing thus a negative feedback for this MAPK pathway. To identify novel proteins able to complex MKP3, we used the yeast two-hybrid system. Here we report that MKP3 and protein kinase CK2 form a protein complex, which can include ERK2. The phosphatase activity of MKP3 is then slightly increased in vitro, whereas in transfected cells, ERK2 dephosphorylation is reduced. In addition, we demonstrated that CK2 selectively phosphorylates MKP3, suggesting cross-regulation between CK2alpha and MKP3, as well as a modulation of ERK2-MAPK signaling by CK2alpha via MKP3.  相似文献   

5.
In the growth course of the lipolytic yeast Yarrowia lipolytica, the activities of protein phosphatase 2A (PP2A) and glycogen synthase (GS) rise during the exponential phase and concomitantly glycogen storage occurs in the cells. There is also an increase in the independence ratio (RI) indicating a shift from an inactive phosphorylated GS form to an active dephosphorylated GS form. During the early stationary phase, an increase in protein kinase CK2 (CK2) activity, a reversion of RI variation and a glycogen content decrease are observed. GS activity proved to be a good indicator of early culture growth phase. Experiments carried out with enzymes purified from Y. lipolytica show strong RI variations upon the action of CK2 and PP2Ac, and 32P incorporation into GS protein through phosphorylation by CK2. GS activity would be controlled by the sequential action of PP2A and CK2.  相似文献   

6.
The extracellular signal-regulated protein kinase 2 (ERK2) is the founding member of a family of mitogen-activated protein kinases (MAPKs) that are central components of signal transduction pathways for cell proliferation, stress responses, and differentiation. The MAPKs are unique among the Ser/Thr protein kinases in that they require both Thr and Tyr phosphorylation for full activation. The dual phosphorylation of Thr-183 and Tyr-185 in ERK2 is catalyzed by MAPK/ERK kinase 1 (MEK1). However, the identity and relative activity of protein phosphatases that inactivate ERK2 are less well established. In this study, we performed a kinetic analysis of ERK2 dephosphorylation by protein phosphatases using a continuous spectrophotometric enzyme-coupled assay that measures the inorganic phosphate produced in the reaction. Eleven different protein phosphatases, many previously suggested to be involved in ERK2 regulation, were compared, including tyrosine-specific phosphatases (PTP1B, CD45, and HePTP), dual specificity MAPK phosphatases (VHR, MKP3, and MKP5), and Ser/Thr protein phosphatases (PP1, PP2A, PP2B, PP2C alpha, and lambda PP). The results provide biochemical evidence that protein phosphatases display exquisite specificity in their substrate recognition and implicate HePTP, MKP3, and PP2A as ERK2 phosphatases. The fact that ERK2 inactivation could be carried out by multiple specific phosphatases shows that signals can be integrated into the pathway at the phosphatase level to determine the cellular response to external stimuli. Important insights into the roles of various protein phosphatases in ERK2 kinase signaling are obtained, and further analysis of the mechanism by which different protein phosphatases recognize and inactivate MAPKs will increase our understanding of how this kinase family is regulated.  相似文献   

7.
Protein kinase CK2 is a serine/threonine kinase known to phosphorylate numerous substrates. CK2 is implicated in several physiologic and pathologic processes, particularly in cancer biology. CK2 is comprised of several subunits, including CK2α, CK2α′ and CK2β. Inactivation of CK2α′ leads to chromatin degeneration of germ cells, resulting in male sterility. To identify additional targets of CK2α′ in testes and to determine the role of CK2α′ in germ cell nuclear integrity, GST pull-down and protein–protein interaction assays were conducted. A novel testis-specific gene, CKT2 (CK2 Target protein 2), was found whose product interacts with and is phosphorylated by CK2 in vitro and in vivo. CKT2 is a 30.2 kDa protein with one coiled-coil domain and six putative phosphorylation sites. High expression of CKT2 correlated with chromatin condensation of spermatids in murine testes. Findings reported herein demonstrate that CKT2 is a target protein of native CK2α′ in testes and suggest that CKT2 plays a role in chromatin regulation of male germ cells.  相似文献   

8.
Tamura Y  Simizu S  Osada H 《FEBS letters》2004,569(1-3):249-255
Bcl-2 protein play important roles in the regulation of apoptosis. We previously reported that the phosphorylation of Bcl-2 was augmented by treatment with protein phosphatase 2A (PP2A) inhibitor; however, the kinase responsible for Bcl-2 phosphorylation had not yet been identified. In this study, we identified extracellular-signal-regulated kinase (ERK) as the responsible kinase for the phosphorylation of Bcl-2. We also found that the transmembrane region (TM) deleted form of Bcl-2 (Bcl-2DeltaTM), which was unable to localize on the mitochondria was constitutively phosphorylated, whereas wild-type Bcl-2 that localized on the mitochondria, was present in its hypophosphorylated form. The phosphorylation of Bcl-2DeltaTM was retarded by treatment with MAP kinase ERK kinase (MEK) inhibitor and PP2A did not bind to Bcl-2DeltaTM. These observations suggest that Bcl-2DeltaTM is constitutively phosphorylated by ERK, but is not dephosphorylated by PP2A in human tumor cell lines. The phosphorylation of Bcl-2 resulted in a reduction in anti-apoptotic function, implying that dephosphorylation promoted the anti-apoptotic activity of Bcl-2 protein in human tumor cell lines. Thus, the present findings suggest that ERK and PP2A are physiological regulators of Bcl-2 phosphorylation, and these enzymes exert an influence on the anti-apoptotic function of Bcl-2.  相似文献   

9.
Phosphorylation by casein kinase 2 regulates Nap1 localization and function   总被引:1,自引:0,他引:1  
In Saccharomyces cerevisiae, the evolutionarily conserved nucleocytoplasmic shuttling protein Nap1 is a cofactor for the import of histones H2A and H2B, a chromatin assembly factor and a mitotic factor involved in regulation of bud formation. To understand the mechanism by which Nap1 function is regulated, Nap1-interacting factors were isolated and identified by mass spectrometry. We identified several kinases among these proteins, including casein kinase 2 (CK2), and a new bud neck-associated protein, Nba1. Consistent with our identification of the Nap1-interacting kinases, we showed that Nap1 is phosphorylated in vivo at 11 sites and that Nap1 is phosphorylated by CK2 at three substrate serines. Phosphorylation of these serines was not necessary for normal bud formation, but mutation of these serines to either alanine or aspartic acid resulted in cell cycle changes, including a prolonged S phase, suggesting that reversible phosphorylation by CK2 is important for cell cycle regulation. Nap1 can shuttle between the nucleus and cytoplasm, and we also showed that CK2 phosphorylation promotes the import of Nap1 into the nucleus. In conclusion, our data show that Nap1 phosphorylation by CK2 appears to regulate Nap1 localization and is required for normal progression through S phase.  相似文献   

10.
We have previously demonstrated that insulin-like growth factor 1 (IGF1) induces eukaryotic initiation factor 2B (eIF2B) activation in neuronal cells through the phosphatidylinositol 3 kinase/glycogen synthase kinase 3 pathway as well as by activation of the mitogen-activated protein kinase (MAPK)-activating kinase (MEK)/MAPK signaling pathway (Quevedo, C., Alcázar, A., and Salinas, M. (2000) J. Biol. Chem. 275, 19192-19197). This paper addresses the mechanism involved in IGF1-induced eIF2B activation via the MEK/MAPK cascade in cultured neurons treated with IGF1 and demonstrates that extracellular signal-regulated MAP kinase 1 and 2 (ERK1 and -2) immunoprecipitates of IGF1-treated neuronal cells promote this activation. This effect did not directly result from eIF2B phosphorylation by ERK immunoprecipitates. In addition, recombinant ERK1 and -2 neither activate eIF2B nor phosphorylate it. Endogenous protein phosphatase 1 and 2A catalytic subunits (PP1C and PP2AC, respectively) were co-immunoprecipitated with ERK1 and -2, and the association of ERK with PP1C was stimulated by IGF1 treatment, resulting in increased PP1 activity. ERK immunoprecipitates incubated with PP1 inhibitors did not activate eIF2B, indicating that PP1C activates eIF2B. In vitro experiments with phosphorylated eIF2B showed that recombinant PP1C (alpha isoform) dephosphorylates and activates eIF2B. Paralleling eIF2B activation, IGF1 treatment induced PP1 activation in a MEK/MAPK-dependent fashion. Moreover, the treatment of neurons with the PP1 inhibitor tautomycin inhibited PP1 activation and prevented IGF1-induced eIF2B activation. These findings strongly suggest that IGF1-induced eIF2B activation in neurons is effected by PP1, the activation of which is mediated by the MEK/MAPK signaling pathway.  相似文献   

11.
Recombinant murine BID protein was used as an in vitro substrate for the CK2 holoenzyme and the catalytic CK2alpha subunit. The results obtained show that BID can only serve as a substrate for the catalytic CK2alpha subunit. Phosphorylation of BID using the CK2 holoenzyme was only possible in the presence of polylysine, supporting the notion that BID behaves similarly to calmodulin. Co-immunoprecipitation of BID and CK2 subunits revealed that BID is preferentially associated with the CK2alpha subunit. Enzyme kinetic analyses yielded a Km value for BID that is a level of magnitude lower than that measured for casein and the synthetic peptide, suggesting more specific and tight binding of BID to CK2alpha. In contrast are the Vmax values observed, with a significantly higher phosphorylation rate measured for casein and the synthetic peptide than for BID. When BID was phosphorylated by polylysine-stimulated CK2 holoenzyme prior to caspase-8 cleavage, the formation of tC-BID was reduced in comparison to treatment with caspase-8 in the absence of protein kinase. Mass spectrometric analysis of BID phosphorylated by CK2alpha before and after cleavage with caspase-8 showed phosphorylation of residues Thr58 and Ser76.  相似文献   

12.
13.
14.
CD45 is a receptor-type protein-tyrosine phosphatase (PTP) that is required for antigen-specific stimulation and proliferation in lymphocytes. This study was designed to determine the nature of specific kinases in lymphocytes that phosphorylate CD45 and to determine the effect of phosphorylation on CD45 PTP activity. A major cytoplasmic lymphocyte kinase that phosphorylated CD45 was identified as casein kinase 2 (CK2) by use of an in-gel kinase assay in combination with immunoprecipitation, immunodepletion, and specific inhibition. Mutational analysis of CK2 consensus sites showed that the target for CK2 was in an acidic insert of 19 amino acids in the D2 domain, and Ser to Ala mutations at amino acids 965, 968, 969, and 973 abrogated CK2 phosphorylation of CD45. CK2 phosphorylation increased CD45 activity 3-fold toward phosphorylated myelin basic protein, and this increase was reversible by PP2A treatment. Mutation of Ser to Glu at the CK2 sites had the same effect as phosphorylation and also tripled the Vmax of CD45. CD45 isolated in vivo was highly phosphorylated and could not be phosphorylated by CK2 without prior dephosphorylation with phosphatase PP2A. We conclude that CK2 is a major lymphocyte kinase that is responsible for in vivo phosphorylation of CD45, and phosphorylation at specific CK2 sites regulates CD45 PTP activity.  相似文献   

15.
Recent results suggest a role for topoIIalpha (topoisomerase IIalpha) in the fine-tuning of mitotic entry. Mitotic entry is accompanied by the formation of specific phosphoepitopes such as MPM-2 (mitotic protein monoclonal 2) that are believed to control mitotic processes. Surprisingly, the MPM-2 kinase of topoIIalpha was identified as protein kinase CK2, otherwise known as a constitutive interphase kinase. This suggested the existence of alternative pathways for the creation of mitotic phosphoepitopes, different from the classical pathway where the substrate is phosphorylated by a mitotic kinase. In the present paper, we report that topoIIalpha is co-localized with both CK2 and PP2A (protein phosphatase 2A) during interphase. Simultaneous incubation of purified topoIIalpha with CK2 and PP2A had minimal influence on the total phosphorylation levels of topoIIalpha, but resulted in complete disappearance of the MPM-2 phosphoepitope owing to opposite sequence preferences of CK2 and PP2A. Accordingly, short-term exposure of interphase cells to okadaic acid, a selective PP2A inhibitor, was accompanied by the specific appearance of the MPM-2 phosphoepitope on topoIIalpha. During early mitosis, PP2A was translocated from the nucleus, while CK2 remained in the nucleus until pro-metaphase thus permitting the formation of the MPM-2 phosphoepitope. These results underline the importance of protein phosphatases as an alternative way of creating cell-cycle-specific phosphoepitopes.  相似文献   

16.
To determine whether alpha4 subunits of alpha4beta2 neuronal nicotinic receptors are phosphorylated within the M3/M4 intracellular region by cyclic AMP-dependent protein kinase A (PKA) or protein kinase C (PKC), immunoprecipitated receptors from Xenopus oocytes and a fusion protein corresponding to the M3/M4 cytoplasmic domain of alpha4 (alpha4(336-597)) were incubated with ATP and either PKA or PKC. Both alpha4 and alpha4(336-597) were phosphorylated by PKA and PKC, providing the first direct biochemical evidence that the M3/M4 cytoplasmic domain of neuronal nicotinic receptor alpha4 subunits is phosphorylated by both kinases. When the immunoprecipitated receptors and the alpha4(336-597) fusion protein were phosphorylated and the labeled proteins subjected to phosphoamino acid analysis, results indicated that alpha4 and alpha4(336-597) were phosphorylated on the same amino acid residues by each kinase. Furthermore, PKA phosphorylated serines exclusively, whereas PKC phosphorylated both serines and threonines. To determine whether Ser(368) was a substrate for both kinases, a peptide corresponding to amino acids 356-371 was synthesized (alpha4(356-371)) and incubated with ATP and the kinases. The phosphorylation of alpha4(356-371) by both PKA and PKC was saturable with K(m)s of 15.3 +/- 3.3 microM and 160.8 +/- 26.8 microM, respectively, suggesting that Ser(368) was a better substrate for PKA than PKC.  相似文献   

17.
Protein kinases and protein phosphatases exert coordinated control over many essential cellular processes. Here, we describe the cloning and characterization of a novel human transmembrane protein KPI-2 (Kinase/Phosphatase/Inhibitor-2) that was identified by yeast two-hybrid using protein phosphatase inhibitor-2 (Inh2) as bait. KPI-2 mRNA was predominantly expressed in skeletal muscle. KPI-2 is a 1503-residue protein with two predicted transmembrane helices at the N terminus, a kinase domain, followed by a C-terminal domain. The transmembrane helices were sufficient for targeting proteins to the membrane. KPI-2 kinase domain has about 60% identity with its closest relative, a tyrosine kinase. However, it only exhibited serine/threonine kinase activity in autophosphorylation reactions or with added substrates. KPI-2 kinase domain phosphorylated protein phosphatase-1 (PP1C) at Thr(320), which attenuated PP1C activity. KPI-2 C-terminal domain directly associated with PP1C, and this required a VTF motif. Inh2 associated with KPI-2 C-terminal domain with and without PP1C. Thus, KPI-2 is a kinase with sites to associate with PP1C and Inh2 to form a regulatory complex that is localized to membranes.  相似文献   

18.
In plants, a variety of chromatin-associated high mobility group (HMG) proteins belonging to the HMGB family have been identified. We have examined the phosphorylation of the HMGB proteins from the monocotyledonous plant maize and the dicotyledonous plant Arabidopsis by protein kinase CK2alpha. Maize CK2alpha phosphorylates the maize HMGB1 and HMGB2/3 proteins and the Arabidopsis HMGB1, HMGB2/3, and HMGB4 proteins. Maize HMGB4 and HMGB5 and Arabidopsis HMGB5 are not phosphorylated by CK2alpha. Depending on the HMGB protein up to five amino acid residues are phosphorylated in the course of the phosphorylation reaction. The HMGB1 proteins from both plants are markedly more slowly phosphorylated by CK2alpha than the other HMGB substrate proteins, indicating that certain HMGB proteins are clearly preferred substrates for CK2alpha. The rate of the phosphorylation reaction appears to be related to the ease of interaction between CK2alpha and the HMGB proteins, as indicated by chemical cross-linking experiments. MALDI/TOF mass spectrometry analyses demonstrate that the HMGB1 and HMGB2/3 proteins occur in various phosphorylation states in immature maize kernels. Thus, HMGB1 exists as monophosphorylated, double-phosphorylated, triple-phosphorylated, and tetraphosphorylated protein in kernel tissue, and the tetraphosphorylated form is the most abundant version. The observed in vivo phosphorylation states indicate that protein kinase(s) other than CK2alpha contribute(s) to the modification of the plant HMGB proteins. The fact that the HMGB proteins are phosphorylated to various extents reveals that the existence of differentially modified forms increases the number of distinct HMGB protein variants in plant chromatin that may be adapted to certain functions.  相似文献   

19.
Komaba S  Hamao H  Murata-Hori M  Hosoya H 《Gene》2001,275(1):141-148
Here we purified and identified a myosin II kinase from sea urchin eggs. The activity of this myosin II kinase in the egg extract was not significantly affected by Ca(2+)/calmodulin (CaM). Using sequential column chromatographies, we purified the myosin II kinase from the egg extract as a complex composed of 36- (p36) and 28-kDa (p28) proteins. Partial amino acid sequences of these two components were highly coincident with those of the alpha and beta subunits of protein kinase CK2 (formerly casein kinase II) in sea urchin eggs, respectively. To confirm that the purified myosin II kinase was CK2, we obtained a cDNA which encodes p36 from a cDNA library of sea urchin eggs. The amino acid sequence derived from the obtained cDNA showed over 70% homology to CK2 from various eukaryotes. Furthermore, recombinant p36, as well as the purified myosin II kinase, phosphorylated MRLC. One dimensional phosphopeptide mapping revealed that the phosphorylation site(s) of MRLC by both recombinant p36 and the purified myosin II kinase was identical. These clearly showed that the Ca(2+)/CaM-independent myosin II kinase activity in sea urchin eggs was identical to CK2.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号